Communication Efficient Asynchronous Stochastic
Gradient Descent

Youssef Ahmed', Arnob Ghosh?, Chih-Chun Wang?, and Ness B. Shroff!*

'Department of ECE, The Ohio State University, Columbus, OH, USA
’Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA
3Elmore Family School of ECE, Purdue University, West Lafayette, IN, USA
4Department of CSE, The Ohio State University, Columbus, OH, USA
Emails: ahmed.943 @osu.edu, arnob.ghosh@njit.edu, chihw @purdue.edu, shroff.11@osu.edu

Abstract—In this paper, we address the challenges of asyn-
chronous gradient descent in distributed learning environments,
particularly focusing on addressing the challenges of stale gra-
dients and the need for extensive communication resources. We
develop a novel communication efficient framework that incorpo-
rates a gradient evaluation algorithm to assess and utilize delayed
gradients based on their quality, ensuring efficient and effective
model updates while significantly reducing communication over-
head. Our proposed algorithm requires agents to only send the
norm of the gradients rather than the computed gradient. The
server then decides whether to accept the gradient if the ratio
between the norm of the gradient and the distance between the
global model parameter and the local model parameter exceeds
a certain threshold. With the proper choice of the threshold,
we show that the convergence rate achieves the same order as
the synchronous stochastic gradient without depending on the
staleness value unlike most of the existing works. Given the
computational complexity of the initial algorithm, we introduce
a simplified variant that prioritizes the practical applicability
without compromising on the convergence rates. Our simulations
demonstrate that our proposed algorithms outperform existing
state-of-the-art methods, offering improved convergence rates,
stability, accuracy, and resource consumption.

I. INTRODUCTION

Distributed Stochastic Gradient Descent (SGD) serves as
the cornerstone for distributed optimization of machine learn-
ing models, with its synchronous and asynchronous variants
offering different trade-offs in terms of computational effi-
ciency and convergence properties. For example, synchronous
SGD requires that all the workers (i.e., the distributed ma-
chines) compute gradients on the same model parameters.
Naturally, this requires a large amount of communication
overhead for synchronization especially for a large number of
distributed machines. On the other hand, Asynchronous SGD
(ASGD) relaxes the above limitation and allows that work-
ers may compute gradients on different model parameters,
thereby offering greater scalability and resource utilization.
This makes ASGD suitable for large-scale distributed systems
and heterogeneous computing environments where different
workers may have varying speeds and capabilities. However,
this advantage comes at the cost of introducing stale gradi-
ents— gradient updates computed using outdated versions of

the model parameters. These stale gradients occur because
some workers may use older parameters to calculate their
gradients [1], [2]. The stale gradient problem is a significant
challenge in ASGD, as it degrades convergence properties
and can lead to resource inefficiencies due to instability and
increased computation requirements [1], [3]-[8].

The stale gradients indeed affect the theoretical analysis
of convergence rates of all the proposed ASGD algorithms
[4], [7], [9]-[16]. In particular, all the above papers as-
sume bounded staleness assumptions and the convergence
rate depends on the staleness parameters which can be large
in practice. Moreover, the advent of federated learning has
further complicated the stale gradient issue, introducing addi-
tional layers of complexity such as device heterogeneity and
Non-IID data distributions across clients. Federated learning’s
promise of collaborative model training without compro-
mising data privacy necessitates innovative solutions to the
staleness challenge, ensuring that the global model converges
effectively despite asynchronous updates from a diverse set of
clients [17], [18].

In addition to the convergence issue, the staleness poses
another challenge, which is the potential for resource in-
flation due to instability [3]. While asynchronous SGD is
very efficient at utilizing computational resources by allowing
parallel updates, this efficiency can be compromised due to
increased demands placed on the system when instability
arises. Specifically, as the objective value fluctuates due to
stale gradients, it may initially decrease but then increase
again, necessitating additional iterations to regain stability.
In other words, using delayed gradients to update the model
can sometimes deteriorate the objective value (i.e., increase
the learning loss), requiring additional resources (e.g., com-
putation power and communication rounds) to compensate
for updating the parameters along the wrong direction of the
gradient.

While the presence of delayed gradients in asynchronous
SGD has traditionally been viewed as a hurdle for stable and
efficient learning, recent insights suggest a more nuanced per-
spective. Specifically, under certain conditions, these delayed



updates can introduce a form of momentum into the learning
process, akin to the momentum term used in optimization
algorithms to accelerate convergence [19]. This phenomenon,
explored in depth in works such as [9], hinges on the dis-
tribution of staleness across updates. When delays follow a
specific statistical pattern, such as a geometric distribution,
the cumulative effect of asynchronously applied gradients can
mimic the behavior of explicit momentum, thereby enhancing
the algorithm’s performance. This counter-intuitive finding
reveals that not all stale gradients are detrimental; indeed, em-
pirical results suggest that under the right circumstances, they
may be utilized to accelerate the learning process. Recently,
[20] proposed an algorithm that scales down the learning
rate as the staleness increases. In particular, as the staleness
value increases, such a value contribute very minutely towards
the parameter update. [20] showed that such an approach
achieves a convergence rate devoid of any staleness parameter.
However, the above algorithm requires communication of all
the computed gradients between the worker and the server
which can overcrowd the underlying bandwidth even when
the contribution of the gradients might be small as they have
high stale value. More importantly, perhaps, a gradient with
a higher staleness value can contribute towards convergence
more compared to a gradient with a lower staleness value.
However, [20] puts a lower weight on the gradients with
a higher stale value. Hence, the empirical results indicate
that the convergence performance is not comparable to the
synchronous SGD. This raises the question: Can we develop
an algorithm where stale gradients can be utilized effectively
to improve performance in ASGD? In particular, can we
develop a resource efficient ASGD algorithm with provable
convergence rates that is not hindered by the staleness?

