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Channel Capacity for Adversaries With
Computationally Bounded Observations

Eric Ruzomberka , Chih-Chun Wang , Senior Member, IEEE, and David J. Love , Fellow, IEEE

Abstract— We study reliable communication over point-to-
point adversarial channels in which the adversary can observe
the transmitted codeword via some function that takes the
n-bit codeword as input and computes an rn-bit output for
some given r ∈ [0, 1]. We consider the scenario where the rn-bit
observation is computationally bounded – the adversary is free to
choose an arbitrary observation function as long as the function
can be computed using a polynomial amount of computational
resources. This observation-based restriction differs from con-
ventional channel-based computational limitations, where in the
later case, the resource limitation applies to the computation of
the (adversarial) channel error/corruption. For all r ∈ [0, 1 −
H(p)] where H(·) is the binary entropy function and p is
the adversary’s error budget, we characterize the capacity of
the above channel and find that the capacity is identical to the
completely oblivious setting (r = 0). This result can be viewed
as a generalization of known results on myopic adversaries and
on channels with active eavesdroppers for which the observation
process depends on a fixed distribution and fixed-linear structure,
respectively, that cannot be chosen arbitrarily by the adversary.

Index Terms— Adversarial channels, capacity, arbitrarily vary-
ing channels.

I. INTRODUCTION

BEGINNING with Shannon’s seminal paper [2], early
channel coding research observed that fundamental

coding limits are highly sensitive to channel modeling assump-
tions. This sensitivity is demonstrated by a gap in capacity
between the two classical models: the Shannon model in which
channel errors are random and follow a known distribution and
the Hamming model in which error patterns are worst-case
for some fixed number of bit errors. In the design of robust
codes, the more conservative Hamming model is particularly
attractive as it makes no assumptions about the channel
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distribution and thus any resulting conclusion is robust against
a wide variety of channel imperfections. The downside of the
Hamming model, however, is that it admits a smaller capacity
than the Shannon model. In many cases, the gap in capacity
is large [3].

A. Closing the Gap

Recent research efforts have made progress in closing this
gap by considering settings in between the two classical
models. Ideally, the following two properties hold for a good
channel model:

Property 1: The channel is mild in the sense that its
capacity coincides with the Shannon model capacity.
Property 2: The channel inherits conservative aspects
of the Hamming model. In particular, the channel may
be altered in an arbitrary manner unknown to the com-
municating parties.

In the following Section I-B, we focus on two different
approaches which have had some success towards producing
good channel models. These approaches are 1) to bound the
channel’s computing power (i.e., computational complexity)
[4], [5] and 2) to bound the information known to the channel
about the communication scheme [6], [7], [8], [9], [10], [11],
[12], [13], [14].

B. Complexity Bounded Models Vs Partially Oblivious
Models

Consider a transmitter Alice who wishes to communicate
a message m0 drawn randomly from a set of M possible
messages over a noisy channel to a receiver Bob. To protect
the message from noise corruption, Alice encodes m0 into an
n-bit codeword x of rate R = (1/n) logM and transmits x
over the channel. The channel adds an n-bit error vector e
to x, and Bob receives the n-bit word y = x⊕e. The channel
is controlled by an adversary who chooses e to prevent reliable
(unique) decoding by Bob. For an error budget p ∈ (0, 1/2),
the adversary can induce at most pn bit flips, i.e., the Hamming
weight of e must be bounded above by pn. We focus on
deterministic codes in which the codeword x is a deterministic
function of the message m0, and in turn, consider the average
error criterion in which decoding is permitted to fail over an
arbitrarily small fraction of Alice’s messages.1

1Alternatively, one may consider stochastic codes in which x is a function
of both m0 and a private random key known only to Alice. Note that a
deterministic code is a degenerate stochastic code where the set of private
random keys is empty. Compared to the average error criterion, a stronger
decoding criterion which is of interest but not considered here is the maximum
error criterion in which decoding is permitted to fail for an arbitrarily small
fraction of Alice’s keys.
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We define the Shannon model capacity as CShannon(p) =
1 − H(p) for p ∈ [0, 1/2] where H(·) is the binary entropy
function, which coincides with the capacity of a binary
symmetric channel with crossover probability p ∈ [0, 1/2].
In general, CShannon(p) is an upper bound of any rate achiev-
able by any communication scheme used by Alice and Bob,
but may be tight depending on additional assumptions made
about the adversary’s capabilities and limitations. A surprising
result of Csiszár and Narayan [13] is that CShannon(p) is
the channel capacity when the adversary must choose error
vector e without knowledge of the codeword x or message m0.

In the computationally bounded model (first proposed by
Lipton [4]), the adversary takes x as input and computes e
using limited computational resources, e.g., via an algorithm
that takes a bounded number of computational steps. This
model has the appeal of sufficiently describing practical chan-
nels, including channels with memory and channels governed
by natural, but unknown processes. However, the computation-
ally bounded model can be severe – an impossibility result of
Guruswami and Smith [5] is that the model’s capacity can
be less than the Shannon capacity, and can even be 0 when
the latter is positive. Thus, Property 1 does not hold for the
computationally bounded model.2

Another existing approach is the partially oblivious
model, where the adversary chooses e based on incomplete
side-information about the transmitted codeword x. This
model includes myopic channels, e.g., [6], [7], and [8], causal
channels, e.g., [9], [10], and [11], channels with active eaves-
droppers, e.g., [19], and some arbitrarily varying channels
(AVCs), e.g., [12] and [13]. We focus on the following setting
which captures a special case of the partially oblivious model:
for r ∈ [0, 1] and some observation function fn : {0, 1}n →
{0, 1}rn, the adversary makes an rn-bit observation fn(x) of
codeword x, and in turn, chooses e. We emphasize that the
error vector can depend non-causally on the rn-bit observation
and, thus, causal channels are not captured by our setting.
The special cases r = 0 and r = 1 correspond to no infor-
mation (i.e., completely oblivious) and perfect information
(i.e., omniscient), respectively.

