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Abstract—This work falls under the broad setting of coded
caching with user-dependent file popularity and average-rate
capacity analysis. In general, the exact capacity characterization
with user-dependent file popularity remains an open problem.
For example, user 1 may be interested in files 1 and 2 with
probabilities 0.6 and 0.4, respectively, while user 2 may be
interested in only files 2, and 3 with probabilities 1/3 and 2/3,
respectively, but not interested in file 1 at all. An optimal scheme
needs to carefully balance the conflicting interests under the
given probabilistic weights. Motivated by this fundamental but
intrinsically difficult problem, this work studies the following
simplified setting: Each user k is associated with a file demand
set (FDS) Θk; each file in Θk is equally desired by user k with
probability 1

|Θk|
; and files outside Θk is not desired at all.

Different users may have different Θk1 6= Θk2 , which reflects
the user-dependent file popularity. Various capacity results have
been derived. One surprising byproduct is a proof showing that
selfish coded caching is insufficient to achieve the capacity. That
is, in an optimal coded caching scheme, a user sometimes has to
cache the files of which he/she has zero interests.

I. INTRODUCTION

Coded caching [1] could significantly reduce the worst-case
peak-hour transmission time when compared to the traditional
uncoded caching solutions. Existing works have characterized
the coded caching capacity for some special N and K values
[1]–[4] and derived order-optimal capacity expression for
general N and K [1], [5]–[7].

While the focus on the worst-case performance is analyt-
ically appealing, it is oblivious to the underlying probability
distribution of the random requests, and hence may not be
able to address the phenomenon that the worst-case situation
may only happen infrequently. Recently, there are new results
focusing on the average-rate capacity [7]–[13]. Under the
assumption that all users having the same file popularity
profile1 [7]–[11] proposed new order-optimal coded caching
schemes and showed that the traditional (uncoded) highest-
popularity-first policy can be strictly suboptimal. One justifica-
tion of this user-independent file popularity is that we can put
users of the same preference into a single group and perform
coded caching within this group. Various other achievable
average rate results have been proposed in [12], [13] under
different levels of file/cache size heterogeneity but without the
order optimality guarantee. They all assume the same user-
independent file popularity setting.

This work was supported in parts by NSF under Grant CCF-1422997, Grant
ECCS-1407604, Grant CCF-1618475, and Grant CCF-1816013.

1The popularity could be uniform across all N files [7] or vary significantly
across all N files [8]–[10].

Nonetheless, the above user-independent file popularity
setting becomes less practical if each user has his/her own
preference and the number of participating users is small,
which is often the case in a traditional uncoded schemes
that rely on highly individualized file prediction mechanisms.
Motivated by the above observation, this work studies the
average-rate capacity with user-dependent file popularity. The
results would place coded caching on the same footing as the
traditional uncoded solutions and allows for fair comparison
between the two.

Specifically, we consider a coded caching system of N
files and K users. Each user has his/her own file popularity
of the N files. To reduce the complexity and the need of
explicitly specifying K distinct probability distributions, one
for each user, we assume that each user k is associated with
a file demand set (FDS) Θk and is interested in those files
in ΘK with probability 1

|Θk| , see Section II for details. The
FDS setting reflects user-dependent file popularity by allowing
different users having distinct Θk1 6= Θk2 . We then derive
the average-rate capacity results under a variety of this FDS
setting.

A byproduct of our capacity results is an answer to the
following intuitive conjecture: Since each user k is only
interested in files in his/her own FDS Θk, there is zero
incentive for user k to ever store any file that is outside Θk. We
prove that this conjecture holds for some very limited scenarios
but is not true in general. This implies that for optimal coded
caching, a user sometimes needs to encode beyond his/her own
FDS, a surprising finding that defies the convention wisdom
that one should only cache the files he/she is interested.

II. PROBLEM FORMULATION

We consider a coded caching system with one server and
K users. The server has access to N files W1, . . . ,WN , each
having the same file size F bits. Each Wn is independently
and uniformly randomly distributed over {0, 1}F . We use Zk

to denote the cache content of user k, which is of size Mk

bits. Without loss of generality, we assume Mk ∈ [0, NF ].
For any positive integer x, we define [x] , {1, . . . , x}.

The operation of the system consists of the placement phase
and the delivery phase. In the placement phase, each user k
populates its cache content by

Zk = φk(W1, . . . ,WN ), ∀k ∈ [K] (1)

where φk is the caching function of user k. In the delivery
phase, each user k sends a request dk ∈ [N ] to the server,
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i.e., user k demands file Wdk
. We denote the probability mass

function (pmf) of the random request dk by p[k]
dk

. The joint pmf
of the demand pattern of K users ~d , (d1, . . . , dK) ∈ [N ]K

is then p~d = p
[1]
d1
· · · p[K]

dK
.

After receiving the demand index vector ~d, the server
broadcasts an encoded signal

X~d = ψ(~d,W1, . . . ,WN ) (2)

of R~d bits with encoding function ψ using an error-free link
to all K users. Each user k then uses X~d as well as his/her
cache content Zk to decode the requested file

Ŵdk
= µk(~d,X~d, Zk), (3)

where µk is the decoding function of user k. A coded caching
scheme is completely specified by K caching functions {φk},
one encoding function ψ, and K decoding functions {µk}.

Definition 1. The file demand set (FDS) of user k is defined
as Θk , {n ∈ [N ] : p

[k]
n > 0}, which is the set of files that

user k desires with a strictly positive probability.

Definition 2. A coded caching scheme is zero-error feasible
if Ŵdk

= Wdk
for all k ∈ [K], all dk ∈ Θk in the FDS, and

all (W1, · · · ,WN ) ∈ {0, 1}NF .

Throughout this manuscript, we consider exclusively zero-
error feasible schemes.

Definition 3. A coded caching scheme is selfish if we replace
all K encoding functions φk in (1) by

Zk = φk({Wn : n ∈ Θk}), ∀k ∈ [K]. (4)

Namely, each user k only stores the files that he/she is
interested, thus the name selfish. In contrast, the original, more
general design using (1) is referred to as an unselfish scheme.

Definition 4. The worst-case rate of a coded caching scheme
is defined as

R∗ = max
∀~d:dk∈Θk

R~d. (5)

Definition 5. The average-rate of a coded caching scheme is
defined as

R̄ =
∑

∀~d,dk∈Θk

p~dR~d. (6)

The uniform-average-rate of a scheme is defined as

R̃ =
1∏K

k=1 |Θk|

∑
∀~d,dk∈Θk

R~d. (7)

R̃ can be viewed as a first-order approximation of the
average-rate R̄ that replaces the joint distribution p~d with
a uniform distribution over the FDS

∏K
k=1 Θk (rather the

simplest, uniform distribution over [N ]K [7].). In [14], an
exact characterization of R̄ has been provided for the 2-
user/2-file setting, which involves detailed discussion of up
to 28 different cases that depends on the underlying values
of (M1,M2) and p~d. Instead of focusing on the exact R̄, in
this work we focus on the simplified, more tractable quantities
R̃ and R∗, while relaxing the total number of files N being
considered.

