Two Functions of Two Random Variables
We are considering
the rus Z and W defined as

$$
\begin{aligned}
& Z=g(X, Y) \\
& W=h(X, Y)
\end{aligned}
$$

for two functions $g, h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and two rus X, Y.
want to find the joint pdf $f_{\text {zw }}$.
Use a change of variables approach.
First, assume that

- for any fixed $w, z \in \mathbb{R}$, there is a unique

Solution to the system $z=g(x, y)$, $w=h(x, y)$ that col be written as

$$
\begin{aligned}
& x=g^{-1}(z, w) \\
& y=h^{-1}(z, w)
\end{aligned}
$$

Note that for the linear transformation example deccibed in the previous lecture, this mars that $A_{2 \times 2}$ is invertible.

- The partials

$$
\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, \frac{\partial w}{\partial x}, \frac{\partial w}{\partial y}
$$

all exist

Under these fro assumptions, it can be shown that

$$
f_{Z W}(z, w)=\frac{f_{X Y}\left(g^{-1}(z, w), h^{-1}(z, w)\right)}{\left|\frac{\partial(z, w)}{\partial(x, y)}\right|}
$$

where the notation in the denominator means

$$
\left|\frac{\partial(z, w)}{\partial(x, y)}\right|=\left|\operatorname{det}\left[\begin{array}{cc}
\frac{\partial z}{\partial x} & \frac{\partial z}{\partial y} \\
\frac{\partial w}{\partial x} & \frac{\partial w}{\partial y}
\end{array}\right]\right|_{\text {matrix }}
$$

determinant

$$
\begin{aligned}
&=\left|\frac{\partial z}{\partial x} \frac{\partial w}{\partial y}-\frac{\partial z}{\partial y} \frac{\partial w}{\partial x}\right| \\
& \text { absolute value }
\end{aligned}
$$

Example. Let X and Y be two ind (independent and identically distributed) Gaussian rVS with

$$
\mu_{x}=\mu_{y}=0, \sigma_{x}=\sigma_{y}=\sigma, \quad r=0
$$

Now let

$$
R=\sqrt{X^{2}+Y^{2}}
$$

and

$$
\theta=\tan ^{-1}\left(\frac{Y}{X}\right)
$$

Find $f_{R \theta}$.
In this case

$$
\begin{aligned}
& g(x, y)=\sqrt{x^{2}+y^{2}} \\
& h(x, y)=\tan ^{-1}\left(\frac{y}{x}\right) \\
&-\pi \leq \tan ^{-1}\left(\frac{y}{x}\right) \leq \pi,
\end{aligned}
$$

hue visor and
cauls and

$$
\begin{aligned}
& g^{-1}(r, \theta)=r \cos \theta \\
& h^{-1}(r, \theta)=r \sin \theta
\end{aligned}
$$

Taking the partial derivatives and Coruputing the Jacobian gives the value $\frac{1}{r}$, which leadl to

$$
\begin{aligned}
f_{R \Theta}(r, \theta) & =\frac{f_{X Y}(r \cos \theta, r \sin \theta)}{\frac{1}{r}} \\
& =\frac{r}{2 \pi \sigma^{2}} \exp \left[-\frac{r^{2}}{2 \sigma^{2}}\right]
\end{aligned}
$$

if $r \geq 0$ and $-\pi \leq \theta \leq \pi$,
anils

$$
-\theta \leq \pi
$$

and if $r<0$ or $\theta \notin[-\pi, \pi]$

Note that the marginal pdf of R can now be found using

$$
\begin{aligned}
f_{R}(r) & =\int_{-\pi}^{\pi} f_{R \Theta}(r, \theta) d \theta \\
& =\frac{r}{\sigma^{2}} \exp \left[-\frac{r^{2}}{\sigma^{2}}\right] u(r)
\end{aligned}
$$

This is called a Rayleigh rv. One place it is used is in modeling certain wireless communications channels.

The approach we used to find f_{R} here can be used to find the pdf of one function of fro rvs, $Z=g(X, Y)$. An auxiliang rv W can be defined, $f_{\text {aw }}$ can be found using change of variables formula, then

$$
f_{z}(z)=\int_{-\infty}^{\infty} f_{z w}(z, w) d w
$$

Sometimes the best choice for W is simply $W=X$ or $W=Y$.

Given two rus X and Y, and a rv $Z=g(X, Y)$, we know that

$$
E[z]=\int_{-\infty}^{\infty} z f_{z}(z) d z
$$

from the definition of the expected value of a rv. But it can be shown that

$$
E[g(X, Y)]=\iint_{\mathbb{R}^{2}} g(x, y) f_{X Y}(x, y) d x d y
$$

This is offer an easier way to find $E[g(x, y)]$, for a function g, than
first finding $f_{z}(z)$ for $z=g(X, Y)$.
for the discrete X and y case, use

$$
E[g(X, Y)]=\sum_{x \in \mathcal{R}_{X}} \sum_{y \in \mathcal{R}_{Y}} g(x, y) p_{X Y}(x, y)
$$

Some important special cases:

- $\quad g(x, y)=x:$

$$
\begin{aligned}
E[g(X, Y)] & =\iint_{\mathbb{R}^{2}} x f_{X Y}(x, y) d x d y \\
& =\int_{-\infty}^{\infty} x \underbrace{\int_{-\infty}^{\infty} f_{X Y}(x, y) d y}_{f_{X}(x)} d x \\
& =E[X]
\end{aligned}
$$

This is consistent with our original definition of $E[X]$.

- $g(x, y)=\left(x-\mu_{X}\right)^{2}$

$$
E[g(X, Y)]=\operatorname{Var}(X)
$$

- The correlation between X and Y is

$$
\begin{aligned}
\operatorname{Corr}(X, Y) & =E[X Y] \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f_{X Y}(x, y) d x d y
\end{aligned}
$$

- The covariance of X and Y is

$$
\operatorname{Cov}(X, Y)=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]
$$

- The correlation coefficient of X and Y is

$$
r=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

Sound comments:

- The correlation Coefficient is a value common by used in practice us one measure of the joint behavior of X and Y
- If can be shown that

$$
-1 \leq r \leq 1
$$

For the cases

$$
\begin{aligned}
& r=-1, r=1, \\
& y=a X
\end{aligned}
$$

for some real number $a<0$,
$a>0$, respectively

- If X and Y^{\prime} are independent, then $r=0$. This can be proved by showing that

$$
E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=0
$$

or

$$
E[X Y]=\mu_{X} \mu_{Y}
$$

The converse is not necessandy true:
$r=0 \Rightarrow X_{1} Y$ ind.

- It cen be shown that the parameter r in
the jointly Gaussian pdf is the correlation Coefficient, and that for the Gaussian case, $r=0$ does imply X and Y are ind.

Two final definitions:

- If $r=0$, then X and Y are said to bo uncorrelated.
The condition $r=0$ is equivalent to

$$
\begin{aligned}
& -\operatorname{Cov}\left(X_{J} Y\right)=0 \\
& -E[X Y]=\mu_{x} \mu_{y}
\end{aligned}
$$

This can be seen from the definitisas of Correlation, covariance and correlation coefficient

- If $E[X Y]=0$, then X and Y are called or thrgonal.
This condition is not discussed as much as uncorrelated rus in practice, but it does have some important uses