Property 1 can hold for the partially oblivious model when
r is sufficiently small.3 However, Property 2 does not hold for
many partially oblivious channels in the literature. While all
partially oblivious channels allow error vector e to chosen
in an arbitrarily manner unknown to Alice and Bob, the
observation function fn is not always chosen arbitrarily. For
example, a myopic channel in our setting corresponds to fn
being drawn randomly from some distribution known to Alice
and Bob. For Property 2 to hold, however, we must allow fn
to be chosen arbitrarily and require Alice and Bob to devise

2Specifically, a channel which uses logarithmic space to process the
codeword x has a capacity of 0 when p ≥ 1/4. In light of this impossibility
result, recent studies on the computationally bounded model study either
unique decoding when p ∈ (0, 1/4) [15], [16] or relax the objective of
unique decoding and instead consider list-decoding when p ∈ (0, 1/2) [17],
[18]. The works [5], [15], [16], [17], [18] employ stochastic codes together
with pseudorandom sequences to complicate the channels task of computing
an effective error pattern e. In contrast to the above works, we consider
deterministic codes and unique decoding for all p ∈ (0, 1/2).

3This fact is an analog to a channel being sufficiently myopic (see [7]).

their communication scheme without knowledge of fn. This
is equivalent to the adversary choosing a worst-case fn for a
fixed r, a model defined and studied by Langberg [14] under
the name of the (1 − r)-oblivious channel.4 The capacity of
the (1−r)-oblivious channel remains an open problem, where
the best known lower bound is given by [14].

C. This Work

In this paper, we define and study a channel model that has
qualities of both the computationally bounded model and the
partially oblivious model. Roughly speaking, we define this
model by requiring the adversary to observe x via an rn-bit
observation function fn that is computationally bounded.

Specifically, for fixed positive integers c and s, the adversary
chooses a sequence of observation functions fn(·), ∀n ≥ 1 that
belongs to CKT(r, cns) – the set of observation functions with
n input bits and rn output bits that can be computed by a
Boolean circuit with at most cns gates. We allow the choice
of fn to be unknown to Alice or Bob. On the other hand, the
fn chosen by the adversary can depend on the codebook of
Alice but cannot depend on the actual message being sent.
Using the observation function fn of its choice, the adversary
observes fn(x) and chooses e with no computational bound.
Our model differs from the prior works [4], [5], [15], [16],
[17], [18], where in the latter, the channel has a complete view
of x but must choose e subject to a computational bound. We
refer to our adversary as a CKT(r, cns)-oblivious adversary.
By construction, Property 2 holds for a channel controlled by
a CKT(r, cns)-oblivious adversary due to fn being unknown
to Alice or Bob.

Our computational restriction is modeled after realistic
adversarial channels. A channel controlled by a CKT(r, cns)-
oblivious adversary closely approximates a (1 − r)-oblivious
channel [14] (i.e., the definition therein is equivalent to the
CKT(r,∞)-oblivious adversary) without weakening the power
of the adversary too much. Indeed, the adversary is quite
strong. To illustrate its strength, if for a sequence of functions
{fn}∞n=1 satisfying ∀c, s ≥ 1 there exists a finite n0 such that
for all n ≥ n0 fn ̸∈ CKT(r, cns), then the sequence is widely
regarded to be an infeasible computation [20]. The technical
value of the computational constraint is to bound the number
of observation functions that the adversary can choose from
while still including a wide range of important observation
functions in the problem formulation.

In this paper, for any fixed finite integers c, s, and all p ∈
(0, 1/2) and r ∈ [0, 1−H(p)), we study the channel controlled
by a CKT(r, cns)-oblivious adversary with error budget p by
characterizing the channel capacity C(p, r, c, s). As our main
result, we show that C(p, r, c, s) is exactly 1−H(p), and thus
the capacity is independent of parameters c, s, r for the stated

4An alternative interpretation of Property 2 is that the adversary may choose
a worst-case fn from some subset of functions from {0, 1}n to {0, 1}rn,
and where the subset is known to Alice and Bob. In the (1 − r)-oblivious
channel, this subset is the improper subset of all functions. Another channel
that satisfies Property 2 under this alternative interpretation is the adversarial
wiretap channel of type II [19], in which fn is chosen from the set of all linear
mappings from {0, 1}n to {0, 1}rn. Depending on the specific application
for which the channel model serves, it may be unrealistic to assume that this
subset contains only linear mappings.
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parameter regime. It follows that C(r, p, c, s) coincides with
the Shannon model capacity CShannon(p) and thus Property 1
holds. Futhermore, in this regime, deterministic codes are
optimal.5 This main result was first presented at the Inter-
national Symposium on Information Theory (ISIT) [1].

The remainder of this paper is organized as follows.
In Section II, we present the precise channel model and main
result. The main result is discussed in the context of related
work on myopic channels, channels controlled by active
eavesdroppers, and (1− r)-oblivious channels. In Section III,
we present the overview of the proof of the main result and
discuss our proof techniques in the context of related work.
In Section IV, we present the detailed proof of the main result.