III. MAIN RESULTS

Sections III-A and III-B present several exact capacity
results. Then we present in Section III-C converse and achiev-
ability results that do not yet have a matching counterpart (thus
not necessarily tight).

A. When Selfish and Unselfish Designs Are Equally Powerful

In this subsection, we outline several special cases for which
selfish and unselfish designs are equally powerful.

Proposition 1. If Θk1 ∩Θk2 = ∅ for all distinct k1, k2 ∈ [K],
then selfish and unselfish designs are equally powerful and
achieve the same R∗ and R̃.

The proof of Proposition 1 is delegated in Appendix A. This
proposition shows if no two users are interested in a common
file, each user can act as if he/she is the sole user in the system.

Proposition 2 (Θ1 = Θ2). Consider K = 2 users, N ≥ 2
files, and Θ1 = Θ2 = [N ]. By definition, there is no difference
between selfish and unselfish designs. Then the R̃ is tightly
characterized2 by

R̃ ≥ F − (M1/N) (Q1)

R̃ ≥ F − (M2/N) (Q2)

R̃ ≥ 2N − 1

N
F − 2N − 2

N2
M1 −

1

N
M2 (Q3)

R̃ ≥ 2N − 1

N
F − 1

N
M1 −

2N − 2

N2
M2 (Q4)

The proof of Proposition 2 is delegated in Appendix B.
This proposition is the average-rate counterpart of the worst-

case setting in [3] for the K = 2 and arbitrary N ≥ 2 case.
The relationship of R̃ versus (M1,M2) is illustrated in Fig. 1.
The x-axis (resp. y-axis) is for the M1 (resp. M2) value. The
inequalities (Q1) to (Q4) are marked in the corresponding
regions. There are seven vertices t1 to t7 and each vertex is
labeled by a tuple (M1,M2, R̃), where (M1,M2) describe the
location and the third coordinate describe the corresponding
exact uniform-average-rate capacity R̃.

We then consider the simplest scenario when {Θk} are
distinct and overlap with each other.

Proposition 3 (Θ1 = {1},Θ2 = [N ]). Consider K = 2 users
and Θ1 = {1} and Θ2 = [N ]. The selfish and unselfish designs
have identical R̃, which is tightly characterized by:

R̃ ≥ F −M1 (Q5)

R̃ ≥ F − (M2/N) (Q6)

R̃ ≥ 2N − 1

N
F − N − 1

N
M1 −

1

N
M2 (Q7)

The proof of Proposition 3 is delegated in Appendix C.
The relationship of R̃ versus (M1,M2) is illustrated in

Fig. 2. Comparing Propositions 2 and 3, it is clear that when
the FDS Θ1 reduces from [N ] to {1}, the capacity R̃ reduces
since an optimal scheme can now take advantage of the fact
that user 1 is only interested in file 1.

2We use the statement tightly characterized when we can derive a matching
pair of the converse and achievability results, i.e., it characterizs capacity.
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Fig. 1. The capacity R̃ of both the selfish and unselfish designs w. Θ1 =
Θ2 = [N ].
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M2

Q5

Q6
Q7

Fig. 2. The capacity R̃ of both the selfish and unselfish designs w. Θ1 = {1}
and Θ2 = [N ].

B. Insufficiency of Selfish Designs

Proposition 4 (Unselfish w. Θ1 = {1, 2},Θ2 = {1, 2, 3}).
Consider K = 2 users and Θ1 = {1, 2} and Θ2 = {1, 2, 3}.
R̃ of the unselfish schemes is tightly characterized by

R̃ ≥ F −M1/2 (P1)

R̃ ≥ F −M2/3 (P2)

R̃ ≥ 5F

4
− M1

4
− M2

4
(P3)

R̃ ≥ 3F

2
− M1

3
− M2

3
(P4)

R̃ ≥ 5F

3
− M1

2
− M2

3
(P5)

R̃ ≥ 5F

3
− M1

3
− M2

2
(P6)

The proof of Proposition 4 is provided in Appendix D. The
relationship of the unselfish capacity R̃ versus (M1,M2) is
illustrated in Fig. 3.

Proposition 5 (Selfish w. Θ1 = {1, 2},Θ2 = {1, 2, 3}).
Continue from Proposition 4. R̃ of the selfish schemes is tightly

M
1

M
2

P1

P3 P2

P5

P6

P4

Fig. 3. The unselfish capacity R̃ w. Θ1 = {1, 2} and Θ2 = {1, 2, 3}.

characterized by (P1) to (P6) plus an additional inequality:

R̃ ≥ 4F

3
− M1

6
− M2

3
. (P7)

The proof of Proposition 5 is provided in Appendix E.
The relationship of the selfish capacity R̃ versus (M1,M2)

is illustrated in Fig. 4. Note that one can prove that if R̃
satisfies inequality (P7), then it automatically satisfies (P3)
and (P4). That is why in Fig. 4 there are only 5 subregions
and the regions of (P3) and (P4) no longer appear.

When viewed separately, Propositions 4 and 5 describe
the fundamental limits of unselfish and selfish coded caching
when two users, with arbitrary cache sizes (M1,M2), share
concentrated3, similar, but not identical interests, which alone
are of important analytical value. Jointly, they provide the first
proof that selfish coded caching is strictly suboptimal, e.g., the
two points v10 and v11 in Fig. 3 can only be achieved by an
unselfish design.

It is worth pointing out that the insufficiency of selfish coded
caching is not due to the use of the average rate R̃ as the
performance metric. Even when using the worst-case rate R∗

in (5), selfish designs are still insufficient.

Corollary 1. Continue from Proposition 4. When (M1,M2) =
(1.5F, 1.5F ), i.e., v11 in Fig. 3, the worst-case capacity R∗

of the unselfish and selfish schemes are 0.5F and 7
12F ,

respectively.

By Propositions 4 and 5, we quickly see that the average-
rate capacity R̃ of the unselfish and selfish schemes are
0.5F and 7

12F , respectively. We then show that the worst-
case rate 7

12F is achievable. We denote the three files by
(A,B,C) such that user 1 demands files (A,B) and user 2
demands files (A,B,C). We divide A = (A1, A2, A3, A4),
B = (B1, B2, B3, B4), C = (C1, C2) into disjoint subfiles,
where A1, B1 has size 2

12F ; A2 and B2 has size 4
12F ;

A3, A4, B3, and B4 has size 3
12F ; C1 has size 2

3F ; and

3We say a user is of concentrated interest if the corresponding FDS Θk is
small, e.g., |Θ1| = 2 and |Θ2| = 3 in Propositions 4 and 5. This is usually
a result of highly effective next-file prediction.
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Fig. 4. The selfish capacity R̃ w. Θ1 = {1, 2} and Θ2 = {1, 2, 3}.

