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Abstract—The latency and control overhead of sending the
preamble in synchronous communications can be excessive when
transmitting short sensing/control messages. To reduce these
overheads, this work proposes a preamble-free solution based
on the framework of quickest change detection. Specific contri-
butions include a joint decoding/demodulation scheme that is
provably asymptotically optimal, and a more practical CuSum-
like implementation. Numerical results show that the proposed
scheme reduces the latency by 47%–79% when compared to the
preamble-based solutions. The scheme is also inherently robust
and automatically adapts to any unknown underlying SNRs.

I. INTRODUCTION

Low-latency transmission has been a key objective for 5G
communications and beyond [1]–[3]. In general, a modern
communication scheme first transmits the preamble, followed
by the payload, where the former is used for synchronization
and acquisition of channel parameters. Despite its through-
put advantages over asynchronous solutions, for short sens-
ing/control messages, say 8–32 bits, the latency overhead of
sending a preamble, typically ranging between 139 to 839
symbols [4], [5], may be severe. It is with such settings in
mind that this work proposes a preamble-free transceiver based
on the framework of quickest change detection (QCD).

Our main idea is to recognize that this deficiency of
synchronous schemes is due to the fact that the preamble
is designed exclusively for synchronization and channel state
acquisition, while the payload, with the help of error correcting
codes, is used exclusively for combating noise of the channel.
Such a rigid separation diminishes the inference power for
either mission. In contrast, we assign each of the 2q messages
to an unending sequence of symbols, where q is the number of
bits being transmitted and is assumed to be small 8 ≤ q ≤ 16.
The receiver then listens to the transmitted sequence indefi-
nitely until it can decode the message with high confidence.
Broadly speaking, the transmitted symbol sequence is now
used simultaneously for synchronization (resolving any ambi-
guity caused by delay) and for conveyance of the messages
(resolving any ambiguity among the 2q messages).

The contributions of our results are summarized as follows:
1) We have formulated a low-latency preamble-free com-

munication problem under the QCD framework.
2) We have designed a joint decoding/demodulation scheme,

and proved its asymptotic optimality in terms of the tradeoff
among delay, error probability, and false reception frequency.
To further lower the complexity, a simplified CuSum imple-
mentation has also been devised.

3) Numerical evaluation is used to compare our scheme
versus the preamble-based solutions. Specifically, our scheme
lowers the latency by 47%–79% under a standard Additive
White Gaussian Noise Channel (AWGNC) model.

4) Our scheme is robust and automatically adapts to the
underlying channel condition. Namely, when operated in a
noisier (resp. cleaner) environment, our receiver automatically
lengthens (resp. shortens) the decoding delay by accumulating
more (resp. less) observations before making a decision. This
is in sharp contrast to the preamble-based solutions, for which
the delay, i.e., the length of the preamble, is pre-determined.1

Remark: The application of QCD to communications, and in
particular, networking, is widespread [6]–[8]. Further compar-
ison to existing QCD solutions will be discussed in Sec. II-B.

II. PROBLEM FORMULATION

We consider the problem of transmitting a short q-bit
message 8 ≤ q ≤ 16 over an AWGNC. For any m ∈ [1, 2q],
our scheme assigns an unending complex-valued “symbol”
sequence sm ≜ {smn ∈ C : n ≥ 0} to the m-th message. And
we assume sm is periodic with period N , where N is chosen
by the system designer.2 We assume sm is of unit power:

N−1∑
n=0

|smn |2 = N, ∀m ∈ [1, 2q]. (1)

The “codebook” {sm : 1 ≤ m ≤ 2q} is known a priori to
both the transmitter (Tx) and the receiver (Rx).

For any specific message m, the Tx sends the following
“sample” sequence xm,t0 ≜ {xm,t0

t : t is an integer}:

xm,t0
t =

√
P ·

∞∑
n=0

smn · sinc
(
t− t0 − n · F

F

)
, (2)

where P is the transmission power, F is the number of samples
per symbol,3 and t0 ≥ 1 (unit: samples) is the starting time of
the transmission. Our scheme uses sinc(·)-based interpolation
in (2) and can be easily applied to other pulse-shaping filters,
e.g., root-raised cosine.