II. CHANNEL MODEL AND RESULTS

A. Notation

All vectors are in bold notation. Let d(z, z′) denote the
Hamming distance between two binary vectors z and z′. For
t > 0 and z ∈ {0, 1}n we define Bt(z) = {z′ ∈ {0, 1}n :
d(z, z′) ≤ t} to be the Hamming ball of radius t centered
around z. The functions log(·) and ln(·) denote the base 2 and
base e logarithms, respectively. For a number K ≥ 1, let
[K] denote the set {1, . . . , ⌊K⌋}. For an integer blocklength
n ≥ 1 and rate R ∈ (0, 1], an (n,Rn) codebook Cn is a
function Cn : [2Rn] → {0, 1}n. When useful, we will think
of Cn = {Cn(1), . . . , Cn(2Rn)} as a subset of {0, 1}n and
the ith codeword Cn(i) as a vector in {0, 1}n. For a number
ρ > 0 and a binary vector a = (a1, . . . , aρn) ∈ {0, 1}ρn,
we define the integer representation of a to be the integer
int(a) = 1 +

∑ρn
j=1 aj2

j−1 ∈ [2ρn]. For functions g(n) and
h(n), we adopt standard “little O”, “big O” and “big Omega”
notation: g = o(h(n)) if limn→∞

g(n)
h(n) = 0, g = O(h(n)) if

∃k s.t. for large enough n, g(n) ≤ kh(n), and g = Ω(h(n))
if ∃k s.t. for large enough n, g(n) ≥ kh(n).

B. Channel Model

1) Alice’s Encoding: A transmitter Alice communicates
over a noisy channel with a receiver Bob in the following
manner. For a rate R ∈ (0, 1] and integer blocklength n ≥ 1,
Alice randomly draws a message m0 uniformly from a mes-
sage set [2Rn]. For a (n,Rn) codebook Cn, Alice encodes
m0 into a codeword x ∈ {0, 1}n by computing x = Cn(m0).
Since x = Cn(m0) is a deterministic function of m0, we say
that Alice is using a deterministic code. After encoding, Alice
transmits x into the channel.

5For the parameter regime r ≥ 1−H(p) and c ≥ 1, s ≥ 1, deterministic
codes may not be optimal. We remark that our proof techniques, which involve
a random coding argument over a set of deterministic codes, only work for the
regime r < 1−H(p). For r ≥ 1−H(p), the channel to the adversary is “less
noisy” than the channel to Bob, such that when a deterministic code is used
at rate less than 1−H(p), the adversary is likely to decode Alice’s codeword
(with high probability over the code selection) and thus the adversary is
effectively omniscient (i.e., r = 1). For omniscient adversaries, the GV bound
of 1−H(2p) [21], [22] is the best-known achievable rate. However, when a
stochastic code is used, one may find achievable rates exceeding the GV bound
for some values of r ≥ 1−H(p) and p ∈ (0, 1/2). In fact, in some channel
models, stochastic codes are known to achieve rates significantly larger than
the GV bound for certain parameters when the channel to the adversary is
“less noisy” than the channel to Bob (see, e.g., [23]).

2) Bob’s Decoding: At the channel output, Bob receives
word y = x⊕e where e ∈ {0, 1}n is an error vector added
by the channel and where the symbol ‘⊕’ denotes the bit-wise
XOR. Bob outputs a message estimate m̂ based on the received
word y. We say that a decoding error occurs if m̂ ̸= m0.

3) Adversary: The channel is controlled by an adversary
who has side-information about Alice’s and Bob’s commu-
nication scheme but not exact knowledge of the transmitted
message m0. In particular, the adversary knows Alice’s code-
book Cn and is partially oblivious to the transmitted codeword
x. By partially oblivious, we mean that for observation rate
r ∈ [0, 1], the adversary randomly draws a function fn :
{0, 1}n → {0, 1}rn with probability Uf (fn) and observes
a realization ψ of the random variable Ψ = Ψ(m0) =
fn(Cn(m0)) = fn(x).6 Using its knowledge of Cn but without
knowledge of the realization of m0, the adversary randomly
draws fn with probability Uf (fn). Due to the adversary’s
computational bound, for positive integers c, s, Uf (fn) = 0 for
all fn ̸∈ CKT(r, cns) (we provide a rigorous definition of
CKT(r, cns) in Section II-C). Neither the actual choice of fn
nor the distribution Uf (·) is revealed to Alice or Bob. As a
result, the model falls into the adversarial setting in which
the adversary has full freedom of using any specific function
(by choosing Uf (·) to be a delta distribution) or any random
selection of functions (by choosing Uf (·) to be of general
distribution).

Finally, using knowledge of the codebook Cn and obser-
vation function fn, the adversary chooses the conditional
probability Ue|ψ(e|ψ) that the error vector e is added to the
channel given that it observes Ψ(m0) = ψ. For p ∈ (0, 1/2),
we impose an error budget constraint such that e has a
Hamming weight bounded above by pn, i.e., Ue|ψ(e|ψ) = 0
for all e ̸∈ Bpn(0) and ψ ∈ {0, 1}rn. We refer to the above
adversary as the CKT(r, cns)-oblivious adversary with error
budget p. We note that the distribution Uf (fn) and Ue|ψ(e|ψ)
are used so that some randomness can be embedded in the
adversary’s action. For simplicity, the reader may assume
that the adversary chooses deterministically an observation
function fn ∈ CKT(r, cns), uses the observation function to
observe Ψ = fn(Cn(m0)) = ψ, and then chooses determinis-
tically an error vector e under the given error budget p.