C2 has size 1
3F . In the placement phase, user 1 caches

Z1 = (A1, A2, A3, B1, B2, B3) of size 3
2F and user 2 caches

Z2 = (A1, A4, B1, B4, C1) of size 3
2F . In the delivery phase,

the transmitted signal and the rate of 6 demands are

(d1, d2) X(d1,d2) R(d1,d2)

(1, 1) (A2, A3 ⊕A4) 7
12F

(1, 2) (B2, A4 ⊕B3) 7
12F

(1, 3) (A4, C2) 7
12F

(2, 1) (A2, A3 ⊕B4) 7
12F

(2, 2) (B2, B3 ⊕B4) 7
12F

(2, 3) (B4, C2) 7
12F

Corollary 1 shows that in this particular scenario, an optimal
unselfish design further reduces the delivery rate by 14% when
compared to an optimal selfish solution.

C. Other Miscellaneous Results

For general Θk, exact capacity characterization of R̃ re-
mains an open problem. In the following, we provide some
partial results that do not have matching converse and achiev-
able rates.

Proposition 6 (Converse w. Θ1 ( Θ2). Consider K = 2 users
and Θ1 = {1, · · · , N1} and Θ2 = {1, · · · , N2} satisfying

3 ≤ 1.5N1 ≤ N2 ≤ 2N1 and N1 and N2 being even. (8)

The average-rate R̃ of an unselfish scheme must satisfy

R̃ ≥ F − (M1/N1) (P1+)

R̃ ≥ F − (M2/N2) (P2+)

R̃ ≥ N1 +N2

2N1
F − M1 +M2

2N1
(P3+)

R̃ ≥ 3

2
F − M1 +M2

N2
(P4+)

R̃ ≥ N1 +N2

N2
F − M1

N1
− M2

N2
(P5+)

R̃ ≥ N1 +N2

N2
F − M1

N2
− 3M2

2N2
(P6+)

M
1

M
2

P1+
P3+

P2+

P5+

P6+

P4+

Fig. 5. The converse rate lower bounds of (P1+) to (P6+) w. Θ1 =
{1, · · · , N1} and Θ2 = {1, · · · , N2} that satisfy (8). There are 12 vertices
and we only label the 7 vertices for which we have a matching achievable
rate.

Fig. 5 illustrates the converse (P1+) to (P6+).

Proposition 7 (Achievability w. Θ1 ( Θ2). Continue from
Proposition 6. The lower bounds form 12 vertices in Fig. 5.
Among them, 7 vertices w1 to w7 are achievable.

The proofs of Proposition 6 and 7 is delegated in Ap-
pendix F.

Comparing Proposition 6 and 7, we have characterized the
exact R̃ for the 3 subregions, each surrounded by the vertex
sets {w4, w5, w6}, {w4, w6, w7}, and {w1, w2, w3, w4, w7},
respectively. I.e., when either M1 or M2 is sufficiently large.
Note that when (N1, N2) = (2, 3), then (P1+) to (P6+)
collapse to (P1) to (P6) in Proposition 4, and they thus tightly
characterize the capacity for all (M1,M2).

IV. CONCLUSION

We consider coded caching with heterogeneous file popu-
larity. Each user k only desires the files in his/her file demand
set (FDS) Θk with equal probability 1

|Θk| and we investigate
the average rate capacity in various scenarios. A byproduct is
the first proof showing that in some simple setting, unselfish
designs can strictly outperform selfish ones by 14%.

APPENDIX A
PROOF OF PROPOSITION 1

We first prove the selfish and unselfish designs achieves the
same average rate R̃. We construct the lower bounds following
the cut-set bounds in [1] for disjoint Θk, k ∈ [K]. That is, for
all k ∈ [K], Sk ⊆ Θk, and T =

∏
k∈K |Sk|, we have

∑
~d:dk∈Sk

R~d +
∑

k∈[K]

T

|Sk|
Mk ≥

∑
k∈[K]

T

|Sk|

(∑
i∈Sk

Fi

)
. (9)
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If we let Fi = F for all i ∈ [N ] and substitute the uniform
average rate (7) in Definition 5 in (9), we obtain

R̃ ≥
∑

k∈[K]

(
F − Mk

|Θk|

)+

. (10)

The achievable scheme is as follows. In the placement phase,
each user k caches Mk/|Θk| size of each file Wi, i ∈ Θk,
and in delivery phase, for any demand ~d, the server transmits
the remain (F − Mk

|Θk| )
+ fraction of file for each demanded

file Wdk
with rate R~d =

∑
k∈[K](F −

Mk

|Θk| )
+ and hence the

uniform-average rate is achieved with equality in (10).
For the worst-case rate R∗, it is clear that R∗ ≥ R̃ such

that we also have

R∗ ≥
∑

k∈[K]

(
F − Mk

|Θk|

)+

. (11)

Since the described achievable scheme has same R~d =∑
k∈[K](F −

Mk

|Θk| )
+ for all ~d, the worst-case rate is achieved

with equality in (11).

APPENDIX B
PROOF OF PROPOSITION 2

We prove the uniform-average rate capacity R∗ by first
deriving the rate lower bounds (Q1) to (Q4) and then showing
that all the corner points formed by the bounds are achievable.
The bounds (Q1) and (Q2) are the cut-set bounds in [1]–[3].
Therefore we focus on the bound (Q3) (and the symmetrical
form (Q4)).

To prove (Q3), we first consider the following inequality∑
j∈[N ]\{i}

H(X(i,j), Z1) =
∑

j∈[N ]\{i}

H(X(i,j), Z1,Wi) (12)

≥ (N − 2)H(Z1,Wi) +H([X(i,j)]j∈[N ]\{i}, Z1,Wi) (13)
≥ (N − 2)H(Z1,Wi) +H([X(i,j)]j∈[N ]\{i}, Z1, Z2,Wi)

+H(Wi)−H(Z2,Wi) (14)
≥ (N − 2)H(Z1,Wi) +H([Wj ]j∈[N ])

+H(Wi)−H(Z2,Wi) (15)
= (N + 1)F + (N − 2)H(Z1,Wi)−H(Z2,Wi) (16)

where (12) follows from that user 1 can decode Wi based on
X(i,j) and Z1; (13) and (14) follows from using the matroidal
Shannon inequality. (15) follows from that user 2 can decode
[Wj ]j∈[N ]\{i} based on [X(i,j)]j∈[N ]\{i} and Z2.

