We have defined the expected
value
$$E[X]$$
 of a $vv X$. We
now generalize this concept:
Consider a function $g: IR \rightarrow IR$,
and let $Y = g[X]$. We know
that $E[Y] = \int_{-\infty}^{\infty} y f_Y(y) dy$
It can be shown that
 $E[Y] = E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$
(Proof on FI ted (Calculus)
(If you do not need to know
 $f_Y(y)$, use this to know
 $f_Y(y)$, use this borm for
 $E[g[X]]$
Similarly, if X is discrede
use
 $E[Y] = E[g(X)] = \sum_{x \in R_X} g(x) p_X(x)$

Now consider the special case $g(x) = \left(x - \overline{X}\right)^{2}$ $\swarrow \quad \in \left[X\right]$ Thin $E\left[g\left(X\right)\right] = E\left[\left(X - \overline{X}\right)^{2}\right]$ This is the <u>variance</u> of X. Its positive square root $\sqrt{f(X-X)^2}$ is the standard deviation

Linearity of Expectation

For two functions
$$g_{1}g_{2}:\mathbb{R} \rightarrow \mathbb{R}$$
,
and two real-valued constants
(non-vandon) $a, b \in \mathbb{R}$,
 $E[ag_{1}(X) + bg_{2}(X)] = aE[g_{1}(X)] + bE[g_{2}(X)]$
So expectation is a linear
operator. The proof of this
follows directly from the

Inearity of integration.
Example.

$$E[a\cos\Theta + b\sin\Theta] = aE[\cos\Theta] + bE[\sin\Theta]$$

if Θ is a rv and $a, b \in \mathbb{R}$
Example.
Let X be Gaussian with
mean M and variance
 O^2 , (Note: if can be
shown that the o^2
pavameter in the
Gaussian pdf is the variance.)
Find $E[X+X^2]$.
Using the torun for $E[g(X)]$
 $gives$
 $E[X+X^2] = \int_{-\infty}^{\infty} (x+x^2) \cdot \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right] dx$
Instead of evaluating this

integral, not that due to linearity

 $E\left[X+X^{2}\right] = E\left[X\right] + E\left[X^{2}\right]$

Now can use the results:

$$E[X] = \mu$$
 from the
Gauestan edf
(tau be shown using
integration by parts)
· Var (X) = σ^2 from the
(Can be shown using
integration by parts
fwice)
· [u general, for a rv X,
 $Var(X) = E[X^2] - (E[X])^2$

Proof left to the

Student
to get the result for
this example:

$$E[X+X^2] = \mu + \sigma^2 + \mu^2$$

Mis is nuch earser than
evaluating the integral
 $E[g[X]]$ in thic case
The general result
 $Var(X) = E[X^2] - (E[X])^2$
Can be very useful, because
it's often easier than
finding the integral
 $\int_{-\infty}^{\infty} (x - E[X])^2 f_X(x) dx$
To prive this result, it is
helpful to use:
 $E[a] = a$ for any

Constant all, and
. Unearity of expectation
Some Key points to remember
for expectation:
. Definition

$$E[X] = \int_{-\infty}^{\infty} xf_X(x) dx$$

. For discrete $rv X$, use
 $E[X] = \sum_{x \in R_X} xp_X(x)$
. For $E[g(X)]$, we
 $E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$
. Use linearity of
 $E[J]$ operator when
possible