1The optimal length of a preamble can be decided if SNR is known to the
transmitter. However, before sending a preamble, it is difficult to know the
channel condition, especially when one is attempting communication for the
very first time. It is essentially a chicken-and-egg problem.

2For future work, it may be advantageous to also consider aperiodic sm.
However, as discussed in Sec. III, the periodicity enables an elegant Fourier-
series-based design and the corresponding low-complexity CuSum algorithms.

3As a theoretical exploration, we assume a sufficiently large F so that the
discrete model in (2) is reasonably close to the continuous model in real life.



The Rx observes the signal Y ≜ {Yt ∈ C : t ≥ 1}:

Yt = ejθxm,t0
t−δt

+Wt, (3)

where δt is the propagation delay, Wt is a complex Gaussian
variable with independent real and imaginary components,
both of which being N (0, σ

2

2 ), and θ is the phase shift. If
we use N0 to denote the one-sided noise spectral density, we
then set

σ2 =
N0F

2
. (4)

Note that the propagation delay δt in (3) has the same time-
shifting effect as the (unknown) starting time t0 in (2). As a
result, we simply set δt = 0 for the rest of the discussion.

To make our setting a fully discrete one, we assume θ
belongs to a discrete set Θd ≜

{
2πh
H : 1 ≤ h ≤ H

}
for some

sufficiently large but fixed H .
Remark: As a first-order approximation model, we assume

no frequency drift (no Doppler), and the phase shift θ is
constant throughout the transmission. A future work is to allow
θ changes over time t, e.g., θ(t) being a drifted random walk.

Since Rx does not know m, t0 and θ, the goal is to design
a stopping time T and a decision M̂ at time T that minimize
the conditional decoding delay for the worst (m, t0, θ) value:

D(T ) ≜ sup
m,t0,θ

Em,t0,θ {T − t0 + 1|T ≥ t0} , (5)

minimize the conditional error probability for the worst
(m, t0, θ) value:

pe(T, M̂) ≜ sup
m,t0,θ

Pm,t0,θ
(
M̂ ̸= m

∣∣∣T ≥ t0

)
, (6)

and maximize the average run length to false reception:

TFR(T ) ≜ lim
t0→∞

Em,t0,θ{T} = Em,∞,θ{T}. (7)

Note that because the starting time is now t0 = ∞, the
expectation in (7) is indepependent of the m value.

More rigorously, the goal is to design {sm : m}, T ,
and M̂ that optimize the tradeoff among D, pe and TFR by
fixing two of the above three quantities (usually (6) and (7)),
and then optimizing the third (usually (5)). Herein, we use
the superscript (m, t0, θ) to denote the probability law under
message m, starting time t0, and phase shift θ.

A. A Transient-Free Approximation Model

Since the symbol sequence sm has period N (unit: sym-
bols), one might expect that the post-t0 portion of the sample
sequence xm,t0 is periodic with period N ·F (unit: samples).
Unfortunately, it is not the case since the sinc(·) function in (2)
has unbounded support and the transient behavior from pre-
t0 to post-t0 will propagate indefinitely within {xm,t0

t : t},
which complicates our analysis. To circumvent this challenge,
we first simplify the transmission model in (2) by defining

xm,t0
ss,i ≜ lim

k→∞
xm,t0
NF ·k+i for all i ∈ [0, NF ) (8)

as the steady-state (ss) waveform when t → ∞. Note that
xm,t0
ss,i now has period NF (unit: samples). We then define

x̃m,t0
t ≜

{
0 if t < ⌊t0⌋NF

xm,t0
ss,i if t ≥ ⌊t0⌋NF and t = NF · k + i

(9)

where ⌊t0⌋NF ≜ ⌊ t0
NF ⌋ · NF is the floor function over the

multiples of NF .
Intuitively speaking, the new sample sequence x̃m,t0 ≜

{x̃m,t0
t : t} bypasses any of the transient behavior from pre-

t0 to post-t0 and directly appends the all-zero samples (as a
proxy of any pre-t0 waveform) with the steady-state waveform
xm,t0
ss,i (as a proxy of any post-t0 waveform). One can verify

that for t ≪ t0 or t ≫ t0, we have xm,t0
t in (2) and x̃m,t0

t

in (9) are nearly identical. The biggest difference between the
two occurs during the interval t ∈ [⌊t0⌋NF , ⌊t0⌋NF + NF )
when the transient behavior is at its peak.