Following (16), we obtain

N(N − 1)M1 +
∑
i∈[N ]

∑
j∈[N ]\{i}

R(i,j)

≥
∑
i∈[N ]

∑
j∈[N ]\{i}

H(X(i,j), Z1) ≥ N(N + 1)F

+ (N − 2)
∑
i∈[N ]

H(Z1,Wi)−
∑
i∈[N ]

H(Z2,Wi), (17)

and symmetrically we also have

N(N − 1)M2 +
∑
i∈[N ]

∑
j∈[N ]\{i}

R(i,j) ≥ N(N + 1)F

+ (N − 2)
∑
i∈[N ]

H(Z2,Wi)−
∑
i∈[N ]

H(Z1,Wi). (18)

Computing ((17) + (N − 2)× (18))/(N − 1) yields

NM1 +N(N − 2)M2 +
∑
i∈[N ]

∑
j∈[N ]\{i}

R(i,j) (19)

≥ N(N + 1)F + (N − 3)
∑
i∈[N ]

H(Z2,Wi) (20)

≥ N(N + 1)F

+ (N − 3)
(
(N − 1)H(Z2) +H(Z2, [Wi]i∈[N ])

)
(21)

≥ 2N(N − 1)F + (N − 3)(N − 1)M2 (22)

or equivalently

NM1 + (2N − 3)M2 +
∑

i,j∈[N ],i6=j

R(i,j) ≥ 2N(N − 1)F (23)

Adding (23) with the cut-set bound

M2 +
∑
i∈[N ]

R(i,i) ≥ NF (24)

leads to

NM1 + 2(N − 1)M2 +
∑

i,j∈[N ]

R(i,j) ≥ N(2N − 1)F. (25)

By Definition 5, we substitute R̃ = 1
N2

∑
i,j∈[N ]R(i,j) in to

(25) to obtain (Q3).
One can verify the lower bounds (Q1) to (Q4) with respect

to M1,M2 ∈ [0, NF ] is the surface plotted in Fig. 1. Now we
show that joint (Q1) to (Q4) is the capacity by verifying all
the corner points t1 to t7 in Fig. 1 are zero-error achievable.

The achievable scheme for point t1 is trivial. The points
t2 and t3 can be zero-error achieved by user 1 caches
Z1 = (W1⊕W2,W1⊕W3, · · · ,W1⊕WN ) of size (N−1)F in
the placement phase and in the delivery phase, for the demand
(d1, d2) ∈ [N ]2, the server transmits X(d1,d2) = Wd2 corre-
sponding to rate R(d1,d2) = F and hence R̃ = F . The points
t4 can be zero-error achieved by user 1 and 2 both caches
Z1 = Z2 = (W1,W2, . . . ,WN ) of size NF in the placement
phase and for any demand patterns, no need for extra transmis-
sion in the delivery phase. The achievable scheme of t5 and
t6 are the user symmetric scheme of t3 and t2, respectively.
The point t7 can be zero-error achieved by first divide the N
files into two halves: W1 = (U1, V1), . . . ,WN = (UN , VN ).
In the placement phase, user 1 caches Z1 = (U1, U2, . . . , UN )
and user 2 caches Z2 = (V1, V2, . . . , VN ); and in the delivery
phase for the demand (d1, d2) ∈ [N ]2, the server transmits
X(d1,d2) = Ud2

⊕Vd1
corresponding to rate R(d1,d2) = F

2 and
hence R̃ = F

2 .
Since Θ1 = Θ2 = [N ], it is clear that all the achievable

schemes are selfish, i.e., the uniform average rate capacities
for selfish and unselfish designs are the same.

APPENDIX C
PROOF OF PROPOSITION 3

We prove Proposition 3 by showing that (Q1) to (Q3) are the
lower bounds of R̃, and then showing all the rates satisfying
(Q1) to (Q3) are zero-error achievable.
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We first derive Q1 and Q2 from the cut-set bounds. For
i ∈ [N ], we have the cut-set bounds

M1 +R(1,i) ≥ H(X(1,i), Z1) ≥ H(W1) = F (26)

and hence the bound Q1 is obtained by the summation NM1+
NR̃ = NM1 +

∑N
i=1R(1,i) ≥ NF . The bound Q2 is deduced

by another cut-set bound

M2 +

N∑
i=1

R(1,i) ≥ H([X(1,i)]
N
i=1, Z2) ≥ H([Wi]

N
i=1) = NF

and hence we have the Q2 bound M2 +NR̃ ≥ NF .
The bounds (Q1) and (Q2) are the cut set bounds following

the close argument in [1]. The bound (Q3) can be derived by

(N − 1)M1 +M2 +NR̃ (27)

≥
N∑
i=2

H(Z1, X(1,i)) +H(Z2, X(1,1)) (28)

=

N∑
i=2

H(Z1, X(1,i),W1) +H(Z2, X(1,1),W1) (29)

≥ (N − 2)H(Z1,W1) +H(Z1, [X(1,i)]
N
i=2,W1)

+H(Z2, X(1,1),W1) (30)

≥ (N − 1)H(W1) +H(Z1, Z2, [X(1,i)]
N
i=1,W1) (31)

= (N − 1)H(W1) +H(Z1, Z2, [X(1,i)]
N
i=1, [Wi]

N
i=1) (32)

≥ (N − 1)H(W1) +H([Wi]
N
i=1) = (2N − 1)F (33)

where (28) follows from the definition of average rate R̃ =
1
N

∑N
i=1H(X(1,i)); (29) follows from that user 1 can decode

W1 based on X(1,i) and Z1 and user 2 can decode W1 based on
X(1,1) and Z2. (30) follows from using the matroidal Shannon
inequality N − 2 times on the term

∑N
i=2H(Z1, X(1,i),W1);

(31) follows from the inequalities H(Z1,W1) ≥ H(W1) and
the matroidal Shannon inequality on H(Z1, [X(1,i)]

N
i=2,W1)

and H(Z2, X(1,1),W1). (32) follows from that user 2 can
decode Wi based on X(1,i). Therefore we prove (Q3) is a
lower bound of average rate

One can verify the lower bounds (Q1) to (Q3) with respect
to M1,M2 ∈ [0, NF ] is the surface as plotted in Fig. 2. Now
we show that joint (Q1) to (Q3) is the capacity by verifying all
the corner points u1 to u7 in Fig. 2 are zero-error achievable.

The achievable scheme for point u1 is trivial. The points u2

and u3 can be zero-error achieved by user 1 caches Z1 = W1

of size F in the placement phase and in the delivery phase,
for the demand (d1, d2) = (1, i), i ∈ [N ], the server transmits
X(1,i) = Wi corresponding to rate R(1,i) = F . The points u4

and u5 can be zero-error achieved by user 1 caches Z1 = W1

of size F and user 2 caches Z2 = (W1,W2, . . . ,WN ) of size
NF in the placement phase and for any demand patterns, no
need for extra transmission in the delivery phase. The points
u6 and u7 can be zero-error achieved by user 2 caches Z2 =
(W2, . . . ,WN ) of size (N − 1)F in the placement phase and
in the delivery phase, for the demand (d1, d2) = (1, i), i ∈
[N ], the server transmits X(1,i) = W1 corresponding to rate
R(1,i) = F .

It is clear that the proposed achievable schemes of corner
points u1 to u7 are actually selfish coded caching schemes.

Therefore the uniform average rate capacities for selfish and
unselfish designs are the same.

APPENDIX D
PROOF OF PROPOSITION 4

The bounds (P1) and (P2) are the cut set bounds following
the close argument in [1]. To derive bound (P3), we first obtain
following inequality for {3} ⊆ {i, j} ⊆ {1, 2, 3} and k, l ∈
{1, 2}.

