One Function of Two Random Variables
We have a function g and a $r v Z$ defined by

$$
Z=g(X, Y)
$$

To find $F_{z}(z)$, need to find $P(Z \leq z) \forall z \in \mathbb{R}$.
Basic idea: Need to find $D_{z} \subset \mathbb{R}^{2}$ such that

$$
\{Z \leq z\}=\left\{(X, Y) \in D_{z}\right\} .
$$

Must do this for all $z \in \mathbb{R}$. Recall that for $Y=g(X)$, can
 use the $x-y$ plane to find the region ty such that in this
interval,

$$
\{y \leq y\}=\left\{x \in A_{y}\right\} .
$$ then $Y \leq y$

Not us easy for $Z=g(X, Y)$ problems. For each $z \in \mathbb{R}$, need to find the region in the $x-y$ plane where the function $g \leq 3$, but cannot plat g.
The region D_{3} is defined as $\left\{(x, y) \in \mathbb{R}^{2}: g(x, y) \leq z\right\}$
once D_{z} is found, use

$$
P(Z \leq z)=\iint_{D_{z}} f_{x y}(x, y) d x d y
$$

Example. Let $Z=X+Y$.
Thea $g(x, y)=x+y$.
(Note that $g(x, y)$ is not random, but $g(X, Y)$ is.)

Now, $\{Z \leq z\}=\{g(X, Y) \leq z\}=\{X+Y \leq z\}$
So $\quad D_{z}=\left\{(x, y) \in \mathbb{R}^{2}: x+y \leq z\right\}$

Note: $x+y \leq z$ if $y \leq z-x$
line $y=3-x$ is the line dividing and D_{3}^{c}
So if (X, Y) lies in the shaded region, then $z \leq z$, or

$$
\left\{(X, Y) \in D_{z}\right\}=\{Z \leq z\}
$$

Then we can write

$$
F_{Z}(z)=\iint_{D_{z}} f_{X Y}(x, y) d x d y=\int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_{X Y}(x, y) d y d x
$$

Note that for this example, even though
$Z=X+Y \quad$ (which means that $\forall \omega \in \mathcal{S}, Z(\omega)=X(\omega)+Y(\omega))$, it is not true that $z=x+y$, necessarily. This is only true for points (x, y) on the line $y=z-x$.
Three challenges for $Z=g(X, Y)$ problems:
(1) For which values of z can I use the same solution. For example, will the form of the integration be different for $z<0$ and $z \geq 0$.
(2) What is D_{z} for each $z \in \mathbb{R}$?
(3) What are the endpoints
for integrating over D_{z} ?

Continuing the example $Z=X+Y$, consider the case where X, Y are ind pendent. Then

$$
\begin{aligned}
F_{Z}(z) & =\int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_{X}(x) f_{Y}(y) d y d x \\
& =\int_{-\infty}^{\infty} f_{X}(x) \underbrace{\int_{-\infty}^{z-x} f_{Y}(y) d y} d x
\end{aligned}
$$

(Integrate the pdf to get the $c d f$)
So $F_{Z}(z)=\int_{-\infty}^{\infty} f_{X}(x) F_{Y}(z-x) d x$
(Recall: $\left.\int_{-\infty}^{y} f_{Y}(t) d t=F_{Y}(y)\right)^{k}$
To find the $p d f$ of Z :

$$
f_{Z}(z)=\frac{d}{d z}\left[\int_{-\infty}^{\infty} f_{X}(x) F_{Y}(z-x) d x\right]
$$

$$
=\int_{-\infty}^{\infty} f_{X}(x) \underbrace{\frac{d}{d z} F_{Y}(z-x)} d x
$$

(differentiate the cdt to get the $p d f)_{\mathcal{J}}$

$$
\begin{aligned}
& =\int_{-\infty}^{\infty} f_{X}(x) \underbrace{f_{Y}(z-x)} d x \\
& =\left(f_{X} * f_{Y}\right)(z) \forall z \in \mathbb{R}
\end{aligned}
$$

So the density function of the sum of independent rus is not the sum of the density functions.

Example. Let X and Y be
independent exponential rus with $\mu_{x}=\mu_{y}=\mu$. Then if $Z=X+Y_{j}$

$$
f_{Z}(z)=\frac{z}{\mu^{2}} \exp \left(-\frac{z}{\mu}\right) u(z)
$$

Two Functions of Two Random Variables
Consider the fro functions $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$, and two rvs X and Y. lett

$$
\begin{aligned}
Z & =g(X, Y) \quad \text { and } \\
w & =h(X, Y)
\end{aligned}
$$

Find the joint distribution of Z and W.
Example. Consider a linear transformation

$$
\left[\begin{array}{c}
Z \\
W
\end{array}\right]=A_{2 \times 2}\left[\begin{array}{l}
X \\
Y
\end{array}\right]
$$

$\wedge_{2 \times 2}$ matrix of elements $a_{i_{j}} \in \mathbb{R}$
Then

$$
\begin{aligned}
& g(x, y)=a_{11} x+a_{12} y \\
& h(x, y)=a_{21} x+a_{22} y
\end{aligned}
$$

Theoretically, could find $F_{z w}(z, w)$ using

$$
F_{z w}(z, w)=\iint_{D_{z w}} f_{x y}(x, y) d x d y
$$

for some $D_{z w} \subset \mathbb{R}^{2}$ but this is very difficult in practice.