We use Ẽm,t0,θ and P̃m,t0,θ to denote the distribution of
Y = {Yt : t} when we replace xm,t0

t−δt
in (3) by the new

x̃m,t0
t−δt

in (9). Similarly, we use D̃, p̃e, and T̃FR to denote the
counterparts of D, pe and TFR by replacing the distributions
E and P in (5)–(7) with the new Ẽ and P̃.

As will be seen in Sec. III-B, our performance discussion is
in the asymptotic regime. Since xm,t0 in (2) and x̃m,t0 (9) are
almost identical except for the transient behavior around time
t0, we expect the performance and analysis using (9) and the
corresponding probability law P̃m,t0,θ to be quite relevant for
the more realistic model in (2) and the corresponding Pm,t0,θ.

B. Existing Work on QCD

There are many variations of QCD analyses, including
Bayesian vs non-Bayesian [8], different definitions of Average
Detection Delay (ADD) [8], [9], iterative CuSum algorithms
[9]–[11], and stochastically dependent observations [8]. In this
context, our model (5)–(7) takes a non-Bayesian approach
with the delay objective (5) closely related to the Pollak
criterion. Our achievability and converse results are related
to the asymptotic optimality in [10] and [12], respectively.
Our work extends these QCD results to the preamble-free
transmission problem by generalizing the multiple post-change
hypotheses settings [6], [9], [10], [13] to incorporate composite
sub-hypotheses like unknown timing t0 and phase shift θ.

III. MAIN RESULTS

We first assume that the codebook {sm : m ∈ [1, 2q]}
is fixed, and discuss how to design asymptotically optimal
(T, M̂). We then describe how to optimize {sm : m ∈ [1, 2q]}.

A. Asymptotically Optimal Algorithm

Given any σ, we use fσ(y|x) to denote the pdf of a complex
Gaussian variable Y with mean x ∈ C and independent real
and imaginary components with per-component variance σ2

2 .
We then define

fm,t0,θ
ss,t (y) ≜

{
fσ(y|0) if t < t0

fσ(y|ejθxm,t0
ss,i ) if t ≥ t0 and t = kNF + i.

(10)



Namely, fm,t0,θ
ss,t (y) assumes that an all-zero waveform is

transmitted before t0, and the steady-state waveform xm,t0
ss,i

is transmitted right after t0 and it goes through the phase shift
ejθ in (3). Also see similar discussion4 around (9).

We then define the log-likelihood ratio (LLR)

Lm,t0,θ(t) ≜ ln

(
fm,t0,θ
ss,t (Yt)

fσ(Yt|0)

)
, ∀m, t0, θ. (11)

Subsequently, for any arbitrarily given m, we define

gm(t) ≜

 max
1≤t0≤t+1, θ∈Θd

t∑
τ=1

Lm,t0,θ(τ) if m ∈ [1, 2q]

0 if m = 0.
(12)

Herein we use m = 0 to denote the scenario of t0 = ∞ (no
message is ever transmitted), and the corresponding LLR is
thus 0. For any c > 0, we then define the stopping time

Tm(c) ≜ inf

{
t ∈ N : gm(t)−

(
max

m′∈[0,2q ]\m
gm

′
(t)

)
≥ c

}
.

(13)

Finally, we define the overall stopping time and the message
decision pair (T, M̂) by

T (c) ≜ min
m∈[1,2q ]

Tm(c), (14)

M̂(c) ≜ argminm∈[1,2q ] T
m(c). (15)

The description of our scheme (T (c), M̂(c)) is complete.