M1 +M2 +R(1,i) +R(2,j) +R(k,1) +R(l,2) (34)
≥ H(X(1,i), X(2,j), Z1) +H(X(k,1), X(l,2), Z2) (35)
= H(X(1,i), X(2,j), Z1,W1,W2)

+H(X(k,1), X(l,2), Z2,W1,W2) (36)
≥ H(X(1,i), X(2,j), X(k,1), X(l,2), Z2,W1,W2)

+H(W1,W2) (37)
= H(X(1,i), X(2,j), X(k,1), X(l,2), Z2,W1,W2,W3)

+H(W1,W2) (38)
≥ H(W1,W2,W3) +H(W1,W2) = 5F (39)

where (36) follows from that user 1 can decode W1 and W2

based on X(1,i), X(2,j), and Z1; and user 2 can decode W1

and W2 based on X(k,1), X(l,2), and Z2. (37) follows from
using the matroidal Shannon inequality. (38) follows from the
assumption i = 3 or j = 3 such that user 2 can decode W3

based on X(1,i), X(2,j), and Z2.
We then obtain three inequalities for (i, j, k, l) = (3, 1, 1, 2),

(2, 3, 1, 2), and (3, 3, 2, 1), respectively as follows.

M1 +M2 +R(1,3) +R(2,1) +R(1,1) +R(2,2) ≥ 5F (40)
M1 +M2 +R(1,2) +R(2,3) +R(1,1) +R(2,2) ≥ 5F (41)
M1 +M2 +R(1,3) +R(2,3) +R(2,1) +R(1,2) ≥ 5F. (42)

The summation of (40), (41), and (42) yields 3M1 + 3M2 +
12R̃ ≥ 15F or equivalently (P3).

To derive the bound (P4), we first obtain the following
inequality for (i, j) = (1, 2) or (2, 1).

M1 +M2 +R(j,3) +R(i,j) (43)
≥ H(X(j,3), Z1) +H(X(i,j), Z2) (44)
= H(X(j,3), Z1,Wj) +H(X(i,j), Z2,Wj) (45)
≥ H(X(j,3), X(i,j), Z1, Z2,Wj) +H(Wj) (46)
= H(X(j,3), X(i,j), Z1, Z2,Wi,Wj ,W3) +H(Wj) (47)
≥ H(W1,W2,W3) +H(Wj) = 4F. (48)

where (45) follows from that user 1 can decode Wj based on
X(j,3) and Z1; and user 2 can decode Wj based on X(i,j) and
Z2. (46) follows from using the matroidal Shannon inequality.
(47) follows from the assumption (i, j) = (1, 2) or (2, 1) such
that user 1 can decode Wi based on X(i,j) and Z1; and user
2 can decode W3 based on X(j,3) and Z2.

We then obtain two inequalities for (i, j) = (1, 2) and (2, 1),
respectively as follows.

M1 +M2 +R(2,3) +R(1,2) ≥ 4F (49)
M1 +M2 +R(1,3) +R(2,1) ≥ 4F. (50)
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The summation of (40) and (49) yields 2M1+2M2+6R̃ ≥ 9F
or equivalently (P4).

To derive the bounds (P5) and (P6), we first obtain the
following cut-set bounds

M1 +R(1,1) +R(2,2) ≥ 2F (51)
M2 +R(1,1) +R(2,2) ≥ 2F. (52)

The summation of (49), (50), and (96) yields (P5) and the
summation of (49), (50), and (52) yields (P6).

Now we show that corner points v1 to v11 of bounds
(P1) to (P6) are zero-error achievable. The achievable scheme
for point v1 is trivial. The points v2 and v3 can be zero-
error achieved by user 1 caches Z1 = (W1,W2) of size 2F
in the placement phase and in the delivery phase, for any
demand (d1, d2) = (i, j), the server transmits X(i,j) = Wj

corresponding to rate R(i,j) = F . The points v4 and v5 can
be zero-error achieved by user 1 caches Z1 = (W1,W2)
of size 2F and user 2 caches Z2 = (W1,W2,W3) of size
3F in the placement phase and for any demand patterns,
no need for extra transmission in the delivery phase. The
points v6 and v7 can be zero-error achieved by user 2 caches
Z2 = (W1⊕W2,W1⊕W3) of size 2F in the placement phase
and in the delivery phase, for the demand (d1, d2) = (i, j), the
server transmits X(i,j) = Wi corresponding to rate R(i,j) = F .

For describing the achievable schemes of corner points v8

to v11, we divide each files into two disjoint subfiles of equal
size F

2 , i.e., W1 = (A1, A2), W2 = (B1, B2), and W3 =
(C1, C2). The zero-error achievable scheme of v8 is that in
the placement phase, user 1 caches Z1 = (A1, B1) of size F ,
and user 2 caches Z2 = (A2, B2,W3) of size 2F and in the
delivery phase, for the 6 possible demands the server transmits
X(1,1) = A1⊕A2, X(1,2) = A2⊕B1, X(1,3) = A2, X(2,1) =
A1⊕B2, X(2,2) = B1⊕B2, and X(2,3) = B2 corresponding to
the same rate F

2 and hence achieves the average rate R̃ = F
2 .

The zero-error achievable scheme of v9 is that in the placement
phase, user 1 caches Z1 = (A1, B1) of size F , and user 2
caches Z2 = (A2, B2) of size F and in the delivery phase, for
the 6 possible demands the server transmits X(1,1) = A1⊕A2,
X(1,2) = A2 ⊕ B1, X(1,3) = (A2,W3), X(2,1) = A1 ⊕ B2,
X(2,2) = B1 ⊕ B2, and X(2,3) = (B2,W3) corresponding
to the rates R(1,1) = R(1,2) = R(2,1) = R(2,2) = F

2 , and
R(1,3) = R(2,3) = 3F

2 . The average rate is therefore R̃ = 5
6F .

The zero-error achievable scheme of v10 is that in the
placement phase, user 1 caches Z1 = (A1, B1, C2⊕A2⊕B2)
of size 3F

2 , and user 2 caches Z2 = (A2, B2) of size F
and in the delivery phase, for the 6 possible demands the
server transmits X(1,1) = A1 ⊕ A2, X(1,2) = A2 ⊕ B1,
X(1,3) = (C1, C2⊕B2), X(2,1) = A1⊕B2, X(2,2) = B1⊕B2,
and X(2,3) = (C1, C2 ⊕ A2) corresponding to the rates
R(1,1) = R(1,2) = R(2,1) = R(2,2) = F

2 , and R(1,3) =

R(2,3) = F . The average rate is therefore R̃ = 2
3F . The zero-

error achievable scheme of v11 is that in the placement phase,
user 1 caches Z1 = (A1, B1, C1) of size 3

2F , and user 2 caches
Z2 = (A2, B2, C2) of size 3

2F and in the delivery phase, for
the 6 possible demands the server transmits X(1,1) = A1⊕A2,
X(1,2) = A2 ⊕ B1, X(1,3) = A2 ⊕ C1, X(2,1) = A1 ⊕ B2,

X(2,2) = B1 ⊕ B2, and X(2,3) = B2 ⊕ C1 corresponding to
the same rate F

2 and hence achieves the average rate R̃ = F
2 .

