Bernoulli Trials
Consider a random exp. $\left(s_{0}, F_{0}, P_{0}\right)$,
wIth one particular event A of interest. If we assume that n independent trials the experiment are run, and we know $p=P_{0}(A)$, what is the prob. that A occurs is fines in the n trial?

Ex. A binary source generates an indapindunt sequence of n bits. Whet is the prob. that k of the bits are O ?

Combinatorics
The question how maury ways are there to choose k Hems from a total of n Fens needs to be answered to find the prob. of k successes in n trials to Bernoulli trials. This question is addressed bes combinatovics Consider the case of selecting k items from n total tears with:

- no replacement
- once picked an item is not available to prick again, and
- order does no f mattes
e.g, $a b$ and $b a$ count as ore way. Consider choosing k items from n. For the first choice, have n ppossibilitugs

$$
\begin{aligned}
& 5 p<2 \\
& 1<n \\
& 2<\frac{1}{n} \\
& 3<\frac{4}{4} \\
& =n_{n} \\
& n<\frac{1}{2} \\
& \frac{n \cdot-1}{n \cdot(n-1)} p
\end{aligned}
$$

possibilities for first two chores
For each first choice, $n-1$ possible second choices, 60 the number of possibilities for the first two items is $n \cdot(n-1)$. This assumes flat order
matters. Each pair has been counted twice instead of once, $\&$ if order toes not matters

$$
\frac{n(n-1)}{2} \text { possibilities }
$$

For general k, if order matters have

$$
n(n-1) \cdots(n-k)(n-k+1)
$$

If order bes notmatter, we have

$$
\frac{n(n-1) \cdots(n-k+1)}{k!}
$$

because each combo. has been counted a! tomes Normally wo write this answer as

$$
\begin{aligned}
& \frac{n(n-1) \cdots(n-k+1)(n-k) \cdots(2)(1)}{k!(n-k)(n-k-2) \cdots(2)(1)} \\
& =\frac{n!}{k!(n-k)!}=\binom{n}{n} \kappa_{\text {notation }}
\end{aligned}
$$

Call this value "n choose k "
Ex, How many 5-card hands have exactly aces?
We need to consider two questions here:

How many ways can wo choose 3 aces, and how many ways can we choose 2 not aces" There are $\binom{4}{3}$ combinations of 3 aces from the 4 aces on the deck

For each of these ($\left.\begin{array}{l}9 \\ 3\end{array}\right)$ combos, there are $\binom{48}{2}$ ways to choose the 2 non-aces. So the \# of 5-card hands with exch aces is $\binom{4}{3}\binom{48}{2}=4512$
why do we multiply n and $n-1$?

$$
n=4, k=2
$$

$$
\begin{gathered}
1, k=2 \\
\text { cramp }
\end{gathered}
$$

How many ways to choose 2 from 4 them if order matres n gramps, $n-1$ tans. perspoup, so $n(n-1)$ tens For the card example:

$$
\begin{aligned}
& \text { card } \\
& \text { How ing } \\
& \text { combos } \\
& \text { of } 3 \\
& \text { aleS? }
\end{aligned}\left\{\begin{array}{ccccc}
A_{1} & 2 & A_{2} & A_{3} & 2 \\
A_{1} & A_{3} & A_{4} & & \\
\vdots & & &
\end{array}\right.
$$

For cade combo of three aces how many combos of fro aou-aces?

Back Bernoulli trials:
Let $\delta=\frac{\delta_{0} \times \cdots \times \delta_{0}}{n \times \text { terms }}$
Cartegay
$=\{n$-tuples where coach component is a value from $\left.S_{0}\right\}$

This now sample spice can be paired with an event space f that includes events of the form $\{h$ successes on n trials of experiment $\left.\left(S_{0}, f_{0}, P_{0}\right)\right\}$
We can let of be the collection of evens subset of S
Example. For a seq venae of 3 bits, the event of having exactly 2 of them be Os is

$$
\{(0,0,1),(0,1,0),(1,0,0)\}
$$

and of example

Now we reed P for our be w prob space ($s,-, p$). We weill only define P here for events of the type
$B=\{k$ successes in a triable $\}$
for $k=0,1, \ldots, n$
will show that
$P(h$ successes in n Bernoulli trials $)=\binom{n}{n} p^{k}(1-p)^{n-k}$
Proof. There are
$\binom{n}{n}$ ways (or element in the event B). Each
elementary event was prob. $p^{k}(1-p)^{n-k}$, using independence of the fries.
Then

$$
\begin{aligned}
& \text { Then } \\
& P[B]=P\left(\bigcup_{i=1}^{(n)} n_{n}^{n}\right) \\
& \text { eleccrentang corset }
\end{aligned}
$$

Elearentany events are disjoint

So

$$
P(B)=\sum_{i=1}^{\left(\frac{1}{n}\right)} \underbrace{p^{k}(1-p)^{n-k}}_{\substack{\text { does not } \\ \text { on } i,}}
$$

So

$$
P(B)=(n) p^{k}(1-p)^{n-k}
$$

Recall $p=P_{0}(A)$