In this paper, we address the question by developing a novel
ASGD algorithm. The key component of our algorithm is that
the server only accepts the stale-gradients when the ratio of
the norm of the stale-gradient, and the distance between the
current model parameter and the outdated model parameter is
above a certain threshold which we denote as ‘high quality
gradient’. Further, the worker does not need to send all the
computed gradients, rather, sending the norm of the gradient
is enough which is far less resource intensive. We show that
by carefully designing the threshold, we can achieve the same
order of convergence as that of the synchronous SGD. Since
we only accept those gradients that contribute towards the
convergence, our approach requires smaller communication
resource. Here are our contributions in details:

1) We introduce an innovative quality metric that assesses the
usefulness of delayed gradients. This metric determines
whether to use a gradient for model updates based on
its norm (rather than the entire gradient), and the amount
of change between the delayed parameter and the recent
parameter (rather than the staleness). Namely, instead of
using the time stamps to decide whether to “accept” a
recently computed gradient or not, we directly examine the

“quality” of the computed gradient instead. Our approach
may accept a gradient even when its time stamp is older if
it is of ‘high quality’. Further, if we are accepting a gradi-
ent we are not down-scaling the learning rate as existing
approaches fully utilizing their values. By directly exam-
ining the quality of the update, not just the timeliness, this
approach reduces the communication overhead, making
the process more communication-efficient and staleness
independent.

2) Based on the quality metric, we have developed a novel
variation of the ASGD algorithm called Quality-Aware
Asynchronous Stochastic Gradient Descent (QASY). This
algorithm enhances the communication efficiency of
ASGD by selectively utilizing useful delayed gradients
for model updates. Additionally, QASY assesses the use-
fulness of gradients stored from previous iterations and
incorporates only the beneficial ones in the model update.

3) We provide a detailed convergence analysis for QASY,
showing that the convergence rate and learning rate are
independent of the staleness value and similar to the
convergence rate of the synchronous SGD. In particular, we
show that one can achieve convergence rate of O(1//T)
(where T is the number of iterations) in asynchronous
SGD devoid of any staleness parameter. Hence, we bridge
the gap between the the synchronous SGD and the asyn-
chronous SGD in terms of convergence rate using smaller
communication resources. Also, we propose simplified
version of QASY, Simplified Quality-Aware Asynchronous
Stochastic Gradient Descent (s-QASY), that has the same
performance guarantees. It streamlines the process by
focusing solely on the utilization of delayed gradients. This
variant reduces the computational overhead further while
retaining the core benefits of our gradient management
strategy.

4) Through simulations, we validate the effectiveness of our
proposed algorithms, comparing them with state-of-the-
art methods in asynchronous gradient descent. Our results
confirm the superiority of our approaches in terms of
convergence speed, communication rounds, and learning
accuracy, marking a significant advancement over existing
methodologies.

A. literature review

The nature of the staleness has been one of the core
points to drive the convergence guarantees of ASGD. In the
literature, several studies analyzed the ASGD, considering
different structure for the staleness. In [8], and [21] the authors
assumed the staleness to be fixed among all workers, while in
[10], [13], [22], the staleness is assumed to be changing but
upper bounded. In [23] the delay is assumed to be random
with bounded expectation and in [24] the delay is assumed
to be growing Polynomially. The following approaches have
been proposed to deal with the delayed gradients:



« Adaptive Learning Rate Methods: [8], [17], [18], [25],
[26] dynamically adjust the learning rate based on gradient
staleness (or statically [3], [27] based on the staleness upper
bound) aiming to counteract the negative effects of delayed
gradients. These methods attempt to balance the step size in
gradient descent to ensure stable and effective convergence.
However, this approach can be resource-intensive and may
result in excessive gradient discounting, potentially hinder-
ing the learning process.

o Gradient Manipulation Techniques: In this line of re-
search, the delayed gradients are processed further to miti-
gate the effect of the delay. For example, in [7], the authors
aim to correct stale gradients by adjusting them based on
the delay, often requiring the computation of additional
parameters like gradient norms and even approximations
of the Hessian matrix. While in [28], the authors handled
the delayed gradients by adopting SGD’s acceleration tech-
niques, such as variance reduction, Stochastic Coordinate
Sampling, and Nesterov’s Acceleration techniques. Despite
their novelty, these methods are often limited to scenarios
where the objective function and its derivatives exhibit
certain smoothness properties, which may not always be
the case in practical applications.

Although these studies introduce a stable version of ASGD,
the performance did not improve [20]. Specifically, the con-
vergence of most of these approaches is mainly governed by
the staleness bound or average as shown in table I. Also, many
of their experiments use few workers, which may not reflect
the algorithms’ scalability and efficiency in larger distributed
systems [3], [21].

On the other hand, synchronous SGD allows all workers to
contribute to the update of the global model simultaneously
by synchronizing the gradient computations across all workers
at each iteration. This synchronization step guarantees that the
model parameters are updated using gradients computed from
the same version of the model, maintaining uniformity in the
learning process.

While synchronous SGD has been widely used in training
large-scale deep neural networks, it leads to bottlenecks due to
the slow workers(stragglers) [29]. Also, it requires very high
communication bandwidth between computational workers to
exchange gradients and parameters between all workers iter-
atively. The communication overhead can become a limiting
factor, as the ratio of communication time to training time
per epoch increases linearly with the number of workers [4],
leading to scalability issues beyond a certain number of nodes.
This is particularly relevant in the context of emerging 6G
networks, which necessitate highly efficient communication
protocols to handle the increased demands of distributed
learning applications [30], [31].

For generally non-convex smooth functions the convergence
is goverend by the term % In Table I we compare the rele-
vant approaches that addressed the delayed gradient problem,
both in distributed and federated learning with our proposed

algorithms. As shown, we are able to provide a staleness
free convergence rate without sophisticated restrictions on the
learning rate or the function properties.

