Previously found a form of Bayes' Theorem and the TPL in terms of density functions (marginal and conditional).

Now consider the case where two ross X and Y are independent. Then

$$
\begin{gathered}
f_{Y \mid X}(y \mid x)=\frac{f_{X Y}(x, y)}{f_{X}(x)}=\frac{f_{X}(x) f_{Y}(y)}{f_{X}(x)}=f_{Y}(y) \\
\text { if } \quad f_{X}(x) \neq 0
\end{gathered}
$$

Note: You must be careful if you want to use $f_{Y \mid X}(y \mid x)=f_{y}(y)$
for independence of X, Y, since this is valid on y if $f_{x}(x) \neq 0$.

Now summarize Bayes' Theorem for rvs:
(1) If X and Y are both discrete, use

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

with $A=\{X=x\}, B=\{Y=y\}$
for $x \in R_{x}, y \in R_{y}$
this can be written in terms of punts as

$$
p_{X \mid Y}(x \mid y)=\frac{p_{Y \mid X}(y \mid x) p_{X}(x)}{p_{Y}(y)}
$$

for all $x \in R_{x}$,
$y \in R_{Y}$ where $P_{x}(x) \neq 0, \quad P_{y}(y) \neq 0$

Conditional put of X given $Y=y$, defined
as

$$
p_{X \mid Y}(x \mid y)=P(X=x \mid Y=y)
$$

(2) If X continuous, Y discrete, use

$$
f_{X}(x \mid B)=\frac{P(B \mid X=x) f_{X}(x)}{P(B)}
$$

with $B=\{Y=y\}$. This can be written as

$$
\begin{aligned}
& f_{X \mid Y}(x \mid y)=\frac{p_{Y \mid X}(y \mid x) f_{X}(x)}{p_{Y}(y)} \\
& \text { for } x \in \mathbb{R}, \quad y \in R_{y}, \\
& f_{x}(x) \neq 0, \quad p_{y}(y) \neq 0
\end{aligned}
$$

(3) X continuous, Y continuous use

$$
f_{Y \mid X}(y \mid x)=\frac{f_{X \mid Y}(x \mid y) f_{Y}(y)}{f_{X}(x)}
$$

$\forall x, y \in \mathbb{R}$, where $f_{x}(x) \neq 0, \quad f_{y}(y) \neq 0$

Comment for HW 10:
sone definitions

- The nth moment of a rv X is

$$
E\left[X^{n}\right], \quad n=1,2, \ldots
$$

- The nth central moment of X is

$$
E\left[(X-\bar{X})^{n}\right], n=2,3, \ldots
$$

- The luth moment

$$
\begin{array}{ll}
E\left[X^{l} Y^{n}\right], & l=0,1, \ldots ; \\
n=1,2, \ldots
\end{array}
$$

- The ln-th central moment of X, Y is

$$
\begin{aligned}
& E\left[(X-\bar{X})^{l}(Y-\bar{Y})^{n}\right], \\
& \quad l=0,1, \ldots ; n=1,2, \ldots
\end{aligned}
$$

The Laws of Large Numbers
Consider a rv X that you wish to model. For example, X moist be the steady -state temperafiere of a system. You might take n measure mounts $X^{(1)}, \ldots, X^{(n)}$ of X. Assume that these measurement are independent and all
have the same distribution. which is referred to as being "independent and identically distributed (iid). Now let

$$
Y_{n}=\frac{1}{n} \sum_{i=1}^{n} X^{(i)}
$$

Y is a sample meas of X computed from samples $X_{, \ldots, j}^{(1)} X^{(n)}$.
Sample means are used fo estimate expected values, so Y_{n} is an erfinate of $E[X]$.

Is it a good estimate? Does of get closer to $E[X]$ as the number of samples increases?
The Laws of large Numbers ($L N_{S}$) of which there are two, address this issue. There laws both say that, if $\mu_{x}<\infty$ and $\sigma_{X}<\infty$, thun

$$
Y_{n} \rightarrow E[X] \quad \text { as } \quad n \rightarrow \infty,
$$

"in some sense". The Strong LUN states that $Y_{n} \rightarrow E[X]$ with probability one, which means that
unless an event of probability Jus happens the sequence of sample means Y_{n} converges to the true mean $E[X]$. The Weak LLN states the Same result but in a "Weaker" sense than with prob. 1.

The LENs can also be used to show that relative frequency probabilities will converge to the measure P as the number of trials converges to infinity, as follows:

Consider a random experiment and an event A in that experiment for which you would like to know the prob $P(A)$. The relative frequency approach estimates $P(A)$ by running the experimot n times and computing the number of tomes A occurs divided by n. Is this a good estimate of $P(A)$? What happens as the number
of trials converges to ∞ ?

Define a uv X_{u} as

$$
X_{n}= \begin{cases}1, & \text { if } \mathrm{A} \text { occurs in trial } \mathrm{n} \\ 0, & \text { otherwise }\end{cases}
$$

Then compute the sample mean

$$
Y_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

by the SLLN, if the trials are independent,

$$
Y_{n} \rightarrow E\left[X_{i}\right] \text { as } n \rightarrow \infty
$$

(with prob. 1), where

$$
\begin{aligned}
E\left[X_{i}\right] & =1 \cdot P\left(X_{i}=1\right)+0 \cdot P\left(X_{i}=0\right) \\
& =P(A)
\end{aligned}
$$

for any $i=1,-n$.
This means that the relative frequency estimate converges 78 the true probability P(A).