APPENDIX E
PROOF OF PROPOSITION 5

The bound (P7), we first obtain the following inequality for
i ∈ {1, 2}

M1 +M2 +R(i,1) +R(i,2) +R(i,3) (53)
≥ H(X(i,3), Z1) +H(X(i,1), X(i,2), Z2) (54)
= H(X(i,3), Z1,Wi) +H(X(i,1), X(i,2), Z2,W1,W2) (55)
= H(X(i,3), Z1,Wi)

+H(X(i,1), X(i,2), Z1, Z2,W1,W2) (56)
≥ H(X(i,3), X(i,1), X(i,2), Z1, Z2,W1,W2)

+H(Z1,Wi) (57)
= H(X(i,3), X(i,1), X(i,2), Z1, Z2,W1,W2,W3)

+H(Z1,Wi) (58)
≥ H(W1,W2,W3) +H(Z1,Wi) = 3F +H(Z1,Wi) (59)

where (55) follows from that user 1 can decode Wi based
on X(i,3) and Z1; and user 2 can decode W1 and W2 based
on X(i,1), X(i,2), and Z2. (56) follows from the definition of
selfish coded caching where Z1 = φ1(W1,W2). (57) follows
from the assumption i ∈ {1, 2} and the matroidal Shannon
inequality. (58) follows from user 2 can decode W3 based on
X(i,3) and Z2.

We then obtain two inequalities for i = 1 and i = 2 as
follows

M1 +M2 +

3∑
j=1

R(1,j) ≥ 3F +H(Z1,W1) (60)

M1 +M2 +

3∑
j=1

R(2,j) ≥ 3F +H(Z1,W2). (61)

The summation of (60) and (61) leads to

2M1 + 2M2 + 6R̃ (62)
≥ 6F +H(Z1,W1) +H(Z1,W2) (63)
≥ 6F +H(Z1,W1,W2) +H(Z1) (64)
≥ 6F +H(W1,W2) +H(Z1) = 8F +M1 (65)

and hence the bound (P7), where (64) follows from the
matroidal Shannon inequality.

It is clear that the aforementioned achievable schemes of
corner points v1 to v7 are actually selfish coded caching
schemes. Therefore joint (P1), (P2), and (P5) to (P7) is the
selfish capacity of uniform average rate.

APPENDIX F
PROOF OF PROPOSITION 6 AND 7

We prove Proposition 6 by showing that (P1+) to (P6+) are
the rate lower bounds of unselfish coded caching schemes. The
bounds (P1+) and (P2+) can derived from the close argument
in [1].
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Given the condition N1 ≤ 2N1, for any set {ji ∈ [N2] :
i ∈ [N1]} ⊇ [N2]\[N1] and {ki ∈ [N1] : i ∈ [N1]}, the bound
(P3+) can be proved by

M1 +M2 +
∑

i∈[N1],ji,ki∈[N2]

(
R(i,ji) +R(ki,i)

)
(66)

≥ H([X(i,ji)]i∈[N1], Z1) +H([X(ki,i)]i∈[N1], Z2) (67)
= H([X(i,ji)]i∈[N1], Z1, [Wi]i∈[N1])

+H([X(ki,i)]i∈[N1], Z2, [Wi]i∈[N1]) (68)
≥ H([X(i,ji)]i∈[N1], [X(ki,i)]i∈[N1], Z1, Z2, [Wi]i∈[N1])

+H([Wi]i∈[N1]) (69)
= H([X(i,ji)]i∈[N1], [X(ki,i)]i∈[N1], Z1, Z2, [Wi]i∈[N2])

+H([Wi]i∈[N1]) (70)
= H([Wi]i∈[N2]) +H([Wi]i∈[N1]) = (N1 +N2)F (71)

where (68) follows from that user 1 can decode
{W1, . . . ,WN1

} based on {[X(i,ji)]i∈[N1], Z1} and user
2 can decode {W1, . . . ,WN1

} based on {[X(ki,i)]i∈[N1], Z2};
(69) follows from the matroidal Shannon inequality; (70)
follows that user 2 can decode {WN1+1, . . . ,WN2} based on
{[X(i,ji)]i∈[N1], [X(ki,i)]i∈[N1], Z1} due to {ji} ⊇ [N2]\[N1].

We then show that following a procedure of randomly
assignment of {ji} and {ki}, we can uniformly cover all the
demands (d1, d2) ∈ [N1]× [N2]. To construct R(i,ji) for fixed
and ordered i = 1, . . . , N1, we first randomly pick N2 − N1

elements from {ji}, and randomly one-to-one mapping to
{N1 + 1, . . . , N2}. Then remained 2N1 − N2 ≥ 0 elements
in {ji} are unassigned. We then assign them to 2N1 − N2

randomly-picked elements in [N2]. To construct R(ki,i) for
fixed and ordered i = 1, . . . , N1, we randomly pick N1

elements from [N1] and map to {ki}. In this way, a demand
(d1, d2), d1, d2 ∈ [N1], corresponding to the rate R(d1,d2)

appeals with the probability

2N1 −N2

N1

1

N2
+

1

N1
=

2

N2
(72)

and for d1 ∈ [N1], d2 ∈ [N2]\[N1], R(d1,d2) appeals with the
probability

N2 −N1

N1

1

N2 −N1
+

2N1 −N2

N1

1

N2
=

2

N2
. (73)

Therefore if we forms sufficient large number of
inequalities (71) with such random {ji} and {ki},
we can replace

∑
i∈[N1]

(
R(i,ji) +R(ki,i)

)
in (66) with

2
N2

∑
i∈[N1]

∑
j∈[N2]R(i,j) = 2N1R̃ such that (71) becomes

M1 +M2 + 2N1R̃ ≥ (N1 +N2)F or equivalently (P3+).

Given the condition N2 ≤ 2N1, we prove the bound (P4+)
from the following inequality for a set I ⊆ [N1], |I| =
bN2/2c ≤ N1, {ji ∈ [N2] : i ∈ I}, and {ki ∈ [N1] : i ∈ I}

such that {ji} ∪ {ki} ⊇ [N2]\I

M1 +M2 +
∑
i∈I

(
R(i,ji) +R(ki,i)

)
(74)

≥ H([X(i,ji)]i∈I , Z1) +H([X(ki,i)]i∈I , Z2) (75)
≥ H([X(i,ji)]i∈I , Z1, [Wi]i∈I)

+H([X(ki,i)]i∈I , Z2, [Wi]i∈I) (76)
≥ H([X(i,ji)]i∈I , [X(ki,i)]i∈I , Z1, [Wi]i∈I)

+H([Wi]i∈I) (77)
≥ H([X(i,ji)]i∈I , [X(ki,i)]i∈I , Z1, [Wi]i∈[N2])

+H([Wi]i∈I) (78)
= H([Wi]i∈[N2]) +H([Wi]i∈I) = (N2 + bN2/2c)F (79)

where the (76) follows from that user 1 can decode {Wi :
i ∈ I} based on {[X(i,ji)]i∈I , Z1} and user 2 can decode
{Wi : i ∈ I} based on {[X(ki,i)]i∈I , Z2}; (77) follows
from the matroidal Shannon inequality; (78) follows that user
1 and user 2 can decode {Wi : i ∈ [N2]\I} based on
{[X(i,ji)]i∈[N1], [X(ki,i)]i∈[N1], Z1, Z2} due to {ji} ∪ {ki} ⊇
[N2]\I .