II. PROBLEM SETUP

In many machine learning and optimization tasks, we aim
to find the optimal set of parameters z* in R¢ that minimize
a loss function [19], which can be formally stated as:

min F(z) := Ee~p|f(2,6)]. ()
Here, f(x,&) denotes the loss function evaluated at pa-
rameters x with respect to a random data point £, which
is independently sampled from the data distribution D. The
global loss function F'(x) represents the expected loss over
the data distribution. Various loss functions are employed
depending on the specific task. For regression tasks, common
loss functions include the Mean Squared Error (MSE), defined
as f(z,&) = (y — 9(x))? and the Mean Absolute Error
(MAE), given by f(z,&) = |y — ¢(z)|, where y C & is the
actual value (ground truth) of the target variable, and g(x) is
the predicted value of the target variable using paramter x.
In multi-class classification settings, the Categorical Cross-
Entropy Loss, f(z,&) = —> . yclog(gc(z)), is often
employed, where y. C £ is the actual binary label for class
¢, where y. € {0,1} and only one class has the label 1 (one-
hot encoding), and g.(z) is the predicted probability that the
target variable belongs to class ¢ computed at paramter x.
To solve this optimization problem efficiently, especially
when dealing with large-scale data, we use a distributed learn-
ing system where multiple clients collaboratively optimize a
global loss function under a central server’s coordination. The
system consists of:

« Server: A central entity coordinating training by aggregat-
ing gradients and updating global parameters.

o Clients: I parallel workers that compute gradients using
independently sampled IID batches from the dataset.

In this distributed setup:

1) Each client 7 independently samples an IID batch ¢;, with
size B, from the entire dataset.

2) Based on the sampled batch &;, each client ¢ computes the
average stochastic gradient g(z;,&;). Here, x; represents
the version of the global parameters that the client ¢ has,
which might not be the most recent one at the server due
to the asynchronous nature of communication.

3) The server collects these gradients from the clients and
aggregates them to update the global parameters.

For simplicity of notation, we drop the batch argument from
the gradient symbol and use g(x™) to represent the stochastic
gradient computed by client ¢ using parameter 7. £ is the
version of the global model parameters available to client 7 at
its local iteration 7;, corresponding to a certain global iteration
n.



Algorithm

Convergence

Staleness

Learning/Weighting Rate

Objective Function Prop-
erties

Standard ASGD [11]

Upper-bounded

Staleness-dependent

L-Smooth Non-convex

Standard Synchronous SGD [15]

Zero staleness via full syn-
chrony

Staleness-independent

L-Smooth Non-convex

Delay Compensation ASGD [7] | O (:;;) Fixed Staleness-independent Smooth, L-Lipschitz activa-
tion, p-strongly convex lo-
cally, bounded first, second
and third derivatives

Coherence-based ASGD [3] o (LT + JI%T Upper-bounded Staleness-dependent L-smooth and p-weakly

T convex

Staleness adaptive ASGD [20]" | O ( % + LT) Not relying on any staleness | Staleness-dependent L-Smooth Non-convex

assumption

s-QASY (Proposed) O < ”—; Not relying on any staleness | Staleness-independent L-Smooth Non-convex

assumption

QASY (Proposed) O < ;—;) Not relying on any staleness | Staleness-independent L-Smooth Non-convex

assumption

* Although this bound appears to be independent of staleness, it is inherently related to the number of workers. Increasing the number of workers leads
to greater staleness, implying that staleness is still implicitly present. Furthermore, utilizing all stale gradients with a discounted learning rate results in
excessive communication overhead without a corresponding improvement in learning performance, as demonstrated in the simulations.

TABLE I: Comparison of different asynchronous optimization approaches, where T is the number of iterations, I is the number of workers,
T is the staleness upper bound, o™ is the variance of the delay compensated gradient, and L denotes the Lipschitz and smoothness parameters

of the objective function.

After the central server receives a gradient from client ¢ and
decides to update the global model parameters =™ at iteration
n, the update is performed as:

anrl — In _ ng(xﬂ)

where 77 denotes the global learning rate. The optimization
process thus involves clients and the server working collab-
oratively to minimize the global loss function F'(x). This
distributed approach enhances computational efficiency and
scalability, allowing the system to handle large datasets and
complex models more effectively. The asynchronous nature
of the system ensures that clients do not have to wait for the
most recent global parameters, further improving the system’s
efficiency. Conversely, Fully Synchronous SGD (FSSGD) has
been shown to consistently achieve higher accuracy due to its
use of up-to-date gradients, aligning closely with the current
state of the global model. However, this method comes at the
cost of increased communication rounds for synchronization,
necessitating more extensive resource utilization.

While using delayed gradients relieves the stress of
the communication overhead required by synchronous ap-
proaches, the asynchronous methods also cause the resources
to inflate due to the instability presented by the delayed
gradient. As a result, the need for a framework that estimates
the quality of the gradients before using them to evaluate
the model is crucial. Since the algorithms main goal is to
improve the leaning performance while maintaining a rea-
sonable resources consumption, along with the convergence
rate, we use the cumulative time, which is the training
time measured in time units (seconds, minutes,...etc) and the
number of communication rounds between the workers and the
server as performance metrics to evaluate our algorithms. One
communication round is defined as the server communicating

a parameter to the worker or the worker communicating a
gradient to the server.!

III. GRADIENT QUALITY-AWARE ASYNCHRONOUS
APPROACH

In this section, we introduce a Quality-based selection
approach for delayed gradients, designed to enhance the com-
munication efficiency and reliability of gradient processing in
an asynchronous setting. The delayed gradients sent by the
workers to the server may be helpful to minimize the objective
function. On the other hand, some of the gradients can hinder
the convergence leading to adversary like behavior.