C. Adversary’s Computational Bound

For observation rate r ∈ [0, 1], positive integers c, s, n,
we define the set CKT(r, cns). Let Fn,r denote the set of
all Boolean functions of the form fn : {0, 1}n → {0, 1}rn.
To define CKT(r, cns), we first define the circuit complexity
of a function fn ∈ Fn,r.

A Boolean circuit Bn is an acyclic directed graph where
each node is either an input node (with in-degree 0) or a logic
gate (with in-degree 2). All nodes in Bn have out-degree 1
with unbounded fan-out and each logic gate computes an
arbitrary Boolean function from {0, 1}2 to {0, 1}. The size
of Bn is the total number of nodes in Bn (input nodes and
logic gates). Note that an observation function fn ∈ Fn,r

6The fact that Ψ is a random variable follows from its dependency on the
random variable m0.
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can be computed by some Boolean circuit that takes n bits
as input and produces rn bits as output. The circuit (size)
complexity of an observation function fn ∈ Fn,r is the size
of the smallest size Boolean circuit Bn that can compute fn.
We define CKT(r, cns) to be the set of all functions fn ∈
Fn,r with a circuit complexity of at most cns. In modern
complexity theory, the study of circuit complexity is a common
approach for proving lower bounds on the complexity of
certain problems [20].

D. Capacity

For an (n,Rn) codebook Cn, the (average) probability of
decoding error is defined as

P̄e(Cn) =

max
fn∈CKT(r,cns)

EΨ

[
max

e∈Bpn(0)
Pm0(m̂(e,m0) ̸= m0|Ψ = ψ)

]
(1)

where the probability measure Pm0(·) is w.r.t. the
distribution of m0, and the expectation EΨ[·] =∑
ψ∈{0,1}rn(·)Pm0(Ψ(m0) = ψ). Given the above channel

model, we can define achievable rate in the usual way.
Definition 1 (Achievable Rate): For p ∈ (0, 1/2), r ∈

[0, 1], and positive integers c, s, a rate R ∈ (0, 1] is said to
be (c, s)-achievable if for any ϵe > 0, there exists an n0 such
that for all n ≥ n0, there exists an (n,Rn) codebook Cn such
that P̄e(Cn) ≤ ϵe.

For p ∈ (0, 1/2), r ∈ [0, 1], and positive integers c, s,
we define the capacity C(p, r, c, s) of a channel controlled
by a CKT(r, cns)-oblivious adversary as the supremum of
(c, s)-achievable rates. Let C(p, r,∞,∞) denote the capacity
of (1 − r)-oblivious channel for which there is no constraint
on the computational complexity when computing the rn-bit
observation, see [14].

E. Main Result

Under the above model, the Shannon capacity is
CShannon(p) = 1 − H(p) where H(p) = −p log p − (1 −
p) log(1 − p) is the binary entropy function [13], [14]. The
following result shows that Property 1 holds for our model
for a wide range of r.

Theorem 1: For p ∈ (0, 1/2), r ∈ [0, CShannon(p)), and
c, s ≥ 1, C(p, r, c, s) = C(p, 0, c, s) = C(p, 0,∞,∞) =
CShannon(p).

We share a few remarks on the above theorem. When
r < CShannon(p) = 1 − H(p), Theorem 1 implies that the
adversary can do no better than to ignore its side-information
fn(x) and choose e randomly from the set of all n-bit vectors
with Hamming weight pn. Additionally, we note that the
largest known lower bound on C(p, r,∞,∞) is 1−H(p)− r

for r ∈ [0, 1−H(p)
3 ) [14]. Since C(p, r,∞,∞) is a lower

bound to C(p, r, c, s), Theorem 1 significantly sharpens the
best known lower bound of C(p, r, c, s) to an exactly tight

Fig. 1. Capacity when r = 0.1 and c, s are finite positive integers. Herein
the value p∗ satisfies CShannon(p∗) = r = 0.1.

characterization.7 For r > CShannon(p), an immediate lower
bound of C(p, r, c, s) is given by the Gilbert-Varshamov (GV)
bound (i.e. C(p, r,∞,∞) ≥ 1−H(2p)) [21], [22].8 All results
discussed thus far are summarized in Fig. 1.

Theorem 1 generalizes a few results on myopic channels and
on channels with active eavesdroppers. For p ∈ [0, 1/2] and
r < CShannon(p), CShannon(p) is known to be the capacity of
the binary-erasure bit-flip myopic channel where the adversary
a) non-causally views x through a binary erasure channel
with erasure probability 1 − r (denoted as BEC(1 − r) in the
literature) then b) injects pn bit errors [7, Theorem III.12].
It is clear that this result is generalized by Theorem 1 after
observing that a CKT(r, cns)-oblivious adversary can choose
fn randomly in a way that simulates a BEC(1− r). Similarly,
for r < CShannon(p), CShannon(p) is known to be the capacity
of the adversarial wiretap channel of type II where the
adversary a) chooses rn indices in {1, . . . , n} and observes
rn-bits of x at the chosen indices then b) injects pn bit errors
[19, Theorem 4.2]. It is clear that [19, Theorem 4.2] is a
special case of Theorem 1 after observing that a CKT(r, cns)-
oblivious adversary can choose fn(x) to output a subset of
rn bits of x.

