Conditional Distributions
How do we write conditional probabilities using $c d t s$, pots, and pints?
Recall that for two events A and B,

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

as long as $P(B) \neq 0$. To white a form of a cdf, consider the case $A=\{X \leq x\}$ for a $r v$ X and some $x \in \mathbb{R}$. Then we have

$$
P(X \leq x \mid B)=\frac{P(\{X \leq x\} \cap B)}{P(B)}
$$

This is called the conditional cdt of X green B and is denoted $F_{x}(x \mid B)$. The conditional pdf of X given B is then

$$
f_{X}(x \mid B)=\frac{d}{d x} F_{X}(x \mid B)
$$

One particular case of interest is

$$
B=\{X>t\}
$$

for some $t \in \mathbb{R}$.

Then we get

$$
F_{X}(x \mid X>t)=\frac{P(\{X \leq x\} \cap\{X>t\})}{P(X>t)}
$$

We want to write the right-hand sole in terms of the coif of $X_{\text {, }}$ so consider two cases:
(1) $x \leq t$:

The event that X lies in both shaded regions is ϕ, so

$$
F_{X}(x \mid X>t)=\frac{P(\phi)}{P(X>t)}=0
$$

for $x \leq t$.
(2) $x>t$;

$$
\{X \leq x\} \cap\{X>t\}=\{t<X \leq x\}
$$

in this case, so

$$
\begin{aligned}
F_{X}(x \mid X>t) & =\frac{P(t<X \leq x)}{P(X>t)} \\
& =\frac{F_{X}(x)-F_{X}(t)}{1-F_{X}(t)}
\end{aligned}
$$

Combining the two cases and differentiating wot x to get the conditional pdt gives

$$
f_{X}(x \mid X>t)=\left\{\begin{array}{l}
0, x \leq t \\
\frac{f_{X}(x)}{1-F_{X}(t)}, x>t
\end{array}\right.
$$

This distribution can be used in modeling rare or extreme events in a field calked extreme value statistics.

We have now defined

$$
F_{X}(x \mid B)=P(X \leq x \mid B) .
$$

Using Bayes' Theorem, we have

$$
P(X \leq x \mid B)=\frac{P(B \mid X \leq x) P(X \leq x)}{P(B)}
$$

assuming $P(X \leq x) \neq 0$ and $P(B) \neq 0$.

In practice we often want to condition on $\{X=x\}$ instead of $\{X \leq x\}$. If X is a continuous rv, we cannot use over previous definition of cone. probability to do this since $P(X=x)=0 \quad \forall x \in \mathbb{R}$
in that case.
lusted, let

$$
P(B \mid X=x)=\lim _{\Delta x \rightarrow 0} P(B \mid x<X \leq x+\Delta x)
$$

Using some Calculus leads to

$$
P(B \mid X=x)=\frac{f_{X}(x \mid B) P(B)}{f_{X}(x)}
$$

for all x where

$$
f_{x}(x) \neq 0 .
$$

Now consider $f_{x}(x \mid B)$ for the case $B=\{Y=y\}$ for some $y \in \mathbb{R}$.
Let

$$
f_{X}(x \mid Y=y)=\lim _{\Delta y \rightarrow 0} f_{X}(x \mid y<Y \leq y+\Delta y) .
$$

Using some more
Calculus gives

$$
f_{X}(x \mid Y=y)=\frac{f_{X Y}(x, y)}{f_{Y}(y)}
$$

$\forall y$ where $f_{y}(y) \neq 0$
Notation: We will write $f_{X}(x \mid Y=y)$ as $f_{X \mid Y}(x \mid y)$. Note that this is a function of two variables x, y. For two different values y_{1}, y_{2}, we might have, for example $f_{x i y}(x\left(y_{2}\right)>\underbrace{1}_{x_{0}} \underset{x}{x} f_{x \mid r}\left(x / y_{1}\right)$
so the value of the function $f_{x i y}(x / y)$ at a point x_{0} depends not only on the value of x_{0}, but also on the value of y.
For a fixed y and two different values of x, the values of the function can be determined with one graph

We have found that

$$
f_{x \mid y}(x \mid y)=\frac{f_{x y}(x, y)}{f_{y}(y)}
$$

Similarly, we could find

$$
f_{Y \mid X}(y \mid x)=\frac{f_{X Y}(x, y)}{f_{X}(x)}
$$

Solving these two for $f_{x y}$ and equating them gives

$$
f_{X \mid Y}(x \mid y)=\frac{f_{Y \mid X}(y \mid x) f_{X}(x)}{f_{Y}(y)}
$$

This is another form of Bayes' Theorem.

We also have another form of the Total Probability Law (TPL):

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f_{X Y}(x, y) d x=\int_{-\infty}^{\infty} f_{Y \mid X}(y \mid x) f_{X}(x) d x
$$