We construct the set I , {ji}, and {ki} as follows. We first
randomly choose bN2/2c − 1 elements from [N1] without
repetition and permute them to an ordered set I . We then set
ki1 = i1 and (ki2 , . . . , kiN2−N1+1

) = (N1 + 1, . . . , N2). We
then randomly pick N1 + 2bN2/2c − N2 − 1 elements with
repetition in [N1]\I to assign the rest of {ki} ∪ {ji} such
that {ki} ∪ {ji} ⊇ [N1]\I . In this way, a demand (d1, d2),
d1 ∈ [N1], d2 ∈ [N2] corresponding to the rate R(d1,d2)

appeals with the probability
1
N1

d1 = d2 ∈ [N1]
1
N1

N1−bN2/2c
N1−1

N1+2bN2/2c−N2−1
N1−bN2/2c d1 6= d2 ∈ [N1]

1
N1

d1 ∈ [N1], d2 ∈ [N2].

(80)

On the other hand, we can obtain another inequality for a set
L ⊆ [N1], |L| = dN2/2e ≤ N1, {jl ∈ [N2] : l ∈ L} ⊇ [N2],
and {kl ∈ [N1] : l ∈ L} such that {jl} ∪ {kl} ⊇ [N2]\L

M1 +M2 +
∑
i∈L

(
R(l,jl) +R(kl,l)

)
(81)

≥ H([X(l,jl)]l∈L, Z1) +H([X(kl,l)]l∈L, Z2) (82)
≥ H([X(l,jl)]l∈L, Z1, [Wl]l∈L)

+H([X(kl,l)]l∈L, Z2, [Wl]l∈L) (83)
≥ H([X(l,jl)]l∈L, [X(kl,l)]l∈L, Z1, [Wl]l∈L)

+H([Wl]l∈L) (84)
≥ H([X(l,jl)]l∈L, [X(kl,l)]l∈L, Z1, [Wl]l∈[N2])

+H([Wl]l∈L) (85)
= H([Wl]l∈[N2]) +H([Wl]l∈L) = (N2 + dN2/2e)F (86)

where the (83) follows from that user 1 can decode {Wl :
l ∈ L} based on {[X(l,jl)]l∈L, Z1} and user 2 can de-
code {Wl : l ∈ L} based on {[X(kl,l)]l∈L, Z2}; (84)
follows from the matroidal Shannon inequality; (85) fol-
lows that user 2 can decode {Wl : l ∈ [N2]\L} based
on {[X(l,jl)]l∈[N1], [X(kl,l)]l∈[N1], Z2} due to {jl} ∪ {kl} ⊇
[N2]\L.
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We follow similar procedure to construct the set L, {jl}, and
{kl} as follows. We first randomly choose dN2/2e elements
from [N1] without repetition and permute them to an ordered
set L. We then set kl1 = l1 and (kl2 , . . . , klN2−N1+1

) = (N1 +
1, . . . , N2). We then randomly pick N1 + 2dN2/2e −N2 − 1
elements with repetition in [N1]\I to assign the rest of
{ki} ∪ {ji} such that {ki} ∪ {ji} ⊇ [N1]\I . In this way,
a demand (d1, d2), d1 ∈ [N1], d2 ∈ [N2] corresponding to the
rate R(d1,d2) appeals with the probability

1
N1

d1 = d2 ∈ [N1]
1
N1

N1−dN2/2e
N1−1

N1+2dN2/2e−N2−1
N1−dN2/2e d1 6= d2 ∈ [N1]

1
N1

d1 ∈ [N1], d2 ∈ [N2]

(87)

Add the inequality (79) and (86) together yields

2M1 + 2M2 +
∑
i∈I

R(i,ji) +R(ki,i) +
∑
i∈L

R(l,jl) +R(kl,l)

≥ (2N2 + bN2/2c+ dN2/2e)F = 3N2F (88)

where a demand (d1, d2), d1 ∈ [N1], d2 ∈ [N2] corresponding
to the rate R(d1,d2) appeals with probability sum of (80) and
(87)

1
N1

+ 1
N1

= 2
N1

d1 = d2 ∈ [N1]
1
N1

N1+2dN2/2e−N2−1
N1−1 + 1

N1

N1+2dN2/2e−N2−1
N1−1 = 2

N1

d1 6= d2 ∈ [N1]
1
N1

+ 1
N1

= 2
N1

d1 ∈ [N1], d2 ∈ [N2].

(89)

That is, for all (d1, d2), d1 ∈ [N1], d2 ∈ [N2], the rate
R(d1,d2) appeals in (88) with probability 2

N1
such that we can

replace
∑

i∈I R(i,ji) + R(ki,i) +
∑

i∈LR(l,jl) + R(kl,l) with
2
N1

∑
i∈[N1]

∑
j∈[N2]R(i,j) = 2N2R̃ in (88) and hence we

obtain (P4+).
To prove (P5+), we consider even N1 and N2 >

3
2N1. Let

set I ⊂ [N1], |I| = N1

2 be a subset of [N1] of N1/2 elements,
we denote sets {ji : i ∈ I} = [N1]\I and {ki ∈ [N2]\[N1] :
i ∈ I} both of distinct N1/2 elements. We first derive the
following inequality.

M1 +M2 +
∑
i∈I

R(i,ki) +
∑
i∈I

R(ji,i) (90)

≥ H([X(i,ki)]i∈I , Z1)+H([X(ji,i)]i∈I , Z2) (91)
= H([X(i,ki)]i∈I , Z1, [Wi]i∈I)

+H([X(ji,i)]i∈I , Z2, [Wi]i∈I) (92)
≥ H([X(i,ki)]i∈I , [X(ji,i)]i∈I , Z1, Z2, [Wi]i∈I)

+H([Wi]i∈I) (93)
= H([X(i,ki)]i∈I , [X(ji,i)]i∈I , Z1, Z2, [Wi,Wji ,Wki

]i∈I)

+H([Wi]i∈I) (94)
≥ H([Wi,Wji ,Wki

]i∈I) +H([Wi]i∈I) = 2N1F (95)

where the (92) follows from that user 1 can decode {Wi : i ∈
I} based on {X(i,ki)]i∈I , Z1} and user 2 can decode {Wi : i ∈
I} based on {[X(ji,i)]i∈I , Z2}; (93) follows from the matroidal
Shannon inequality; (94) follows that user 1 can decode {Wji :

i ∈ I} based on {[X(ji,i)]i∈I , Z1} and user 2 can decode
{Wki : i ∈ I} based on {X(i,ki)]i∈I , Z2}.

