Case (3): Now consider
$$Y=g(X)$$
 when
 X and Y are both discrete.
First find R_Y . Then for every
 $y \in R_Y$, find $A \subset R_X$ such that
 $\{Y=y\} = \{X \in A_y\}$

Then no have

$$p_Y(y) = \sum_{x \in Ay} p_X(x) = \sum_{x \in \mathcal{R}_X: g(x) = y} p_X(x)$$

Find
$$p_Y(y)$$
.
 $R_X = \{1, 2, \dots, k\}$; $R_Y = \{0, j\}$
Here $g(x) = x \operatorname{Po} 2$ and
 $\{Y = 1\} = \{X\%2 = 0\} = \{X \in \{2, 4, 6\}\}$
 $\int_{P_Y}(1) = \sum_{x \in \{2, 4, 6\}} p_X(x) =$
 $P_X(2) + P_X(4) + P_X(6)$
and
 $P_Y(1) = 1 - P_Y(0) = P_X(1) + P_X(3) + P_X(5)$
Summary of how to find
the distribution of $Y = g(X)$
 \cdot Decide if Y is continuous
or discrete
 $- P_1 + P_X(4) + P_X(5)$

- If you are asked for the graf of Y, Y is discrete - If X is describe, 7 is discrete IF Y is discrete, - Find Ry using the Function g - Then for each ge Ry find Ay such that {Y= y}= {XEAy} where Ay CIR if X is continuous Ay CRX if X us discrete - Find p, (y):

 $P_{Y}(y) = \begin{cases} \int_{A_{y}} f_{x}(x) dx & \text{if} \\ X & \text{is continuous} \\ Z & P_{x}(x) & \text{if} & X \\ A_{y} & \text{is discrete} \end{cases}$ If Y is continuous - For eveny yelR, find AyIR such that {Y=y}= {X=Ay} $F_{Y}(y) = \int_{X} f_{X}(x) dx$ $- differentiate \quad wrt \quad y$ $if \quad f_{Y}(y) \quad ii$ - veguested or instead, use the change of Variables formula, but be careful.

It is a good itea, although not required for full credit, to plot g first.

Expectation

We sometimes characting a ru using a ángle parameter, or small sit of parameters, instead of the entire dustribution. We can use the "expectation" operation for this, Detn. The expected value of a rv X is $E[X] \equiv \int_{-\infty}^{\infty} x f_X(x) \, dx$

Conmente • ELXJER, so it is not readom · Using fle sitting property of the S-function it an be shown that it X is discrete, then $E[X] = \sum x p_X(x)$ $x \in \mathcal{R}_X$ Us the form, instead of the deta. of E[X] in terms of the dungity fonction, IF X is diracté EXT is also called

the mean of X, and denoted E(X), EX, \overline{X} , μ_{X} , μ Note: In statistics the mean is the average of a set of camples, in prob. theory, that average is called the sample mean. Example. Let X be an exponential T having $f_{X}(x) = \lambda e^{-\lambda x} u(x)$. Then E[x] = Sxfx(x)dx