B. Performance Analysis of The Proposed Scheme

To analyze the performance of our scheme (T (c), M̂(c)),
we assume that there exists a finite constant B <∞ such that

P̃m,t0,θ
(∣∣Lm,t0,θ(t)

∣∣ ≤ B
)
= 1, ∀m, t0, θ. (16)

Namely, the LLR Lm,t0,θ(t) is globally bounded within
[−B,B]. Note that this assumption is technically not true
since AWGNCs have unbounded support. However, with the
tail probability decaying at rate e−

x2

2 , any impact of having
extremely large Lm,t0,θ(t) is likely to be negligible. Also, in
practice, the received sample Yt in (3) is often quantized to
be within a bounded value, which automatically ensures (16).

For any given sm, we define bm ≜ (bm0 , b
m
1 , · · · , bmN−1) as

the unique N -dimensional vector satisfying

smn =
N−1∑
i=0

bmi e
j 2πn·i

N . (17)

That is, sm and bm are related through discrete Fourier trans-
forms. For the purposes of the below analysis, we allow the

4As will be seen shortly, the pdf formulas of (10) are used to construct the
scheme (T, M̂), which is then analyzed using the probability law described in
(9). Note that the pdfs in (10) are not the pdfs of (9) because the distribution
in (10) changes at t = t0, but the distribution in (9) changes at t = ⌊t0⌋NF .
Also, the pdfs of (10) are not the pdfs of (2) either because of the transient
behavior in (2). It is best to just view (10) as a building block of the QCD
scheme, not the true pdf of any probability law being considered.

sequence bm to be tailbiting so that bm−1 = bmN−1, bm−2 = bmN−2

and so on. Given the codebook {sm : m ∈ [1, 2q]}, we solve
the corresponding {bm : m ∈ [1, 2q]} in (17) and compute

ρm1,m2
≜ max

r∈[0,1]

∣∣∣∣∣∣
⌊N

2 ⌋∑
i=−⌈N

2 ⌉+1

bm1
i (bm2

i )
∗
e−j2π·i·r

∣∣∣∣∣∣ (18)

ρ ≜ max
1≤m1 ̸=m2≤2q

ρm1,m2
(19)

ψ ≜ min(1− ρ, 0.5) (20)

where the maximization of the real-valued r is over the
continuous interval [0, 1], and (·)∗ is the complex conjugate.

We now characterize the performance of (T (c), M̂(c))
under the probability law P̃m,t0,θ and Ẽm,t0,θ in Sec. II-A.

Proposition 1: Under the assumptions of sufficiently large
F , sufficiently large H = |Θd|, and the global boundedness
constraint (16), our scheme (T (c), M̂(c)) satisfies

D̃(T (c)) ≤ c · σ2

P · ψ
· (1 + o(1)) (unit: samples) (21)

p̃e(T (c), M̂(c)) ≤ c · e−c · 2q ·NFH · eNFB

·
(

σ2

P · ψ
+ 1

)
· (1 + o(1)) (22)

T̃FR(T (c)) ≥ ec
1

2qH
· (1 + o(1)) (unit: samples) (23)

where o(1) → 0 when c→ ∞.
The proof of Proposition 1 is omitted due to space con-

straints. Intuitively, the performance of a QCD scheme is
decided by the Kullback-Leibler (KL) divergence between
competing hypotheses. However, because our hypotheses con-
sist of not only the message m to decode but also the unknown
starting time t0 and phase shift θ, one must use the KL
divergence to also resolve the ambiguity caused by (t0, θ).

More technically speaking, the real part of the summa-
tion

∑
i b

m1
i (bm2

i )∗ within the definition of ρm1,m2 in (18)
represents the inner product between two competing symbol
sequences sm1 and sm2 . The additional ej2π·i·r term in (18)
corresponds to the possibility that the unknown time shift t0
could further rotate the Fourier-domain coefficients bm1

i by
ej2π·i·r. Since one must resolve the ambiguity caused by t0,
we take maxr in (18) to find the closest pair of sm1 and sm2

under unknown time shift t0. Finally, the amplitude operator
in (18) takes into account that the unknown phase θ could
rotate the entire summation, i.e., the maximum value of the
real part of a rotated summation is just the amplitude of the
summation. Per the above reasonings, ρm1,m2 finds the largest
inner product between sm1 and sm2 under unknown t0 and θ.