Intuition: To illustrate our intuition, consider minimizing
the function f(z) = x? using gradient descent starting from
a point " = b, the traditional gradient descent update with a
learning rate 7 = 0.1 results in 2"*! = 4. Alternatively, we
can use a gradient computed at another point y = 20. In this
case the new point will be 2"t! =5 — 0.1 x 2 x 20 = 1,
which is closer to the optimal value than the point derived
from using x™. However, if we compute the gradient at point
z = —10, it results in 2" ! =5—0.1-2-(—10) = 7 which is
farther from the optimal point than z¢. This example supports
the insight that not all delayed gradients are bad; indeed, under
certain circumstances, they can be harnessed to expedite the
convergence towards the minimum. Note that, the distance
between x™ and y is the same as the distance between =™ and
z, indicating that the distance between the points is not the
only factor that decides the usefulness of the delayed gradient
as considered in the earlier works [20]. Indeed, the norm of

ISince gradients and parameters are vectors on the order of millions,
sending a single real number, such as the gradient norm, is not considered a
communication round.



T ime

Server,ﬁ A A
=1 ] =
1 = Y- :\:
é\&:’ o 6&:’ a ‘\&:’ E %
S § S 5 8 w
Ql’ S 'Ul’ e QI’ ({% 5
S, & g 5 1
I 5" o© T X 125]
gl N @A 51
oA ] o !

Time

Worker ¢ . L
H/_/

Iteration n

Iteration k

Fig. 1: Time Sequence Diagram illustrating the chronological interactions between the server and Worker i. The process flow covers two
iterations: In iteration n, Worker ¢ sends an accepted gradient to the server, followed by iteration £ where the gradient sent by Worker ¢ is
rejected. This exemplifies the decision-making process of the Quality based selection of the gradients asynchronously.

the delayed gradient, smoothness, and the learning rate are
also significant factors. For example, the norm of the gradient
at point y = 20 is much higher compared to that of at point
z = —10.

Key component of our algorithm: Using the above intu-
ition, we are now ready to discuss the key novel aspect of
our proposed algorithm compare to the existing methods. We
use the ratio between the norm of the gradient g(«™) and the
distance between the stale model parameter at and the current
global model ||z™i — x™||y as a factor to determine whether
to accept the stale gradient or not. In particular, if the ratio
is above a threshold 6 we accept the gradient otherwise we
reject it.

The above serves two purposes— i) The worker does not
need to send the computed gradient immediately saving a lot
of communication resource; rather, the agent only needs to
send the norm of the gradient. ii) By carefully choosing the
threshold @ (Section IV), we can achieve the state-of-the-art
convergence rate O(1/+/T) devoid of any staleness parameter.
Hence, we can achieve the same convergence rate as that of the
synchronous SGD while using less communication resources.
Note that unlike [8], [20] we do not accept all the gradients
and then scale down the learning rate based on the stale value.
Rather, we choose to accept those gradients that can provably
contribute towards convergence without scaling down the
learning rate. Hence, we achieve similar convergence rate
without using large communication resources.

Algorithm: The QASY algorithm (Algorithm 1) starts by
initializing the model parameters and setting up a mechanism
to store gradients persistently. It operates in iterations, each
beginning with receiving a notification from any worker ¢,
that a gradient has been computed, accompanied by the norm
of that gradient (line 8). The server then decides whether to
accept the gradient for updating the model or to reject it,
thereby saving a communication round. The handling of the
gradient proceeds as follows:

1) Immediate Acceptance for Recent Gradients: If the
received gradient g(aTin) is recent (r;, = m), it is
immediately accepted without further evaluation (line 9).

2) Quality Check for Delayed Gradients: The norm of the
delayed gradient g(z™») with 7;, < n is assessed for
o)l "y
Ty — TTin
the condition is satisfied, the worker sends the gradient
as it is accepted and used for the model update (line
10). Otherwise, the worker is instructed to recompute the
gradient based on the latest model parameters ™ sent by
the server (lines 22-24).

quality. The algorithm checks if

The update process in QASY begins once the server re-
ceives an accepted gradient. The server updates the model
into a temporary variable ‘P (line 12) and proceeds to
the refinement step. In this refinement step, the server re-
views gradients stored from previous iterations to identify
any that are still relevant and impactful for updating the
current model state (lines 13-17). This involves checking if
a stored stochastic gradient g(x7¢), when applied to x!¢™P,
would still satisfy the quality criterion based on the norm
and threshold 6. By updating the model with these refined
gradients, the learning process becomes more effective and
precise. This allows workers who contributed quality gradients
to proceed with computations reflecting enhanced collective
insights, rather than just the most recent updates. Additionally,
reusing gradients conserves resources since we do not need
to compute any gradient.

After completing this refinement, the server finalizes the
model update, resulting in the new model 2" (line 18). This
updated model is then sent only to the worker that provided
the accepted gradient (line 19), as detailed in Algorithm 1,
hence, unlike the synchronized version, the algorithm does
not send the updated model to every worker.

Despite the algorithm’s effectiveness in handling gradients
and improving learning convergence, QASY has a higher
storage and computational cost cost as it needs to store earlier
gradients and use those for model update. We also propose a
simpler variant, simplified-Quality Aware Asynchronous SGD
(s-QASY) that does not need to store earlier gradients. In
other words, s-QASY skips the refinement step in Algorithm
1 (lines 13-17), which reduces computational complexity. We



Algorithm 1 Quality Aware Asynchronous SGD (QAYS)

Require: learning rate 7, number of workers I, number of
iterations 7', acceptance threshold 6

1: Initialize z° € R?.

2: Set; =0foralle=1,...,1I.

3: Initialize set S < (), xte™P.

4: forn=0,1,2,...,T—1do

5: Set flag flag + True

6: xtemp — xn

7: while flag do

8: Wait for the next worker to finish computing the
gradient, and denote this worker as ,,.

9: Worker i,, sends |g(z7i ).

10: if 7, = n OR 4220l > 6 then

11: Worker i,, sends g(x"in).

12: S+ SU{(in,g(x™))}

13: xtemp — xtemp _ ng(xnn)

14: for each Ez,g(f)) € S do

15: if {400 >0 then

16: xtemp — xtemp _ 779(-'157—“1)

17: end if

18: end for

19: xn+1 — xtemp

20: Store z"*1.