7One can show that C(p, r,∞,∞) is strictly less than C(p, r, c, s) for
some values of p ∈ (0, 1/2) and r < 1 − H(p). See Section V for a
proof sketch. The intuition behind this result follows from the fact that we
have imposed a complexity bound of f while allowing the codebook Cn to
have unbounded complexity. Allowing encoding/decoding to use unlimited
computation power while the adversary is CKT(r, cns)-oblivious may give
Alice and Bob an advantage compared the setting where both the codebook
and observation function have similar complexity constraints.

8As discussed above, when r > CShannon(p) one may find achievable
rates strictly greater than the GV bound when stochastic codes are considered.
One such stochastic coding scheme is the following. Suppose that the encoder
passes its clean codeword u through a BSC(q) (q to be determined) to obtain
the transmitted codeword x. If the effective mutual information between the
clean codeword u and the adversary’s observation is less than the rate R
(the “right” notion of sufficient myopicity in this scenario), then the above
stochastic coding scheme can be shown to achieve rate R = 1−H(p′) where
p′ = q(1− p) + p(1− q). As can be verified numerically, there exists some
values of r, p and q such that r > 1 − H(p) and R > 1 − H(2p) (the GV
bound).
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III. PROOF OUTLINE, OVERVIEW OF PROOF TECHNIQUE

In this section, we outline the proof of Theorem 1 and
discuss an overview of our proof technique. A detailed proof
of Theorem 1 can be found in Section IV.

A. Achievability Scheme

For our proof of Theorem 1, we construct a specific Cn.
1) Encoder Construction: Alice’s (n,Rn) codebook Cn is

constructed as follows. Let ρ ∈ (R,CShannon(p)). Codebook
Cn is a concatenation of two codebooks: an outer (ρn,Rn)
codebook Cout : [2Rn] → {0, 1}ρn and an inner (n, ρn)
codebook Cin : {0, 1}ρn → {0, 1}n. Encoding proceeds as fol-
lows. First, Alice encodes m0 with Cout where we denote the
resulting codeword as Cout(m0). Subsequently, Alice encodes
Cout(m0) with Cin where we denote the resulting codeword
as Cn(m0) = Cin(Cout(m0)). After encoding, Alice transmits
the codeword x = Cn(m0) over the channel. We denote the
concatenated (n,Rn) codebook as Cn = Cin ◦ Cout.

2) Decoder Construction: Bob’s list decoder is constructed
as follows. Given the received word y = Cn(m0)⊕e, Bob
first performs list decoding by forming a list Lin(y, Cin) of
all words w ∈ {0, 1}ρn such that Cin(w) is contained in the
ball Bpn(y). After list decoding, Bob refines the list (i.e., Bob
performs disambiguation) by removing all words w ∈ Lin

that are not consistent with Cout: we say that a word w is
consistent with Cout if there exists an m ∈ [2Rn] such that
w = Cout(m).

Denote the refined list as Lout and note that Lout ⊆ Lin ⊆
{0, 1}ρn. After Lin is refined to Lout, a decoding decision is
made according to the following rules. If |Lout| = 1, then we
have exactly one m ∈ [2Rn] s.t. Cout(m) ∈ Lout, and the
decoder outputs m̂ = m. If Lout is empty or if |Lout| > 1,
then the decoder declares an error by setting m̂ to an error
symbol. We say that a decoding error occurs if m̂ ̸= m0.
However, by the list decoding logic and the adversary error
budget constraint pn, Cout(m0) is guaranteed to be in Lout,
and so a decoding error occurs if and only if |Lout| > 1.

3) Probability of Error: For i = 1, . . . , 2ρn, define

wi(m0, e, Cout, Cin) = arg min
w∈Wi(m0,e,Cout,Cin)

int(w) (2)

such that

Wi(m0, e, Cout, Cin) = arg min
w∈{0,1}ρn\{w1,...,wi−1}d(y, Cin(w)).

That is, we sort the message/word vectors w according to the
distance between the observation y and the inner codeword
Cin(w), where the term int(w) in (2) is used to break any
tie and ensure that the ith closest codeword to y is uniquely
defined. Note that wi ∈ Lin iff i ≤ |Lin|. Also define

Im0 = {Cout(m′) : m′ ̸= m0} (3)

to be the set of words in {0, 1}ρn that are consistent with Cout

but do not correspond to the true message m0. Under the code
construction of Section III-A, the probability of decoding error
can be written as

P̄e(Cout, Cin)

= max
fn∈CKT(r,cns)

EΨ

[
max

e∈Bpn(0)
Pm0(|Lout| > 1|Ψ(m0) = ψ)

]

= max
fn∈CKT(r,cns)

EΨ

 max
e∈Bpn(0)

Pm0(
|Lin|⋃
i=1

{wi ∈ Im0}|Ψ = ψ)

 .
(4)

B. Preliminaries

The following preliminary results characterize the list-
decodability properties of a random codebook. Let Q(n, ρn)
be the distribution of (n, ρn) codebooks such that all code-
words of Cin are independently and uniformly distributed
in {0, 1}n.

Definition 2: For L > 0, an (n, ρn) codebook Cin is said
to be [L, p] list decodable if |Cin ∩ Bpn(y)| ≤ L for every
y ∈ {0, 1}n.

Lemma 1: Let ℓ = ℓ(n) > 0 be ω(n) (i.e., limn→∞
ℓ(n)/n = ∞). For large enough n, a codebook Cin drawn
from distribution Q(n, ρn) is [ℓ, p] list decodable w.p. greater
than 1 − 2−ℓ(n)/4. Proof is in Appendix C.

