Conditional Probability (cont'd from Jan 24)
Recall that if $P(B)>0$,
then $P\left(A[B)=\frac{P(A \cap B)}{P(B), \forall A E y}\right.$
To give Some
intuition using a specitiz example:

Roil a fair die. Then
Let $A=\{$ outcome is even\} ~

$$
=\{2,4,6\}
$$

Let

$$
\begin{aligned}
& B=\{\text { outcome }>3\}= \\
& \{4,5,6\}
\end{aligned}
$$

What is the gob. of A given B?
Given that B occurs, A also occurs if outione is 4 or 6 , or if $A \cap B=\{4, e\}$ occurs
Since B hel 3 outcomes, divide by 3 to get

$$
\begin{aligned}
& \text { outcomes in B }
\end{aligned}
$$

This example Mustrates the intuition behind the definition of $P[A \mid B$ for the specific case where A, B are trite and P is the counting probabolity, but

$$
P(A \mid B)=\frac{P(A \wedge B)}{P(B)}
$$

can be ukd for any $8, A, B$, and P, as tong as $P(B) \neq 0$.

Now return to the blood test example: $A=\{$ person has disease\} ~ $B=$ \{person tests positive\}
Q2: What is the prob, the a person who tests. positive has the disease? This is $P(A \mid B)$.
Q3: What is the prob that a peron whin has the disease tets positive?
this is $P(B \mid A)$.
Comments:

- In translating. English to a conditional prob. look for woods lite - assuming that...
- green that...
- if ...
- conditioned on the event...
The ... represents on
event to be conditioned on
- In the playase "What is the prob that... given that solve event B occurs," the ... is an event A for which you are cousitering P(A|B)
- For any $B \in \mathcal{F}$ with $P(B) \neq 0, P(\cdot(B)$ is
$\left\{\begin{array}{l}\text { va } \operatorname{lod}^{2} d \text { prob. measure }\end{array}\right.$ if $P(\%)$ is a valid so prob, measure, and $\left.s_{0}\right)^{(\prime} P(\cdot \mid B), P($.$) are defined$ on the some \&, ${ }^{2}$, so
for example: $P(A \cup C \mid B)=P(A \mid B)+$ $P|C| B)-P(A \cap C \mid B)$,
and -P(A|B) $=1-P\left(A^{C} \mid B\right)$
for any $A, B C \in F$ with $P(B) \neq 0$

From the deft. of cone.
pub., we have taro expressions for $P(A \cap B)$:
$P(A \wedge B)=P(A \mid B) P(B)$, and

$$
P(A \wedge B)=P(B \mid A) P(A)
$$

assuming that $P(A)>0$ and $P(B)>0$, so

$$
P(A \mid B) P(B)=P(B \mid A) P(A)
$$

or $P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}$
this is the first form of Bayes' Tho rem we will encounter

- Note that $P[A \cap B)=P(B \mid A) P(A)$ is not bayes' Theorem. This is just a restatement of the defy. of cold. prole
- Sometimes we Know $P(B \mid A), P(A), P\left(B \mid A^{C}\right)$, but not $P(B)$. How can we wind $P(B)$?

The Total Probability Law
Let A_{1}, \rightarrow An form a partition of \&, meaning each outcome is in exactly one A_{i}, or $\bigcup_{i=1}^{n} A_{i}=s$, and

$$
A_{i} \cap A_{j}=\varnothing \quad \forall i \neq j
$$

Then the Total prob Law (TPL) states that

$$
\begin{aligned}
& P(B)=\sum_{i=1}^{n} P\left(B \mid A_{i}\right) P\left(A_{i}\right), \text { if } \\
& P\left(A_{i}\right)>0 .
\end{aligned}
$$

Proof. $P(B)=P(B \Omega \delta)=$ set algelora

$$
\begin{aligned}
& P\left(B \cap\left(\sum_{i=1}^{n} A_{i}\right)\right\rangle \leftarrow\left[\begin{array}{l}
\text { partition } \\
p i o p e r t y
\end{array}\right. \\
& =P\left(\bigcup_{i=1}^{n}\left(B \cap A_{i}\right)\right) \quad \text { (other steps }
\end{aligned}
$$

So $P(B)=\sum_{i=1}^{n} P\left(B \cap A_{i}\right)$ to be beypleined by the student?

$$
=\sum_{i=l}^{n} P\left(B\left(A_{i}\right) P\left(A_{i}\right)\right.
$$

Combining Bayes' and the

TEL gives

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P\left(B \mid A^{C}\right) P\left(A^{C}\right)}
$$

for the case $n=2$
with $A_{1}=A, \quad A_{2}=A^{c}$
Example veiny the TPL: Experiment. Have at full, well-shuffled deck. Set' aside the fret card without look sig et it. Deal the second card. What is the prob that the recount card is an ace? Consider the cont
$B=\{$ second curtis ar ace $\}$.
Then we can we se the partition $A_{1}=\{$ first card is an ace $\}$, and
A_{1}^{c}, and the TPL says

$$
\begin{gathered}
P(B)=P\left(B \mid A_{1}\right) P\left(A_{1}\right)+ \\
P\left(B \mid A_{1} c\right) P\left(A_{1}^{C}\right) \\
=\left(\frac{3}{51}\right)\left(\frac{4}{52}\right)+\left(\frac{4}{51}\right)\left(\frac{48}{52}\right)
\end{gathered}
$$

So the prob. that the second coed ir an ace, if we do not Know what the first card vol, is

$$
\frac{12+(4)(48)}{(51)(52)}
$$