21 Send z"*! to worker 4,,.

22: Tin < n+1

23: flag < False

24: else

25: Send z™ to worker i,,.

26: end if

27: end while

28: end for

show that both the versions have a similar convergence rate
though QASY performs slightly better empirically.

IV. CONVERGENCE ANALYSIS

We first prove the convergence of the s-QASY and subse-
quently, we prove the convergence rate of QASY.
We begin by stating the assumptions required for the
convergence analysis:
o Assumption 1 (Boundedness and Smoothness): F' is
bounded and L-smooth, i.e., for all u,v € RY,
IVE(u) = VF(v)|| < Lju = vl|.
« Assumption 2 (Unbiasedness and Bounded Variance):
For any € R?, the gradient estimator g(z) satisfies:
— Unbiasedness: E[g(x)|z] = VF(x).
— Bounded Variance: E[|g(z) — VF(z)|2[] < %,
where B is the batch size.
Our assumptions align with those commonly adopted in the
literature on distributed learning frameworks [3], [7], [10],

[11]. Specifically, we do not require the bounded staleness
assumption, which further emphasizes the robustness and

generality of our approach. Now, we will establish an upper
bound on the one iteration cost reduction when multiple
delayed gradients are used every iteration. Specifically, in the
next lemma, at any iteration n, we will consider applying
K number of gradients stored at the set Uf,. This upper
bound is general and applies to both s-QASY and QASY
algorithms. For the s-QASY algorithm, K = 1, indicating
that only one delayed gradient is applied per iteration. For
the QASY algorithm, K can vary at each iteration, allowing
the application of multiple delayed gradients.

Lemma 1. For the sequence {x"} generated by the following
update rule:
n+1l

=gt = Y glah), )

where U, is the set of K gradients, the one iteration cost
reduction can be upper bounded as follows:

n n n n
Fa"h) = Fa") < - 2K|IVF") 1

1 > @Bl — P - (1 - LKn)llg(a)]
Q(Jfl)eun .
+2[|VE(2') — g(z")[]?) - 3)

The proof of this lemma can be found in Appendix VII-A.

Note that Equation (3), lists out the main components that
determine the effectiveness of the delayed gradient. While the
first and last terms are presumably unknown and can not be
controlled by the server’s communication decisions, the two
middle terms are known by the server and can be fully utilized
to improve the reduction. In the next theorems, we will design
a threshold based on which we can ensure that the applied
delayed gradient is as useful as the recent SGD vector.

Theorem 1. Given the sequence {x"} generated by s-QASY

Algorithm, and under the previously stated assumptions and

_ 2L ; 2 _
the threshold parameter 0 = NSt with B* < T the follow

ing inequality holds for the step size n satisfying n = L—%:

2LE[F(20) — F(2T)] 42 o?
BVT INT
4)

The proof of this Theorem can be found in Appendix VII-B.

Next, we will consider the implications of this result for
the QASY algorithm, where the number of updates every
iterations is not fixed and random.

1 T-1
= S EIVFE|? <
n=0

Theorem 2. Given the sequence {x"™} generated by QASY
V2L _ B 2
vicity 1 = gy @d T > B

where M is the maximum number of updates in any iteration,
then the following inequality hold:

s w2 < 2MLEF ()] - E[F(=7))
7 2 ElVFEIP] < i

algorithm with 0 =

202

+ —.
VT



The proof of this Theorem can be found in Appendix VII-C.

Remark 1. Both QASY, and s-QASY’s convergence rate and
step size, do not depend on the gradients’ staleness. In
particular, we obtain the same convergence rate O(1/\/T)
as the synchronous SGD using asynchronous method.

[20] achieved a similar convergence rate without the stale
parameter, however, they used all the gradients. Thus, they
require a lot of communication rounds as we observe in the
empirical results. Even though theoretical bound in [20] is
similar to that of ours, we outperform them in the empirical
evaluations.

We observe that as 7' increases, the threshold decreases.
Intuitively, higher 7' indicates that we can recover from
accepting wrong stale gradients, hence, we can accept more
stale gradients. Hence, as 1" increases, the algorithm can be
more aggressive. However, the maximum value of 6 is L.
Hence, even when T — oo, it does not accept all the stale
gradients unlike the existing approaches for asynchronous
SGD.

Note that though the learning rate (and thus, the threshold)
depends on the information of B and L, in the empirical
results, we do not rely on those information.

V. SIMULATION RESULTS

Test Accuracy vs Threshold for QASY and s-QASY

1.0
—e— QASY
Peak: (612, 0.87) S-QASY
0.8+ &
2\ et
: VAT TAs
§ 0.6 m‘/’/\ v ¥
=3
I+ leak: (816, 0.79)
<<
0 0.4
@
0.2
0.0
0 2000 4000 6000 8000 10000
Threshold 6

Fig. 2: Relationship between Test Accuracy and Threshold value for
QASY and s-QASY.

In this section we present the results of our experiments that
used to assess the performance of our algorithms QASY and
s-QASY. We consider a fully connected feedforward neural
network with the following structure:

1) Input Layer: 784 neurons, corresponding to the 28x28

pixel input images.

2) Hidden Layers:

o First Hidden Layer: 128 neurons, ReLU activation.
o Second Hidden Layer: 64 neurons, RelLU activation.

3) Output Layer: 10 neurons, softmax activation for multi-

class classification.