Similar results hold even if the list size is constant in n.
Lemma 2 ( [9, Claim A.15]): Let ϵρ ∈ (0, CShannon(p))

and set ρ = CShannon(p) − ϵρ. For L > 1
ϵρ

and for large
enough n (depending only on ϵρ), an (n, ρn) codebook Cin

drawn from distribution Q(n, ρn) is [L, p] list decodable w.p.
greater than 1 − 1

n .
Lemma 3: Consider an arbitrary 1-to-1 (ρn,R n) codebook

Cout and randomly draw an (n, ρn) codebook Cin from distri-
bution Q(n, ρn). Recall that Cn = Cin ◦ Cout. For any subset
A ⊆ {0, 1}n, we have that µ = ECin |A∩ Cn| = 2−(1−R)n|A|,
and for tL < µ and tU > µ,

PCin (|A ∩ Cn| < tL) ≤ 2 exp
{
−(µ− tL)2

4µ

}
and

PCin (|A ∩ Cn| > tU ) ≤ 2 exp
{
−(tU − µ)2

4(tU + µ)

}
.

Proof is in Appendix D.

C. Overview of the Proof of Theorem 1

For any error budget p ∈ (0, 1/2) and observation rate
parameter r ∈ (0, CShannon(p)), the goal of our proof of
Theorem 1 is to prove that Alice and Bob can communicate at
rate R that is arbitrarily close to CShannon(p). Our proof idea
is to prove the following slightly different statement instead:
for any p ∈ (0, 1/2) and for any r ∈ (0, CShannon(p)), there
exists an R ∈ (r, CShannon(p)) such that Alice and Bob can
communicate at rate R. Such a (seemingly weaker) statement
implies Theorem 1 immediately, since for any r′ > r, the
achievable rate under r′ is a lower bound of the achievable
rate under r. We can then let r′ → CShannon(p) and use the
(seemingly weaker) statement to derive Theorem 1. We now
present the setup of our proof.
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1) Setup: The following setup will be used throughout the
proof of Theorem 1:

1) Fix any error budget p ∈ (0, 1/2) and observation rate
r ∈ (0, CShannon(p)), and fix observation complexity
bound parameters c, s to be positive integers.

2) We can always find parameters δ0, δ1, ϵρ, ϵR > 0 such
that the following two conditions hold:
Condition 1: r < CShannon(p) − δ0 − δ1 − ϵρ − ϵR
Condition 2: ϵR ∈ (0, ( 5

13 − 1
30 )δ0)

Set the inner-code rate ρ = CShannon(p) − ϵρ and the
inner-outer concatenated code rate R = ρ − ϵR. One
can easily verify that the above choice of parameters
guarantees that r < R < ρ < CShannon(p).

3) For blocklength n = 1, 2, . . ., let the codebook Cn be
the code construction described in Section III-A.

4) Fix the (ρn,Rn) outer codebook Cout to be any 1-to-1
function from {0, 1}Rn to {0, 1}ρn. Let the (n, ρn) inner
codebook Cin be drawn from distribution Q(n, ρn). Note
that Cn = Cin ◦ Cout is Alice’s (n,Rn) codebook.

We now show that the rate R is (c, s)-achievable by using
a random-coding argument, i.e., we show that for any ϵe > 0
and for large enough n, PCin(P̄e(Cout, Cin) > ϵe) < 1 and
thus there exists a sequence of (ρn,R n) codebooks Cout and
(n, ρn) codebooks Cin such that P̄e(Cout, Cin) ≤ ϵe for all
n large enough.

2) Random-Coding: In the sequel, we drop the dependency
on Cout from all notation due to the outer codebook being
fixed. We write P̄e(Cin) to denote the probability of decoding
error evaluated at the (n,Rn) codebook Cn = Cin ◦ Cout.

For fn ∈ CKT(r, cns), ψ ∈ {0, 1}rn, e ∈ Bpn(0) and
i ∈ [2ρn], define

qi(fn,ψ, e, Cin) = Pm0(wi ∈ Lin,wi ∈ Im0 |Ψ(m0) = ψ)
(5)

to be the probability that word wi(m0, e, Cin) results in a
decoding error given that the adversary observes Ψ(m0) = ψ.
To apply the random-coding argument, we first apply a simple
union bound to P̄e(Cin) in (4) to bound the quantity above by

P̄ ub
e (Cin) = max

fn∈CKT(r,cns)

2ρn∑
i=1

EΨ

[
max

e∈Bpn(0)
qi(fn,ψ, e, Cin)

]
.

(6)

We now prepare to state a sufficient condition for the rate R
to be (c, s)-achievable. Recall that ϵρ, δ0, and δ1 are the
parameters used to construct Cin and Cout. For integer L ∈
(0, 2ρn], define the product set P(L) = [L] ×CKT(r, cns) ×
{0, 1}rn × Bpn(0). For ϵe > 0, we define the set H(L, ϵe)
to be the set of all (n, ρn) codebooks Cin such that for
all (i, fn,ψ, e) ∈ P(L), either Pm0(Ψ(m0) = ψ) <
2(δ0+δ1−R)n or qi(fn,ψ, e, Cin) ≤ ϵe

2L .
The intuition behind the definition of H(L, ϵe) is as fol-

lows. For any observation-function/observation-pair (fn,ψ),
we say that this pair is informative if Pm0(Ψ(m0) = ψ) <
2(δ0+δ1−R)n. Namely, if the adversary picks fn and observes
Ψ(m0) = ψ, then there are not many other messages m ̸=
m0 such that Ψ(m) = ψ. As a result, the adversary knows

that the true message m0 must be in a very small set of
possibilities, thus the name “informative”. The set H(L, ϵe)
then considers the set of inner codebooks such that for any
(fn, ψ) that is not informative, no matter how the adversary
designs the error vector e, with high probability 1− ϵe/(2L),
each of the L inner codewords that are closest to y = x⊕e is
either outside the Hamming ball Bpn(y) or can be ruled out
by the outer codebook Cout.

