We have learned about the pdf and cdt, and have the result:

$$
P(X \underset{\uparrow}{\in} A)=\int_{A} f_{X}(x) d x \quad A \subset \mathbb{R}
$$

Note: "is an element of" subset of"
Sone common forms of A :

- $A=(-\infty, x]$
- $A=(-\infty, x)$
- $A=(x, \infty)$
- $A=[x, \infty)$
- $A=\left(x_{1}, x_{2}\right)$
where $x, x_{1}, x_{2} \in \mathbb{R}$;

$$
x_{1}<x_{2}
$$

Note that event ru we will encounter on this class wall have a
cdt and pdf. For one type of $r v$, there is another function that is move often used in practice.

Types of Random Variables
Defn. A rv X having a cd that is continuous every here $(\forall x \in \mathbb{R})$ is a continuous $r v$.

Deft. A ru X whose calf is piecewise constant, with a finite or countably infinite number of jump discontinuities is a discrete ru.

Note that if a $r v$ is continuous every where, except for a finite or countably in ionize set of jump discontinuities, and is not discrete, then it is a mixed rv

Example:

Mixed rus sometimes appear in practice, but we will not see them in this class.
Note that for a contiunoul $r v$, at each $x \in \mathbb{R}$,

$$
P(X=x)=F_{X}(x)-F_{X}\left(x^{-}\right)=0,
$$

since the cdf is conzunow avery where (and thus $F_{x}\left(x^{-}\right)=F_{x}(x)$) One consequence of this can be seen as follows:

$$
P(X \leq x)=P(\{X<x\} \cup\{X=x\}),
$$

and since $\{X<x\}$ and $\{X=x\}$ are disjoint,

$$
P(X \leq x)=P(X<x)+P(X=x)=P(X<x)
$$

since $P(X=x)=0$ $\forall x \in \mathbb{R}$ if X is a outinuoul rv

So for a con urus $r v$, can interchange \leq and c, and \geqslant and $>$
For a discrete $r v$, since the pdf is the derivative of the cdf, this leads to a pdf with δ-functions. For example:

The pdf can be written as

$$
\begin{array}{r}
f_{x}(x)=\frac{1}{2} \delta_{\uparrow}(x+1)+\frac{1}{2} \delta(x-1), \\
\forall x \in \mathbb{R}
\end{array}
$$

Dirac delta fan.
Instead of using the yod for a discrete $r v$, usually use:
The Probability Mass Function
Deft. For a discrete rv X, the probability mass function, or punt, or somply maps function, is

$$
p_{X}(x) \equiv P(X=x), \forall x \in \mathcal{R}_{X} \subset \mathbb{R}
$$

where R_{x} is the set of points where F_{x} has a discontinuity.
For the example above,

$$
R_{x}=\{-1,1\}
$$

Unless otherwise specified, use the punt instead of the $c d f$, pdf, for a discrete $r V$.
Some properties of the phot: If a function
(1) $p_{X}(x) \geq 0, \forall x \in \mathcal{R}_{X}$
(2) $\sum_{x \in \mathcal{R}_{x}} p_{X}(x)=1$
(3) If $A \subset \mathcal{R}_{X}$, finsen

$$
P(X \in A)=\sum_{x \in A} p_{X}(x),
$$

Since $\{X \in A\}=\cup_{x \in A}\{X=x\}$

Some practical advice for working with rus:
(1) is the ru continuous or discrete?

- If continuous, use cdt or pdf
- If discrete, use pint
- If it cannot be determined from the problem stafemest, use edf or pdf.
(2) What is the problem asking for?
- The prob of some event: you might
use

$$
\begin{aligned}
& P(X \leq x)=F_{X}(x), \\
& \int_{A} f_{X}(x) d x \text {, or } \\
& P(X=x)=P_{X}(x) .
\end{aligned}
$$

You way need to use set algebra and axioms/properties
of P to find the prob.

- The cdf, pdf, or prut of a $v v$, your answer must be a function.
The function must be defined on
- all $x \in \mathbb{R}$ for a cd or pdf
- all $x \in R_{x}$ for a pee.

