Jointly Gaussian Random Variables
Deft. Random variables X and $Y$ are jointly Gaussian if

$$
\begin{aligned}
f_{X Y}(x, y)= & \frac{1}{2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-r^{2}}} . \\
& \exp \left[-\frac{1}{2\left(1-r^{2}\right)}\left[\frac{\left(x-\mu_{X}\right)^{2}}{\sigma_{X}^{2}}-\frac{2 r\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right)}{\sigma_{X} \sigma_{Y}}+\frac{\left(y-\mu_{Y}\right)^{2}}{\sigma_{Y}^{2}}\right]\right]
\end{aligned}
$$

where $\mu_{x}, \mu_{y}, \sigma_{x}^{2}, \sigma_{y}^{2}$
are the means,
variances of $X, Y ; r \in \mathbb{R}$,

$$
-1<r<1
$$

Comments about the jointly Geusfian case:

- Contours of $f_{x y}$ are ellipses

Outer
points
on the
inner ellipse
form the set


$$
a_{1}, a_{2}>0 ; \quad a_{1}>a_{2}
$$

The major and minor axes lengths and orientation l depend on $\sigma_{x}, \sigma_{y}, r$
Note: You do not need to know the se details about the contours of $f_{x y}$, b ut you might find then insightful.

- It can be shown that if $X, Y$ are jointly Gaussian, then each is marginally Gaussian, with

$$
X \sim N\left(\mu_{x}, \sigma_{x}^{2}\right), \quad Y \sim N\left(\mu_{y}, \sigma_{y}^{2}\right)
$$

However, the converse is not necessarly true:
$X, Y$ each Gaussian $\nRightarrow$
$X, Y$ joint ley Gonsian
Example. Let $X$ and $Y$ be jointly Gaussian with $\mu_{x}=\mu_{y}=0, \sigma_{x}=\sigma_{y}=\sigma$, and $r=0$. Find the probability that $(X, Y)$ lies inside a circle of radius $d$ about the origin.

$$
P\left((X, Y) \in D_{d}\right)=\iint_{D_{d}} \frac{1}{2 \pi \sigma^{2}} \exp \left(-\frac{x^{2}+y^{2}}{2 \sigma^{2}}\right) d x d y
$$

Using a change of variables
to polar coords, $r=x^{2}+y^{2}$ and
$\theta=\tan ^{-1}\left(\frac{y}{x}\right)$ gives

$$
P\left((X, Y) \in D_{d}\right)=1-e^{-d^{2} / 2 \sigma^{2}}
$$



Note that this problem could have been phrased: What is the probability:

- $P\left(X^{2}+Y^{2} \leqslant d^{2}\right)$, or
- $P\left(X^{2} \leq d^{2}-Y^{2}\right)$, or ...

You may reed to do some rearranging to get the form $P((X, Y) \in D)$

Statistical Independence of Two Random Variables

Deft. Two rus X,Y are chdeperdect if

$$
\begin{aligned}
f_{X Y}(x, y)= & f_{X}(x) f_{Y}(y) \\
& \forall x, y \in \mathbb{R}
\end{aligned}
$$

Equivalently:

- $X$ and $Y$ are ind. if

$$
\begin{aligned}
F_{X Y}(x, y)= & F_{X}(x) F_{Y}(y) \\
& \forall x, y \in \mathbb{R}
\end{aligned}
$$

- $X$ and $Y$ are ind. if

$$
\begin{aligned}
& P(X \in A, Y \in B)= \\
& P(X \in A) P(Y \in B), \\
& A, B \subset \mathbb{R} \\
& \text { Proof omitted }
\end{aligned}
$$

- If $X$ and $Y$ are discrete, then they are independent if

$$
\begin{gathered}
p_{X Y}(x, y)=p_{X}(x) p_{Y}(y) \\
\forall x \in \mathcal{R}_{X}, y \in \mathcal{R}_{Y}
\end{gathered}
$$

Proof omitted

One Function of Two Random Variables
Given rus $X$ and $Y$, and a function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$, let $Z=g(X, Y)$. What is the prob. distribution of $Z$ ? To find $F_{z}(z)$, consider

$$
\{z \leq 3\} \text { for } z \in \mathbb{R} \text {, }
$$