Given the above intuition, we may consider any codebook
in H(L, ϵe) to be a good choice of Cin. The reason is that
when the pair (fn,ψ) is informative, the adversary knows
very accurately which message is likely to be m0 and thus it
is hard to keep the error probability small. However, H(L, ϵe)
ensures that under a more favorable situation in which the
(fn,ψ) is not informative, the inner codebook Cin can take
advantage of this ambiguity at the adversary and guarantee
small error probability for the L closest inner codewords (thus
the enumerating index i) and regardless of how the adversary
chooses the error vector e.

Lemma 4 (Sufficient Condition for Achievability): Let L >
1/ϵρ be a constant. If for any ϵe > 0, there exists an n0 such
that for all n ≥ n0, the probability PCin(Cin ̸∈ H(L, ϵe)) <
1 − 1/n, then the rate R is (c, s)-achievable.

Proof: Let L > 1/ϵρ and let ϵe > 0. Consider the
probability

PCin

(
Cin is not [L, p] list decodable or Cin ̸∈ H(L, ϵe)

)
.

(7)

By a simple union bound, probability (7) is bounded above by

PCin(Cin is not [L, p] list dec.) + PCin(Cin ̸∈ H(L, ϵρ)). (8)

By Lemma 2, there exists an n1 such that for all n ≥ n1, the
first term in equation (8) is bounded above by 1/n. In turn,
since for all n ≥ n0 the second term in equation (8) is strictly
smaller than 1− 1/n, it follows that for all n ≥ max{n0, n1}
probability (7) is strictly less than 1. Thus, for each n ≥
max{n0, n1}, there exists an (n, ρn) codebook C∗

in such that
C∗
in is [L, p] list decodable and C∗

in ∈ H(L, ϵe).
The above shows the existence of a special codebook C∗

in.
In the following, we show that the error probability evaluated
at C∗

in can be upper bounded analytically. Specifically, since
C∗
in is [L, p] list decodable, we have the identity qi(fn,ψ, e,

C∗
in) = 0 for all i > L ≥ maxy∈{0,1}n |Lin(y, Cin)|, and

therefore, P̄ ub
e (C∗

in) in (6) is equal to

max
fn∈CKT(r,cns)

L∑
i=1

EΨ

[
max

e∈Bpn(0)
qi(fn,ψ, e, C∗

in)
]
.

For any fixed fn ∈ CKT(r, cns) and fixed i ∈ [1, L], we have

EΨ

[
max

e∈Bpn(0)
qi(fn,ψ, e, C∗

in)
]

=
∑

ψ:(fn,ψ) is
not informative

Pm0(Ψ(m0) = ψ) · max
e∈Bpn(0)

qi(fn,ψ, e, C∗
in)

(9)
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+
∑

ψ:(fn,ψ) is
informative

Pm0(Ψ(m0) = ψ) · max
e∈Bpn(0)

qi(fn,ψ, e, C∗
in)

(10)

for which we partition based on the events that ψ and the
given fn are informative or not. Since C∗

in ∈ H(L, ϵe), by the
definition of H(L, ϵe), the first summation (9) can be upper
bounded by ∑

ψ:(fn,ψ) is
not informative

Pm0(Ψ(m0) = ψ) · ϵe
2L

≤ ϵe
2L
. (11)

Since q(·) is a probability, we have maxe∈Bpn(0)

qi(fn,ψ, e, C∗
in) ≤ 1. By the definition of H(L, ϵe) the

second summation (10) can be upper bounded by∑
ψ:(fn,ψ) is informative

Pm0(Ψ(m0) = ψ) ≤ 2r2(δ0+δ1−R)n.

(12)

By (11) and (12) and by summing over i = 1, . . . , L, we have
that P̄ ub

e (C∗
in) is bounded above by

max
fn∈CKT(r,cns)

L
( ϵe

2L
+ 2(r+δ0+δ1−R)n

)
. (13)

Following Condition 1, the exponent r+δ0 +δ1−R is strictly
negative, and thus for large enough n, the quantity (13) is
bounded above by ϵe. In conclusion, for large enough n,
P̄e(C∗

in) ≤ ϵe.

As a result, for L > 1/ϵρ and ϵe > 0, our strategy will
be to lower bound the probability PCin(Cin ∈ H(L, ϵe)) and
apply Lemma 4. In this strategy, a significant amount of work
is needed to show that the following statement holds with
probability greater than 1/n over the choice of Cin:

max
(i,fn,ψ,e)∈P(L):

(fnψ) is not informative

qi(fn,ψ, e, Cin) ≤ ϵe
2L
. (14)

The first step in this work is to show that each of
the qi(fn,ψ, e, Cin) terms in (14) has a small expectation
(w.r.t Cin), i.e.,

lim
n→∞

max
(i,fn,ψ,e)∈P(L)

ECin [qi(fn,ψ, e, Cin)] = 0. (15)

We prove this result in Lemma 5. The next step is to show that
each of the qi(fn,ψ, e, Cin) terms is concentrated around its
expectation ECin [qi(fn,ψ, e, Cin)], i.e., for any ϵ′e ∈ (0, ϵe2L ),
for large enough n and with probability greater than 1/n over
the choice of Cin, the following inequality holds:

max
(i,fn,ψ,e)∈P(L):

(fn,ψ) not informative

(qi(fn,ψ, e, Cin) − ECin [qi(fn,ψ, e, Cin)])

≤ ϵ′e.

