Bayes' Theorem/TPL Example:
Consider a communczations system with a 3-bymbol alphabet, $\{0,1,2\}$.

Want to Know the probalalities that if the vacelver gets a j, for $j=0,1,2$, then the source sent i, for $i=0,1,2$.
Let $\delta=\left\{\begin{array}{l}i, j): i \text { is font, } i \\ i s \\ \text { rece rived, for } i=0\end{array}\right.$ and race rived, for $i=0,0,3$ and $j=0,1,2\}$
The event that i is sent
is $\{(i, 0),(i, 1),(i, 2)\}$
The event that j of received is $\{(0, j),(1, j),\{(2, j)\}$
To male thongs wore concrete, consider the
particulas events

$$
\begin{aligned}
& A=\{(0,0),[0,1),(0,2)\} \text { - cent } \\
& B=\{(0,0),(0,0),(2,0)\} \text { - } 0 \\
& \text { rece ived }
\end{aligned}
$$

The receiver vants to
know $P(A \mid B)$.
Write as $P\left(\begin{array}{ll}0 s & 0 r \\ q\end{array}\right)$
0 sont orecieved
It can be veny diffroult to model (orleara) tuis prob. in practice. Iustzad use Bayes' therrean:

$$
P\left(D s(0 r)=\frac{P(D r(0 s) P(O s)}{P(O r)}\right.
$$

- P(Ov105) can be learned using "ehannel mo de ling" for eafch paor i, j,

$$
\varepsilon_{i j}=P(j v[i s)
$$

- P(05) can be leonel using, "source mode Ing"
Estimate $P\left(\begin{array}{ll}i & s) \text { for }\end{array}\right.$

$$
i=0,1,2
$$

- $P\left(\begin{array}{ll}0 & r\end{array}\right)$

Use the JPL:

$$
\begin{aligned}
& \frac{P(0 r)=\sum_{i=0}^{2} P\left(\operatorname{Or}\left(A_{i}\right) P\left(A_{i}\right)\right.}{\text { where } A_{i}=\left\{\begin{array}{l}
i \text { was } \\
i\}
\end{array}\right.} \\
& \operatorname{sen} t\}, i=0,1,2
\end{aligned}
$$

Note that:

- Plosion) has been written in terni that can be es tina ted using souse or channel modeling
- A_{1}, A_{3}, A_{3} form a partition of \& so the JPL can be used

Independent Events
Defy. Events A and B are statistically independent if

$$
P(A \cap B)=P(A D P(B)
$$

In general, $P(A \cap B) \neq P(A) P(A)$, so do not use this equality uncles it is given in the prob. statement that A, B are ind., or you have shown that $P(A \cap B)=P(A) P(B)$.
Note that if A, B are ind. then $P\left(A(B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A) P L B)}{P(B)}\right.$

$$
=P(A), \text { if } P(B) \neq 0
$$

Similarly, $P(B \mid A)=P(B)$
if A, B avo ind. and

$$
P(A) \neq 0
$$

Conversely, if $P(A) \neq 0$ and $P(B) \neq 0$, and if
$P(A \mid B)=P(A)$ and $P(B \mid A)=P(B)$, then A and B are ind.

- You cannot use this to show independence if $P(A)=0$ or $P(B)=0$.
You do not need to know the following definition. The point of it is just to show your how dithizult it is to show that n events are independent unless u is quite small! Deft. Events A_{1}, \ldots, A_{n} are independent if for every $k=2, \ldots n$, and eveng $1 \leq j_{1}, \ldots, j_{k} \leq n$,

$$
P\left(\prod_{i=1}^{n} A_{j i}\right)=\prod_{i=1}^{n} P\left(A_{j i}\right),
$$

Sr for any subcollection of any number h of the n events, this equality must hold for $A_{1,}, A_{n}$ to be ind.

Bernoulli Trials-Combinatorics
Consider a randoms experiment
$\left(S_{0}, F_{0}, P_{0}\right)$,
whit one particular event A of interest. If we assume that n independent trials the experiment are run, and we know $p=P_{0}(A)$, what is the prob. that A occurs is fines in the n trial?

Ex. A binary source generates an indapindent sequence of n bits. Whet is the prob. that k of the bits are O ?

