Some Properties of P Derived from the Axioms
In previous lecture, showed the (1) $P(\phi)=0$ for any

But
remember -
if $P(A)=0$,
that does not necessarily mean

$$
A=\phi
$$

(2) $P\left(A^{c}\right)=1-P(A) \quad \forall A \in \mathcal{J}$

Proof. Write as $P(A) P P\left(A^{C}\right)=1$.
Then, since $A \wedge A^{C}=\phi$ set algelora
$\left.P\left(A \cup A^{c}\right)=P[A)+P\left(A^{c}\right)\right] \leq A(i o m 3$ from Axiom 3.
But $A \cup A^{c}=8, ~$ set algebra
so $P P(8)=P(A)+P(A C)=$ Sub bstatetion of
since $P(B)=A$ Anion $\binom{$ since if $A=B}{$ then $P(A)=P(B)}$

$$
1=P(A)+P(A C)
$$

Components:

- started the proof by reuniting $P\left(A^{c}\right)=1-P(A)$ as $P(A)+P\left(A^{c}\right)=1$

Can use Axiom 3 in this form

- be careful with the set tifferauce

$$
A-B=A \cap B^{C}
$$

Do not write

Common mistake:
Confuring set and arithonetic operations.

Do not write, e.g.
not $\longrightarrow \overline{P(A)}, P(A) \cup P(B)$
valid

- complements and unions (and intersection) ave set
operations; $P(A)$, $P(B)$ ane not sets
(3) For any $A, B \in Y$,

$$
P(A \cup B)=F(A)+P(B)-P(A \cap B)
$$

proof. Can rearrange as

$$
P(A)=P(A \cap B)+P(B)-P(A \cup B)
$$

Then we con write A as

$$
A=(A \cap B) \cup\left(A \cap B^{C}\right)
$$

$$
A \cap B^{C}
$$

$A \cap B$
student. (Venn diagram is not a proof for general A, B) But $A \cap B$ and $A \cap B^{C}$ eve disjoint,
since

$$
\begin{aligned}
& (A \cap B) \cap\left(A \cap B^{C}\right)^{C} \\
& =A \cap A \cap \underbrace{B \cap B^{C}}_{\phi}=\phi .
\end{aligned}
$$

$$
\text { So } P(A)=P(A \wedge B)+P\left(A \wedge B^{c}\right)(*)
$$

by Ax com 3.
Also, can write

$$
A \cup B=\left(A \wedge B^{c}\right) \cup B
$$

then $P(A \cup B)=P\left[A \cap B^{C}\right)$ $+P(B)$, by Axiom 3 again
Note ion
Substituting P MA tO $B)(4)$

$$
P(A)=P(A \cap B)+P(B)-P(A A B C)
$$

Rearranging gives the result we want
(4) ($f A \subset B$, then $P(A) \leq P(B)$ $\forall A, B \in f$.
Proof left to the student

Note that many more properties of P can be proved. in addition to the axiouns, these properties are guaranteed to hold for any valid R.

This ends our lectures on the prob. space $(\&, 子, p)$.

Motivating example.
Consider a blood test for a certain disease. Three questions we might ask:
(1) What is the probe. that a piercion hes the disease and tests positive?
(2) What 'ir the prole that a person who tests positive actually has the disease?
(3) Whet is the prob. that a person who hal the direase tests positive?
It will fain oud that Q2 and Q3 are asking
for conditional probe. To wite these props mathematically, first let

$$
\beta=\{(0, P),(0, N),(1, P),((N))\}
$$

where O means person does not have disease
\int means does have disease
Consider fur o events:
$A=\{$ person has the disease\} ~

$$
=\{(L, P),(L, N)\}
$$

$$
\begin{aligned}
& B=\{\text { person tests } \\
&\text { positive }\} \\
&=\{(0, p),(1, p)\}
\end{aligned}
$$

Ql coke for $\mathbb{R}(A \cap B)$, but for $Q 2, Q 3$, we need: Detour Given two events A and B, the conditional probability of A given B is

$$
P(A \mid B) \equiv \frac{P(A \cap B)}{P(B)}
$$

if $P(B) \neq 0$. If $P(B)=0$, then $P(A \mid B)$ is undefined
in this class. It is your responsibility to make sere that $P(B) \neq 0$ if you write $P(A \mid B)$.

