We have introduced two IVS X and Y and dsrlusged events of the type
$\{(X, Y) \in D\}$ for $D \subset \mathbb{R}^{2}$
Can write probab. cities for the type of event in frowns of the measure P :

$$
P((X, Y) \in D)
$$

Now consider more practical representations of the distribution describing X, Y.

The Joint Cumulative Distribution Function
Defy. The pout cumulative distribution funct ion, or joint distribution functions, or joint (bf) of rus X and Y is

$$
F_{X Y}(x, y)=P(\{X \leq x\} \cap\{Y \leq y\})
$$

$$
\sum P(X \leq x, Y \leq y) \quad \forall x, y \in \mathbb{R}
$$

Some properties of $F_{X Y}$:
(1)

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} F_{X Y}(x, y) \\
& =\lim _{y \rightarrow-\infty} F_{X Y}(x, y)=0
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} F_{X Y}(x, y)=F_{Y}(y), \forall y \in \mathbb{R} \\
& \lim _{y \rightarrow \infty} F_{X Y}(x, y)=F_{X}(x), \forall x \in \mathbb{R}
\end{aligned}
$$

F_{x} and F_{y} are called the marginal cds of X and Y
(3) For $x_{1}<x_{2}, y_{1}<y_{2}$,

$$
\begin{array}{r}
P\left(x_{1}<X \leq x_{2}, y_{1}<Y \leq y_{2}\right)= \\
F_{X Y}\left(x_{2}, y_{2}\right)-F_{X Y}\left(x_{2}, y_{1}\right)-F_{X Y}\left(x_{1}, y_{2}\right) \\
+F_{X Y}\left(x_{1}, y_{1}\right)
\end{array}
$$

(x, y)

$$
P\left(X \leq x_{2}, Y \leq y_{2}\right)
$$

Proof Left to the student
It is difficult to write $P((X, Y) \in D)$ for some D, where D is a circle
for example, in terms of the joint cdt. So the joint pdf is move useful in practice, often.
The Joint Probability Density Function
Deft. The joint probability density function, or joint pdf, or joint density function, of X and Y is

$$
f_{X Y}(x, y)=\frac{\partial}{\partial x} \frac{\partial}{\partial y} F_{X Y}(x, y)
$$

for all x, y where these partials exist.
Ming Calculus, can show that for $D \subset \mathbb{R}^{2}$,

$$
2^{P((X, Y) \in D)=\iint_{D} f_{X Y}(x, y) d x d y}
$$

Important! g

Ex. Let $D_{d}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq d^{2}\right\}$
for some $d>0$.
Then $P\left((X, Y) \in D_{d}\right\}$

$$
=\int_{-d}^{d} \int_{-\sqrt{d^{2}-x^{2}}}^{\sqrt{d^{2}-x^{2}}} f_{X Y}(r, s) d s d r
$$

(would probebly wout to do achange of vaviables to polar coordizates to evaluate thors)

Sonve properties of the
jocht pot
(1) $\underbrace{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X Y}(x, y) d x d y}_{P\left((X, Y) \in \mathbb{R}^{2}\right)}=1$
(2) $F_{X Y}(x, y)=$
$\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X Y}(r, s) d s d r, \begin{gathered}\text { for all } \\ x y \in \mathbb{R}\end{gathered}$ $x, y \in \mathbb{R}$
(3) The marginal pods of X and γ can be found using

$$
\begin{aligned}
& f_{X}(x)=\int_{-\infty}^{\infty} f_{X Y}(x, y) d y \\
& f_{Y}(y)=\int_{-\infty}^{\infty} f_{X Y}(x, y) d x
\end{aligned}
$$

If X and Y are both discrete, wo use the joint pret:
The Joint Probability Mass Function
Deft. The joint probability mass function, or joint pret, of two discrete rus X, y is

$$
\begin{aligned}
p_{X Y}(x, y)= & P(\{X=x\} \cap\{Y=y\}) \\
= & P(X=x, Y=y) \\
& \forall x \in \mathbb{R}_{x}, y \in \mathbb{R}_{Y}
\end{aligned}
$$

Sinve properties
(1) $\sum_{x \in R_{x}} \sum_{y \in R_{y}} P_{x y}(x, y)=1$
(2) Marginal ponts:

$$
\begin{gathered}
p_{x}(x)=\sum_{y \in R_{y}} p_{x y}(x, y), \forall x \in R_{x} \\
p_{y}(y)=\sum_{x \in R_{x}} p_{x y}(x, y), \\
\forall y \in R_{y}
\end{gathered}
$$