This model, implemented using TensorFlow Keras, is de-
signed for image classification tasks, leveraging ReLU ac-
tivation for non-linearity and computational efficiency, and

Test Accuracy vs Cumulative Time Test Accuracy vs Communication Rounds

—e— QASY Test Accuracy
5-QASY Test Accuracy

—- CSGD Test Accuracy
% AGSGD Test Accuracy

—o— QASY Test Accuracy
5-QASY Test Accuracy

0.8 —k- CSGD Test Accuracy 0.8
% AGSGD Test Accuracy

0.7 S 0.7+

0.5

Test Accuracy
Test Accuracy

2 4 6 8 10 0 1000 2000 3000 4000 5000
Cumulative Time (s) Communication Rounds

Fig. 3: Test accuracy comparison of AGSGD, QASY, s-QASY,
and CSGD with a batch size of 100 vs cumulative time and
communication rounds

Training Loss vs Cumulative Time Training Loss vs Communication Rounds

—e— QASY Training Loss
5-QASY Training Loss 2.5

—& - CSGD Training Loss

% AGSGD Training Loss

—e— QASY Training Loss
5-QASY Training Loss

—k- CSGD Training Loss

% AGSGD Training Loss

2.01

Training Loss

0.5

2 4 6 8 10 0 1000 2000 3000 4000 5000
Cumulative Time (s) Communication Rounds

Fig. 4: Training loss comparison of AGSGD, QASY, s-QASY, and
CSGD with a batch size of 100 vs cumulative time and communi-
cation rounds

softmax for outputting class probabilities. The MNIST dataset
[32] was used in our experiments with the categorical cross
entropy loss.

Baseline Algorithms: As the severity of the staleness
appears in the larger scale setup, we evaluated the performance
across I = 1000 workers, with fixed computational delays
evenly spaced from 1 to 10 seconds. However, it would be
unfair to compare FSSGD [15] (because of excessive commu-
nication rounds) with our schemes. Therefore, we introduce a
more practical synchronous version Conservative Stochastic
Gradient Descent (CSGD), which is the same as s-QASY
except that § = co. Thus, CSGD is a communication efficient
version of the synchronous stochastic gradient descent, that
only accepts the recent gradient and discards any delayed one
(assuming 1/0 > oo). We also consider when 6 = 0 in s-
QASY, where the server aggressively updates the model with
any received gradient, so we call it Aggressive Stochastic
Gradient Descent (AGSGD). In other words, ASGD is the
traditional asynchronous stochastic gradient descent algorithm
that accepts any stale gradient.

Learning Rate: The learning rate is set to be 0.001 for
CSGD, and s-QASY, which is the best practical value based
on our preliminary experiments, while QASY’s learning rate
is chosen to be 10~%. For ASGD, we used a staleness-scaled



learning rate, as proposed in [20] and [8], where the learning
rate for a gradient delayed by £ iterations is scaled by a factor
of 299 a5 it shows the most stable behaviour among other
tested approaches. Also, we use a batch size of 100.

Threshold: The performance of QASY and s-QASY algo-
rithms are mainly determined by the choice of the threshold
6. A lower threshold, similar to the behavior of the AGSGD
algorithm, allows for the acceptance of all gradients regardless
of their staleness, while a higher threshold mirrors the CSGD
algorithm’s strategy of considering only the most recent gra-
dients. As the threshold is essentially a function of the hyper-
parameters (learning rate and smoothness), it can be optimized
empirically using standard tuning techniques [33]-[35]. For
instance, bi-level optimization [33] iterates between updating
the threshold in the outer loop and solving the training task
in the inner loop. Alternatively, Bayesian optimization [34]
constructs a surrogate model (e.g., Gaussian Process) to guide
the search toward promising hyper-parameter configurations
based on observed performance. Methods like random or grid
search [35] can also be effective in lower-dimensional settings
or under tighter computational budgets.

Figure 2 illustrates the empirical relationship between the
threshold (@) and the test accuracy of the QASY and s-QASY
algorithms. Notably, both QASY and s-QASY demonstrate
marked improvements in test accuracy when the threshold
increases from zero, suggesting that even a modest degree
of filtering on delayed gradients can significantly stabilize the
training process. Optimal accuracy is achieved within a thresh-
old window estimated to span from 600 to 800, highlighting an
optimal trade-off where the algorithms benefit from a prudent
mix of gradient exploitation and staleness mitigation. This
confluence of precision in gradient utilization underpins the
peak learning performance for these algorithms. Moreover,
the performance of QASY and s-QASY closely aligns across
various thresholds, indicating that both algorithms leverage
gradient staleness to a similar extent and efficacy. However,
as the threshold rate increases beyond the optimal range, a
gradual decline in test accuracy is observed, followed by
a plateau. This phenomenon suggests that there exists a
threshold saturation point beyond which the accepting of stale
gradients in fact contribute to reduce the accuracy gains, with
performance asymptotically approaching that of the CSGD.

Performance: In Figures 3 and 4, we compare our proposed
QASY and s-QASY with two baseline algorithms in terms of
the test accuracy and training loss against the actual training
time and the number of communication rounds. To ensure a
fair comparison, the training duration for all four algorithms
is fixed at 10 seconds. This fixed training time allows us
to evaluate the efficiency of each algorithm based on the
number of communication rounds consumed. We use the best
threshold for QASY and s-QASY as we obtained in Figure 2.
As shown in Figures, both QASY, and s-QASY outperform
AGSGD and CSGD in terms of the training loss and test
accuracy. Remarkably, our proposed algorithms reached a test

accuracy of 87% and 79%, respectively. which out performs
its synchronous counterpart, the CSGD, that only reach 70%.
Also note that the ASGD has the worst performance, as the
high staleness causes that most of the delayed gradient to
lose their potential due to the excessive down-scaling of the
learning rate. In addition to its poor performance, ASGD
consumes almost 2 times the communication rounds that other
algorithms use in their training. The performance of QASY
is better compared to s-QASY however it comes at the cost
of a slightly higher computational cost as we discussed.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced QASY, a new method to make
learning in a distributed setting—where many computers work
together—more effective, especially when updates happen at
different times. We developed QASY to smartly choose which
updates to use, focusing on their quality. We also created a
simpler version, s-QASY, to make the process easier and less
demanding.

Additionally, this work opens the door to further exploration
into how our methods can benefit the network as a whole, by
possibly reducing communication needs and enhancing overall
efficiency. Future research could extend our approach to the
federated learning setting, where data and resources vary
widely across different locations. Applying our algorithms
in such environments could offer valuable insights into their
adaptability and effectiveness in handling data and resource
heterogeneity, potentially leading to more robust and scalable
learning solutions. Moreover, future work could extend the
convergence analysis to encompass the strongly convex case,
providing a more comprehensive understanding of our algo-
rithms’ performance under diverse mathematical conditions.

