Case (3): Now consider $Y=g(X)$ when X and Y are both dis crete. First find R_{y}. Then for even g $y \in R_{Y}$, find $A \subset R_{X}$ such that

$$
\{Y=y\}=\left\{X \in A_{y}\right\}
$$

Then no have

$$
p_{Y}(y)=\sum_{x \in A y} p_{X}(x)=\sum_{x \in \mathcal{R}_{X g}(x)=y} p_{X}(x)
$$

This "t true because

$$
\{Y=y\}=\bigcup_{x \in A y}\{X=x\}
$$

\uparrow disjoint events

Ex. Let X be the value rolled on a die, and let

$$
Y= \begin{cases}1 & \text { if } X \text { is even } \\ 0 & \text { if } X \text { is odd }\end{cases}
$$

Find $p_{y}(y)$.

$$
R_{x}=\{1,2, \ldots, 6\}, R_{y}=\{0,1\}
$$

Here $g(x)=\times 9.2$ and

$$
\{Y=1\}=\{X \% 2=0\}=\{X \in\{2,4,6\}\}
$$

δ_{0}

$$
\begin{aligned}
p_{Y}(1)= & \sum_{x \in\{2,4,6\}} p_{X}(x)= \\
& P_{X}(2)+P_{X}(4)+p_{X}(6)
\end{aligned}
$$

and

$$
P_{y}(1)=1-P_{y}(0)=P_{x}(1)+P_{x}(3)+p_{x}(5)
$$

Summary of how to find the distribution of $Y=g(X)$

- Decide if Y is continuous or discrete
- Plotting $g(x)$ can help determine the
- If you are asked for the girt of Y, Y is discrete
- If X is discrete is discrete
- If Y is discrete, - Find R_{y} using the function g
- then for each $y \in R_{y}$ find A_{y} such that

$$
\{y=y\}=\left\{x \in A_{y}\right\}
$$

where
$A_{y} \subset \mathbb{R}$ if X is $A_{y} \subset R_{x}^{\text {continual }} x$ is discrete

- Find $p_{y}(y)$:

$$
P_{Y}(y)= \begin{cases}\int_{A_{y}} f_{x}(x) d x & \text { if } \\ X & \text { s continuous } \\ \sum_{y} p_{x}(x) & \text { if } x \\ \text { is discrete }\end{cases}
$$

- If Y is continuous,
$\left\{\begin{array}{l}\text { - For every } y \in \mathbb{R} \\ \text { find } A y \mathbb{R} \text { such that }\end{array}\right.$

$$
\begin{aligned}
& \{Y \leq y\}=\left\{X \in A_{y}\right\} \\
& -v s e \\
& F_{y}(y)=\int_{A_{y}} f_{x}(x) d x
\end{aligned}
$$

- differentiate wort y if $f_{y}(y)$ is requested
- or instars, use the change of variables formula,

It is a goad Dea, although not required for full credit, to plot g first

Expectation
We sometimes chavactevie a ru using a ingle parameter, or stall set of parameters, iustiad of the entire distribution.
we can use the "expectation" operation for this,
Deft. The expected value of a rv X is

$$
E[X] \equiv \int_{-\infty}^{\infty} x f_{X}(x) d x
$$

Comments

- $E[X] \in \mathbb{R}$, so it is not random
- Using the sifting property of the S-function it can be shown that if X is dircrefe, then

$$
E[X]=\sum_{x \in \mathcal{R}_{X}} x p_{X}(x)
$$

Use thar form, instead of the detain. of $E[X]$ in terms of the density function, If X is discrete

- $E[X]$ is also called
the mean of X, and denoted

$$
E(X), E X, \bar{X}, \mu_{X,} \mu
$$

Note: In statistics the mean is the average of a set of samples. In prob. theory, that average us called she sample mean.
Example. Let X be an exponential $r V$ having

$$
f_{x}(x)=\lambda e^{-\lambda x} u(x)
$$

Then $E[X]=\int_{-\infty}^{\infty} x f_{x}(x) d x$

$$
=\int_{0}^{\infty} x \lambda e^{-\lambda x} d x=\frac{1}{\lambda}
$$

For a Gaussian X it can be shown that in the pdf

$$
f_{x}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)}{2 \sigma^{2}}}
$$

μ is $E[X]$.