The ρ in (19) then finds the pair (m1,m2) that are the
closest to each other. Finally, ψ in (20) converts the inner
product ρ to the KL divergence, assuming SNR = 1, where
1− ρ is the KL-divergence between the closest (m1,m2) and
0.5 is the KL-divergence between message sm and the idle all-
zero waveform. Since one has to resolve the ambiguity of both
m1-versus-m2 and m-vs-idle, we take the minimum when
computing ψ. Scaling ψ to the true per-sample SNR = P

σ2 , the



final KL-divergence then dictates the asymptotic performance
of our scheme in the form of (21)–(23).

We now provide the converse results.
Proposition 2: Assume sufficiently large F , sufficiently

large H = |Θd|, and the global boundedness constraint (16).
For any c > 0, define D̃∗(c) as the optimal value of the
following minimization problem:

D̃∗(c) ≜ inf
any (T,M̂)

D̃(T ) (24)

subject to p̃e(T, M̂) ≤ e−c (25)

and T̃FR(T ) ≥ ec. (26)

We then have

D̃∗(c) ≥ c · σ2

P · ψ
· (1 + o(1)). (27)

The proof of Proposition 2 is by the reduction-based argu-
ment using the converse in [12]. We thus omit the details.

Comparing (21)–(23) and (24)–(27), our scheme achieves
simultaneously the same exponential decay/increase of p̃e and
T̃FR and the same linear increase of D̃ with respect to c as
any achievability scheme one can possibly design. Therefore,
our scheme is asymptotically optimal when c→ ∞.

Remark: While being order-optimal, the coefficients of our
achievability performance in (22)–(23) are quite loose when
compared to (25)–(26). This is due to multiple relaxation
steps in the proof of achievability, such as the union bounds.
The actual performance of our scheme is much tighter as is
evidenced in the numerical evaluation in Sec. IV.

C. Code Construction

By Proposition 1, the smaller the ρ, the larger the ψ, the
better the performance of our scheme (T (c), M̂(c)). We now
discuss how to design a codebook {sm : m} (or equivalently
the corresponding {bm : m}) that minimizes ρ defined in (19).

Note that (1) and (17) jointly imply the power constraint:

N−1∑
i=0

|bmi |2 = 1, ∀m ∈ [1, 2q]. (28)

Based on (28), our construction is described as follows:
1: for m ∈ [1, 2q] do
2: Choose an N -dimensional amplitude vector

(a0, a1, · · · , aN−1) independently and uniformly
randomly from the unit sphere. Also see (28).

3: Choose N phases ϕ0, · · · , ϕN−1 independently and
uniformly randomly from [0, 2π).

4: Set bmi = ai · ejϕi for all i ∈ [0, N).
5: end for
6: while within the max. number of allowable iterations do
7: Evaluate ρ in (19) using the latest {bm : m ∈ [1, 2q]}.

Let (m∗
1,m

∗
2) denote the message pair that attains the

maximum ρ value, i.e., ρ = ρm∗
1 ,m

∗
2
.

8: Choose two new N -dimensional vectors
(a0, · · · , aN−1) and (ϕ0, · · · , ϕN−1) in the same
way as in Lines 2 and 3.

9: Update bm
∗
1

i = ai · ejϕi for all i ∈ [0, N).
10: Evaluate ρ using the new bm∗

1 while keeping the rest
{bm′

: m′ ̸= m∗
1}.