VII. APPENDIX
A. proof of Lemma 1
Proof. By considering the update rule in (2), and using the
L-smoothness of F', we have for any n:
F(z"™) — F(z") < (VF(z"),z" ™ — 2™)

L, .
+ = ||.’E”+1

2 _ anZ (6)

2

SN CO R SEPELA I o ) ST

g(z")EUn, g(x?)EUn
)
Decomposing the inner product:
(VE@"), Y gla))= Y (VF@E"),g@).
g(zt) €Uy g(zt)eUy
Using the identity:
1
(a,0) = S (llall* + [BlI* = fla = bIJ),
we get:
(VE@E"), (") = 5 (IVF@)]? + llg(=")]?
—IVE(@") = g(")]?) . (8)



Substituting back into the inequality:
1
P = F) < - (GRIVFE)P

s

g(zt)€Un

1
-5 2 IVF@ —g<xﬂn>||2>
in €EUL
2
L .
+4g, S ) ©)

Bounding the squared norm of the sum of the gradients:

Yoo <K Y eI

g(zt)eln g(zt)€ln
Using the inequality (a + b)? < 2a? + 2b%:

Yo IVF@E") =g <
g(xt)eUy,
2 > |VF@E") - VF(")|?
g(z?)eUn
+2 Y | VF(') - g(2")|. (10)
g(z")EUy,
Using L-smoothness:

Yo IVE@") - VFE@)P< Y Ll — o).
g(wi)eun g(JI )EUR
Substituting the bound into the inequality we get (3). [

B. Proof of Theorem 1

Proof. We can get the one iteration cost reduction of s-QASY
by substituting into equation 3 with K = 1, we get:

F(a") = F(a") < —|IVF ")
+n|VE@™) —g(a™)[*  +nL?[a" — 2T |?
77 Ti
= 5 (L =nL)[lg(a™)]*.
Since the accepted gradient g(x"i» ) achieves the condition:
lo)| VAL
[l — 2T 1—Ln

we can ensure that:
nL?||a"™ —x7in |2 =2 (1 —nL)||g(z"n)||* < 0. Therefore, we

can upper bound the expression by removing these two terms:

F(a") = Fa") < =3 |[VF(")|?

+ 0l VE (@)

Taking the expectation given ¢,,, £7» and x",

E[F(z"!) — F(a") | in,a"] < —gHVF(x”
+IE[|VE (27 ) — g(aT )2

2 o’
<_7 F n —.
< -DIvFEIP + 9%

%

—ga™)
we have:

)II?

By taking the full expectation, we get:

2
E[F(z"*) - F(a")] < —JE|VF@E")|* + 0%
Summing from n = 0 to 7" — 1 and dividing by T, we
obtain:
E[F(aT) — F(z°) nl N o?
T _*§TZ IVF(x ||2+77§-

Rearranging the terms, and substituting with 7 value, we
get the desired inequality:

2 _ 2LE[F(a°)
fZEIIVF P =

— F(zT)] o?
+2 .
LT

O

C. Proof of Theorem 2
Proof. the QASY algorithm update rule can be written as:

=g —n ) g
g(z*) €Uy,
where U, be the set of gradients used to update the model at
iteration n, with each gradient satisfying the quality condition:
Mgl

Jlz® — 27|
So, using equation (3), we can write the one iteration cost

reduction as:
F(z") = Fa

>0,

) < _7K7L||VF(

SN

g(z)eUn
—(1 = LEm)g(a)]”

Slls

2L2||xn xz||2

+2|[VE(@') —g(@)]?) . an
where K, = |U,]|. Since
i 2L
o)l o VEL
|z™ — 2t 1—MLny
therefore,
o L
[z — 2t — V1=K, Ln
Taking the expectation, given U,,, and {z°,...2"}, we get:

K, "
F(a"™!) = Fa") < =52 [VF ")

+E| > E[IVF@) - g@)I* '] |
g () EUn,
2 o’
< n _
1 o?
< ——|IVE@™)|? +nM ==
< —5IVFE)IP + M

By taking full Expectation we get:

2

E[F(z"*) = F(a")] < =5E[IVF@")|*] + 1M 7
With similar steps to Theorem 1’s proof, we can get
equation (5). ]



[1]

[2

—

[3]

[4

=

—
X2

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior,
P. Tucker, K. Yang, Q. V. Le er al., “Large scale distributed deep
networks,” Advances in neural information processing systems, vol. 25,
2012.

B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-free approach
to parallelizing stochastic gradient descent,” in Advances in neural
information processing systems, 2011, pp. 693-701.

W. Dai, Y. Zhou, N. Dong, H. Zhang, and E. P. Xing, “Toward
understanding the impact of staleness in distributed machine learning,”
arXiv preprint arXiv:1810.03264, 2018.

S. Dutta, G. Joshi, S. Ghosh, P. Dube, and P. Nagpurkar, “Slow and
stale gradients can win the race: Error-runtime trade-offs in distributed
sgd,” in International conference on artificial intelligence and statistics.
PMLR, 2018, pp. 803-812.

Z. Huo and H. Huang, “Asynchronous stochastic gradient descent
with variance reduction for non-convex optimization,” arXiv preprint
arXiv:1604.03584, 2016.

R. Islamov, M. Safaryan, and D. Alistarh, “Asgrad: A sharp unified
analysis of asynchronous-sgd algorithms,” in International Conference
on Artificial Intelligence and Statistics. PMLR, 2024, pp. 649-657.
H. R. Feyzmahdavian, A. Aytekin, and M. Johansson, “Asynchronous
stochastic gradient descent with delay compensation,” in Proceedings of
the 33rd International Conference on Machine Learning, vol. 48, 2016,
pp. 2910-2919.