To balance the demand pairs (d1, d2) ∈ [N1] × [N2]
uniformly, we introduce the the following cut-set bound for
li ∈ [N2]

M1 +
∑

i∈[N1]

R(i,li) ≥ N1F. (96)

The linear combination (95) + (N2−N1)
N1

× (96) yields

N2

N1
M1 +M2 +

∑
i∈I

R(i,ki) +
∑
i∈I

R(ji,i)

+
N2 −N1

N1

∑
i∈[N1]

R(i,li) ≥ (N1 +N2)F. (97)

Again we perform random assignment of the sets I , {ji}i∈I ,
{ki}i∈I , and {li}i∈[N1] to construct the uniform average rate.
We randomly choose I = [N1/2] or I = [N1]\[N1/2], each
with probability 1

2 , {ji} = [N1]\I , and randomly choose N1

2

elements in [N2]\[N1] as {ki}. Among the number of N2−N1

N1

inequalities (96), we choose 1
2 fraction of (N2−N1)

N1
inequalities

(96) to assign the rates {R(i,li)} such that {li} ∈ I for i ∈ I
and for {li} ∈ [N1]\I for i ∈ [N1]\I . On the other hand, we
choose the remained N2−N1

N1
− 1

2 fraction of N2−N1

N1
inequalities

(96) to assign the rates{R(i,li)} such that li ∈ [N2]\[N1] for
i ∈ [N1]. In this way, for any demand (d1, d2), d1, d2 ∈ [N1],
corresponding to the rate R(d1,d2) appeals with the probability

1

2
· N1/2

(N1/2)2
=

1

N1

and for any demand (d1, d2), d1 ∈ [N1], d2 ∈ [N2]\[N1],
corresponding to the rate R(d1,d2) appeals with the probability

1

2

N1

2
N1

2 (N2 −N1)
+

(
N2 −N1

N1
− 1

2

)
N1

N1(N2 −N1)
=

1

N1
.

That is, for all (d1, d2) ∈ [N1]×[N2], the rate R(d1,d2) appeals
in (97) with probability 1

N1
such that we can replace the term∑

i∈I R(i,ki) +
∑

i∈I R(ji,i) + N2−N1

N1

∑
i∈[N1]R(i,li) in (97)

with 1
N1

∑
i∈[N1],j∈[N2]R(i,j) = N2R̃ or equivalently (P5+).

To prove (P6+), we consider N1 even and N2 ≤ 2N1 such
that 2N2−2N1 ≤ N2. Let the set J ⊆ [N2], |J | = 2(N2−N1),
and {ij ∈ [N1] : j ∈ J}, we have the cut-set bound

M2 +
∑
j∈J

R(ij ,j) ≥ 2(N2 −N1)F. (98)

The linear combination 2× (95) + (98) yields

2M1 + 3M2 + 2
∑
i∈I

R(i,ki) + 2
∑
i∈I

R(ji,i) +
∑
j∈J

R(ij ,j)

≥ 2(N1 +N2)F. (99)

Similarly we then perform random assignment of the sets I ,
{ji}i∈I , {ki}i∈I , J , and {ij}j∈J to construct the uniform
average rate. We choose I = [N1/2] and I = [N1]\[N1/2]
for the two inequalities of (95), respectively, and randomly
choose N1/2 elements in [N2]\[N1] as {ki}i∈I for each I .
We construct set J = [N1]∪A, where A contains 2N2− 3N1
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distinct elements randomly picked from [N2]\[N1]. Then we
assign {ij : j = 1, . . . , N1

2 } = [N1/2] with random permuta-
tion and assign {ij : j = N1

2 +1, . . . , N1} = [N1]\[N1/2] with
random permutation. Finally we randomly choose 2N2− 3N1

elements from [N1] to assign the rest of {ij : j ∈ A}. In this
way, for any demand (d1, d2), d1, d2 ∈ [N1], corresponding
to the rate R(d1,d2) appeals with the probability

N1/2

(N1/2)2
=

2

N1
(100)

and for any demand (d1, d2), d1 ∈ [N1], d2 ∈ [N2]\[N1],
corresponding to the rate R(d1,d2) appeals with the probability

N1/2

(N1/2)(N2 −N1)
+

2N2 − 3N1

N1(N2 −N1)
=

2

N1
. (101)

That is, for all (d1, d2) ∈ [N1]× [N2] the rate R(d1,d2) appeals
in (99) with probability 2

N1
such that we can replace the term

2
∑

i∈I R(i,ki) + 2
∑

i∈I R(ji,i) +
∑

j∈J R(ij ,j) in (99) with
2
N1

∑
i∈[N1],j∈[N2]R(i,j) = 2N2R̃ and hence we obtain (P6+).

To prove Proposition 7, we show that the vertices w1 to
w7 in Fig. 5 are zero-error achievable. The vertices w1 and
w2 can be achieved when in placement phase, user 1 caches
Z1 = (W1, . . . ,WN1) of size N1F and in delivery phase,
for any demand (d1, d2) ∈ [N1] × [N2], the server transmits
X(d1,d2) = Wd2

corresponding to the rate R(d1,d2) = F and
hence the uniform-average rate is R̃ = F . The vertices w3

and w2 can be achieved when in placement phase, user 1
caches Z1 = (W1, . . . ,WN1) of size N1F and user 2 caches
Z2 = (W1, . . . ,WN2) of size N2F such that in delivery
phase, no further transmission from server is required and
hence the uniform-average rate is R̃ = 0. The vertex w5

can be achieved when in placement phase, user 2 caches
Z2 = (W1, . . . ,WN2) of size N2F and in delivery phase,
for any demand (d1, d2) ∈ [N1] × [N2], the server transmits
X(d1,d2) = Wd1

corresponding to the rate R(d1,d2) = F and
hence the uniform-average rate is R̃ = F .

The vertex w6 can be achieved by first divide all the files
Wi, i ∈ [N1], into two halves subfiles (Ui, Vi) of equal size
F/2, i.e., Wi = (Ui, Vi) for all i ∈ [N1]. In the placement
phase, user 1 caches Z1 = (U1, . . . , UN1

) of size N1

2 F and
user 2 caches Z2 = (V1, . . . , VN1

,WN1+1, . . . ,WN2
) of size

N1

2 F + (N2 − N1)F = (N1 − N1

2 )F . In the delivery phase
for any demand (d1, d2), d1, d2 ∈ [N1], the server transmit
X(d1,d2) = Ud2

⊕ Vd1
corresponding to rate R(d1,d2) = F

2
and for any demand (d1, d2), d1 ∈ [N1], d2 ∈ [N2]\[N1],
the server transmit X(d1,d2) = Vd1 corresponding to rate
R(d1,d2) = F

2 such that the uniform-average rate is R̃ = F
2 .

The vertex w7 can be achieved by first divide all the files
Wi into two halves subfiles (Ui, Vi) of equal size F/2, i.e.,
Wi = (Ui, Vi) for all i ∈ [N2]. In the placement phase, user
1 caches Z1 = (U1, . . . , UN2) of size N2

2 F and user 2 caches
Z2 = (V1, . . . , VN2

) of size N2

2 F . In the delivery phase for
any demand (d1, d2), d1 ∈ [N1], d2 ∈ [N2], the server transmit
X(d1,d2) = Ud2 ⊕Vd1 corresponding to rate R(d1,d2) = F

2 and
hence the uniform-average rate is R̃ = F

2 .
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