11: if the new bm∗
1 results in a smaller ρ then

12: Keep the update.
13: else
14: Discard the update.
15: end if
16: end while

Basically, we incrementally improve the codebook perfor-
mance by replacing the bottleneck bm∗

1 with a new one.
Table I summarizes the smallest ρ values obtained via the

above construction for different (q,N) values. The number of
bits being transmitted is 8 ≤ q ≤ 12. The symbol period N is
32 or 40. As can be seen, our construction is quite effective
since any ρ smaller than 0.5 will not have any meaningful
impact to the performance due to ψ = min(1 − ρ, 0.5) in
(20). All our ρ values are very close to 0.5. Furthermore, the
smaller the ratio q

N , the better the ρ value. The intuition is that
the scheme (codebook) only needs to send a smaller number
of bits, in average, over the entire period N , which makes it
easier for the Rx to distinguish between different messages m.

No. of bits q 8 10 10 12
Period N 32 40 32 40

The q
N

ratio 0.25 0.25 0.3125 0.3
ρ 0.4979 0.5128 0.5433 0.5423

TABLE I

D. Practical Implementation
The execution of our algorithm relies on computing the

values of gm(t) defined in (10)–(12). We now elaborate how
to compute gm(t) in an iterative CuSum fashion. Assuming
H is sufficiently large, i.e., the discrete set Θd in (12) can be
replaced by a continuous interval [0, 2π), we define

gmi (t) ≜ max
1≤t0=kNF+i≤t+1

max
θ∈[0,2π)

t∑
τ=t0

Lm,t0,θ(τ), (29)

i.e., the maximum operation is only over those {t0 : t0
mod NF = i}. Then (12) and (29) immediately imply

gm(t) =

{
maxi∈[0,NF )g

m
i (t) if m ∈ [1, 2q]

0 if m = 0.
(30)

Proposition 3: gmi (t) can be computed iteratively by:

gmi (t) =∣∣∣∣∣∣∣
t∑

τ=λm
i +1

(
xm,i
ss,(τ mod NF )

)∗
· Yτ

σ2

∣∣∣∣∣∣∣−
t∑

τ=λm
i +1

∣∣∣xm,i
ss,(τ mod NF )

∣∣∣2
2σ2

(31)

where (τ mod NF ) is the modulo of NF , xm,t0
ss,i is the steady-

state waveform defined in (8), and

λmi ≜ sup {λ ≤ t : λ = k ·NF + i− 1, k ∈ [0,∞),

satisfying min (gmi (λ), λ− i+ 1) ≤ 0} . (32)
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Fig. 1. Empirical error probability pe and delay Ds versus different SNRs.

That is, we want λmi to be the last time gmi (λ) being ≤ 0, for
all λ of the form λ = k · NF + i − 1 with some integer k.
If all those λ have gmi (λ) > 0, then we set λmi = i− 1 (i.e.,
k = 0 and λ = k ·NF + i− 1 = i− 1).

The proof of Proposition 3 follows similar principles as
the CuSum algorithm [6], [10], and is omitted due to space
constraints.

Using Proposition 3, we can compute gmi (t) efficiently for
each (i,m) by tracking the two summations in (31) separately
and by updating the starting index λmi +1 (effectively resetting
the two summations) whenever gmi (t) ≤ 0 for those t = k ·
NF + i − 1. The complexity of this iterative computation is
thus O(MNF ) since we have MNF different pairs of (i,m).

IV. NUMERICAL EVALUATION

While Propositions 1 and 2 characterize the asymptotic
performance (c → ∞) under the transient-free approximation
model (probability law) P̃m,t0,θ in Sec. II-A, we use numerical
evaluation to evaluate the performance of finite c under the
realistic model Pm,t0,θ described in the beginning of Sec. II.

Remark: Note that our algorithm uses the pdfs specified in
(10), which are very different from the pdfs of the true Pm,t0,θ

due to the transient behavior around time t = t0 in (2). Our
numerical results thus enable us to evaluate the impact of
this mismatch between the steady-state-based design (10)–(15)
versus the realistic, transient-rich environment Pm,t0,θ in (2).
As can be seen in Fig. 1(b), our scheme achieves very short
latency despite the fact that it applies the steady-state-based
pdfs (10) to the transient-rich environment in (2), where the
former is not the true pdf of the latter. We believe the reason
is that the transient behavior of the sinc(·) in (2) converges
relatively swiftly to its steady state after just a few side lobes
(usually less than 5 symbol durations or so).

