We have defined the expected value $E[X]$ of a $r v X$. We now generalize this concept:

Consider a function $g: \mathbb{R} \rightarrow \mathbb{R}$, and let $Y=g(X)$. We Knows that

$$
E[Y]=\int_{-\infty}^{\infty} y f_{Y}(y) d y
$$

It can be shown that

$$
E[Y]=E[g(X)] \underset{\longrightarrow}{\rightrightarrows} \int_{-\infty}^{\infty} g(x) f_{X}(x) d x
$$

Proof on lifted (Calculus) If you do not reed to know $f_{y}(y)$, use this form for $E[g(X)]$
Similarly, if X is discrete, use

$$
E[Y]=E[g(X)]=\sum_{x \in \mathcal{R}_{X}} g(x) p_{X}(x)
$$

Now consider the special case

$$
g(x)=(x-\bar{X})^{2} E[X]
$$

Then

$$
E[g(X)]=E\left[(X-\bar{X})^{2}\right]
$$

This is the variance of X. Its positive square root
$\sqrt{E\left[(x-\bar{X})^{2}\right.}$ is the
standard de viation
Linearity of Expectation
For two functions $g_{1}, g_{2}: \mathbb{R} \rightarrow \mathbb{R}$, and two real-valued constants (non-random) $a, b \in \mathbb{R}$,

$$
E\left[a g_{1}(X)+b g_{2}(X)\right]=a E\left[g_{1}(X)\right]+b E\left[g_{2}(X)\right]
$$

So expectation is a linear operator. The proof of this follows directly from the
linearity of integration.
Example.

$$
E[a \cos \Theta+b \sin \Theta]=a E[\cos \Theta]+b E[\sin \Theta]
$$

if Θ is a rv and $a, b \in \mathbb{R}$
Example.
Let X be Gaussian with mean μ and variance σ^{2}. (Note: It can be shown that the σ^{2} parameter on the Gaussian pdf is the variance.) Find $E\left[x+X^{2}\right]$.

Using the form for $E[g(X)]$ gives

$$
E\left[X+X^{2}\right]=\int_{-\infty}^{\infty}\left(x+x^{2}\right) \cdot \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right] d x
$$

instead of evaluating this
mitral, not that due to linearity

$$
E\left[X+X^{2}\right]=E[X]+E\left[X^{2}\right]
$$

Now can use the results:

- $E[X]=\mu$ frow the Gaussian pdf (Can be shown using integration by parts)
- $\operatorname{Var}(X)=\sigma^{2}$ from the Gaussian pdf. variance of x
(Can be shown using integration by parts twice)
- In general, for a ru X,

$$
\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}
$$

Proof left to the
student
to get the result for this example:

$$
E\left[X+X^{2}\right]=\mu+\sigma^{2}+\mu^{2}
$$

This is much earlier than evaluating the integral $E[g(X)]$ in this case
The general result

$$
\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}
$$

can be very useful, because it's often easier than finding the integral

$$
\int_{-\infty}^{\infty}(x-E[X])^{2} f_{x}(x) d x
$$

To prove this result, it is helpful to use:

- $E[a]=a$ for any

Constant $a \in \mathbb{R}$, and

- In埌sty of expectation

Some key points to remember for expectation:

- Definition

$$
E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

- For discrete rv X, use

$$
E[X]=\sum_{x \in \mathcal{R}_{x}} x p_{X}(x)
$$

- For $E[g(x)]$, use

$$
E[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x
$$

- Use linearity of E[] operator when possible

Two Random Variables
Consider two rvs X and Y defined on a prob. space $(8, F, p)$. We could view these as two separate functions on s:

But this is not helpful for characterizing the joint behavior of X and Y.
Instead, consider the values that the pair (X, Y) can take, in the $x-y$ plane

Events of interest for foo rus will have the form $\{(X, Y) \in D\}$, where $D \subset \mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}$ Some examples we coil encounter:

- $D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq d^{2}\right.$ for some $\left.d \in \mathbb{R}, d>0\right\}$

- $D=\left\{(x, y) \in \mathbb{R}^{2}: x>y\right\}$