W. Zhang, S. Gupta, X. Lian, and J. Liu, “Staleness-aware async-sgd
for distributed deep learning,” arXiv preprint arXiv:1511.05950, 2015.
I. Mitliagkas, C. Caramanis, and P. Jain, “Asynchrony begets momen-
tum, with an application to deep learning,” in 2016 54th Annual Allerton
Conference on Communication, Control, and Computing (Allerton).
IEEE, 2016, pp. 997-1004.

A. Agarwal and J. Duchi, “Distributed delayed stochastic optimization,”
in 2011 50th IEEE Conference on Decision and Control and European
Control Conference. 1EEE, 2011, pp. 5451-5458.

S. U. Stich and S. P. Karimireddy, “The error-feedback framework:
Better rates for sgd with delayed gradients and compressed communi-
cation,” arXiv preprint arXiv:1909.05350, 2019.

D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd:
Communication-efficient sgd via gradient quantization and encoding,”
Advances in neural information processing systems, vol. 30, 2017.

Y. Arjevani, O. Shamir, and N. Srebro, “A tight convergence analysis
for stochastic gradient descent with delayed updates,” in Algorithmic
Learning Theory. PMLR, 2020, pp. 111-132.

M. Assran, A. Aytekin, H. R. Feyzmahdavian, M. Johansson, and
M. G. Rabbat, “Advances in asynchronous parallel and distributed
optimization,” Proceedings of the IEEE, vol. 108, no. 11, pp. 2013-
2031, 2020.

R. M. Gower, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, and
P. Richtdrik, “Sgd: General analysis and improved rates,” in Interna-
tional conference on machine learning. PMLR, 2019, pp. 5200-5209.
A. Khaled and P. Richtdrik, “Better theory for sgd in the nonconvex
world,” arXiv preprint arXiv:2002.03329, 2020.

Y. Chen, Z. Qin, J. Wang, Y. Yu, Y. Gao, and X. Ma, “Asynchronous
federated learning for geospatial applications,” IEEE Geoscience and
Remote Sensing Letters, vol. 17, no. 3, pp. 394-398, 2020.

J. Nguyen, K. Malik, H. Zhan, A. Yousefpour, M. Rabbat, M. Malek,
and D. Huba, “Federated learning with buffered asynchronous ag-
gregation,” in International Conference on Artificial Intelligence and
Statistics. PMLR, 2022, pp. 3581-3607.

Y. Nesterov, Introductory lectures on convex optimization: A basic
course. Springer Science & Business Media, 2013, vol. 87.

K. Mishchenko, F. Bach, M. Even, and B. E. Woodworth, “Asyn-
chronous sgd beats minibatch sgd under arbitrary delays,” Advances
in Neural Information Processing Systems, vol. 35, pp. 420-433, 2022.
Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A. Gibson,
G. Ganger, and E. P. Xing, “More effective distributed ml via a stale
synchronous parallel parameter server,” Advances in neural information
processing systems, vol. 26, 2013.

H. Mania, X. Pan, D. Papailiopoulos, B. Recht, K. Ramchandran, and
M. L. Jordan, “Perturbed iterate analysis for asynchronous stochastic

10

(23]

[24]

[25]

[26]

[27]
(28]

(29]

(30]

[31]

[32]

[33]

[34]

[35]

optimization,” SIAM Journal on Optimization, vol. 27, no. 4, pp. 2202—
2229, 2017. [Online]. Available: https://doi.org/10.1137/16M 1057000
S. Sra, A. W. Yu, M. Li, and A. Smola, “Adadelay: Delay adaptive dis-
tributed stochastic optimization,” in Artificial Intelligence and Statistics.
PMLR, 2016, pp. 957-965.

Z. Zhou, P. Mertikopoulos, N. Bambos, P. Glynn, Y. Ye, L.-J. Li,
and L. Fei-Fei, “Distributed asynchronous optimization with unbounded
delays: How slow can you go?” in International Conference on Machine
Learning. PMLR, 2018, pp. 5970-5979.

C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated optimization,”
arXiv preprint arXiv:1903.03934, 2019.

Q. Wang, Q. Yang, S. He, Z. Shi, and J. Chen, “Asyncfeded: Asyn-
chronous federated learning with euclidean distance based adaptive
weight aggregation,” arXiv preprint arXiv:2205.13797, 2022.

J. Langford, A. Smola, and M. Zinkevich, “Slow learners are fast,” arXiv
preprint arXiv:0911.0491, 2009.

Q. Meng, W. Chen, J. Yu, T. Wang, Z. Ma, and T.-Y. Liu, “Asynchronous
accelerated stochastic gradient descent.” in IJCAI, 2016, pp. 1853-1859.
J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting
distributed synchronous sgd,” in International Conference on Learning
Representations Workshop Track, 2016.

M. Chen, D. Giindiiz, K. Huang, W. Saad, M. Bennis, A. V. Feljan,
and H. V. Poor, “Distributed learning in wireless networks: Recent
progress and future challenges,” IEEE Journal on Selected Areas in
Communications, vol. 39, no. 12, pp. 3579-3605, 2021.

S. Jere, Y. Song, Y. Yi, and L. Liu, “Distributed learning meets 6g: A
communication and computing perspective,” IEEE Wireless Communi-
cations, vol. 30, no. 1, pp. 112-117, 2023.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278-2324, 1998.

S. Dempe, Foundations of bilevel programming. Springer Science &
Business Media, 2002.

J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” Advances in neural information
processing systems, vol. 25, 2012.

J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization.” Journal of machine learning research, vol. 13, no. 2, 2012.


https://doi.org/10.1137/16M1057000

	Introduction
	literature review

	Problem Setup
	Gradient Quality-Aware Asynchronous Approach
	Convergence Analysis
	Simulation Results
	Conclusion and Future Work
	Appendix
	 proof of Lemma 1
	 Proof of Theorem 1
	Proof of Theorem 2

	References