For our evaluation, we fix q = 8, N = 32, and generate a
period-32 codebook {sm : m ∈ [1, 2q]} with ρ = 0.4979 and
ψ = max(1 − ρ, 0.5) = 0.5, i.e. one of the four codebooks
reported in Table I. We also fix F = 30 and c = 3.6. For
each per-symbol SNR level F ·P

σ2 = 2P
N0

, we run our CuSum
algorithm for 3000 trials. During each trial, we choose the
message m uniformly randomly from [1, 2q], the starting point
t0 (unit: samples) uniformly randomly from [30F + 1, 60F ]
and the phase shift θ uniformly randomly from Θd with H =
1000. When implementing (2), we assumed that the sinc()
function is exactly 0 outside ls = 20 side lobes. To respect the
causality of the transmission, we define the empirical decoding

delay as Ds = T−t0+ls ·F (unit: samples) to include the time
needed to transmit the ls side lobs before the official starting
time t = t0. That is, Ds includes the ls ·F samples needed for
the transmitter to “ramp up" the transmission before sending
the first symbol sm0 at time t = t0. The Ds and the empirical
error probability pe for different SNRs are reported in Fig. 1.

The asymptotic analysis (22) in Proposition 1 suggests that
the error probability pe is decided mostly by the threshold
value c. For the same c = 3.6, the variation of pe versus SNR
in Fig. 1(a) is indeed quite small. On the other hand, (21) in
Proposition 1 suggests that the delay D is negatively correlated
to the SNR P

σ2 , which is also verified in Fig. 1(b).
Note that the same codebook at the transmitter is used

for all SNRs in Fig. 1. Since the underlying SNR can be
estimated at the receiver (likely with some slight mismatch),
it means that when facing a low-SNR channel, the receiver
will automatically delay its decision so that it can accumulate
more observations5 to meet the predefined requirement on pe.

For the same codebook at the transmitter, the receiver can
easily adjust the reliability pe requirement by selecting a
different c value. For example, when we set c = 5 in our
simulation, the resulting pe is around 10−3. Since we only
simulated 3000 trials, we deliberately chose c = 3.6 to keep
pe ≈ 10−2 for a more accurate empirical estimation.

For comparison, we also examine the synchronization per-
formance of the Zaddoff-Chu sequence with 139 symbols, a
typical preamble choice in [4], [5]. The same transmission
model in (2) and (3) is used to properly scale the preamble
with the desired SNR. At SNR=4dB, for about 1.75% of the
total 105 trials, the timing synchronization of the Zaddoff-Chu
sequence is off by 2 samples (i.e., 2/F = 6.6% of a symbol).
Since large synchronization error will have catastrophic impact
to the decoding error probability, we would expect that for
4dB, one may not want to use any preamble shorter than 139
symbols. Note that at 4dB the average delay of our preamble-
free scheme is only 32 symbols, see Fig. 1(b). That is, our
scheme can successfully deliver the 8-bit message when a
preamble-based solution would have only finished sending
23% of the 139-symbol preamble. For SNRs between -4db to
6dB, the latency savings range from 47%–79%, which has not
even accounted for the fact that the preamble-based scheme
still has to send the 8-bit message as an error-control-coded
payload, and our Ds is conservative and includes lsF ramp-
up time (unit: samples) of transmitting ls side lobes before
time t0.

V. CONCLUSION

This work has studied low-latency preamble-free trans-
mission of short messages, and developed an asymptotically
optimal solution. Numerical results show that our construction
can shorten the delay by 47%–79% when compared to existing
preamble-based solutions. The proposed scheme is inherently
robust and can automatically adapt to different underlying
channel conditions.

5The mathematical reason is that a low-SNR channel has less “upward
drift” of the LLR Lm,t0,θ(t), thus the longer hitting time T (c).
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