(16)

The bulk of our proof is dedicated towards this step. Since
ϵ′e < ϵe/2L with strict inequality, (15) and (16) together
imply that (14) holds with probability strictly greater than 1/n.
In the remainder of this overview, we outline our approach for
studying the concentration of measure of qi(fn,ψ, e, Cin).

3) Concentration: When confusion can be avoided, we drop
the notated dependencies and subscripts of qi(fn,ψ, e, Cin)
and simply write q(Cin) to emphasize the dependency on Cin.
For integer L > 1/ϵρ, fixed (i, fn,ψ, e) ∈ P(L) such
that (fn,ψ) is not informative, and for n = 1, 2, 3, . . .,
we study the concentration of measure of q(Cin) around its
expectation ECin [q] by deriving concentration inequalities from
the logarithmic Sobolev inequalities, e.g., [24]. This method
of deriving concentration inequalities is also known as the
entropy method.

At a high level, the concentration inequalities tell us that
if a function g from the set of (n, ρn) codebooks to the
real numbers is smooth for most (n, ρn) codebooks, then g
is concentrated (around its expectation). To define “most”,
we define a subset T of (n, ρn) codebooks with the property
that PCin(Cin ̸∈ T ) = exp{−2Ω(n)} (Definition 3). We refer
to the set T as a typical set of (n, ρn) codebooks and say a
codebook Cin is typical if Cin ∈ T . To define “smooth”, define
the variation of g as

V (Cin) =
2ρn∑
j=1

Ez|g(Cin) − g(Cin(j, z))|2

where codebook Cin(j, z) is equal to Cin with the jth codeword
replaced with the word z uniformly distributed in {0, 1}n.
We say that a number aG > 0 is a global variation coefficient
of g if for any (n, ρn) codebook Cin, V (Cin) ≤ aG. Similarly,
we say that aT > 0 is a typical variation coefficient of g
if for any Cin ∈ T , V (Cin) ≤ aT . Finally, we say that g
is smooth for most codebooks if g has typical and global
variation coefficients that are both sufficiently small.

Given the above definitions, the following statement sum-
marizes our concentration inequalities: If g has a typical
variation coefficient aT = exp{−2Ω(n)} and a global variation
coefficient aG = O(1), then9

PCin(g − ECin [g] > ϵ′e) = exp{−2Ω(n)}.

Three remarks are at hand. First, the double-exponential bound
ensures that a union bound can be successfully applied to
the probability that event (16) occurs (more on this below).
Second, the O(1) global variation coefficient prevents the
inequalities from blowing up over the set T c. Lastly, these
inequalities cannot be directly applied in our setting to show
that q is concentrated. This last remark follows from the
fact that while one can find a typical variation coefficient
of q that is exp{−2Ω(n)}, it is difficult to find a global
variation coefficient of q that is O(1). To circumvent this issue,
we proceed with the following additional steps.

• For an (n, ρn) codebook Cin, we define an approximation
function q′(Cin) to approximate q(Cin) (Definition 4). The
approximation function has the following properties:

– For any (n, ρn) codebook Cin, q′(Cin) ≤ q(Cin)
which holds with equality if Cin ∈ T . Hence, the
function q′ is a good approximation of q in the sense
that PCin(q ̸= q′) ≤ PCin(Cin ∈ T ).

9See Lemma 11 for additional conditions on aT and aG.
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– The function q′ has a global variation coefficient that
is O(1) (Lemma 6). We remark that the concatenated
structure of our code construction simplifies the
proof of this bound.

• Given a global variation coefficient that is O(1), we show
that q′ is concentrated, i.e., PCin(q′ − ECin [q′] > ϵ′e) =
exp{−2Ω(n)} (Lemma 11).

• We show the concentration of q by proving that our
special construction of q′ satisfies the following approx-
imation bound:

PCin(q − ECin [q] > ϵ′e)
≤ PCin(q′ − ECin [q′] > ϵ′e) + PCin(q ̸= q′)
≤ PCin(q′ − ECin [q′] > ϵ′e) + PCin(Cin ̸∈ T )

(Lemma 10). It follows that PCin(q − ECin [q] > ϵ′e) =
exp{−2Ω(n)}.

To complete the proof that inequality (14) holds with
probability greater than 1/n, we apply a simple union bound:

PCin

 max
(i,fn,ψ,e)∈P(L):
(fn,ψ) not inform.

(q − E[q]) > ϵ′e


≤ |P(L)| · max

(i,fn,ψ,e)∈P(L):
(fn,ψ) not inform.

PCin(q − E[q] > ϵ′e)

≤ |P(L)| exp{−2Ω(n)} (17)

where |P(L)| denotes the number of elements in the product
space [L]×CKT(r, cns)×{0, 1}ρn×Bpn(0). The final step is
to show that (17) is bounded above by 1−1/n, which we show
by verifying that |P(L)| = 2poly(n) and thus |P(L)| is growing
much slower than the double exponential exp{2Ω(n)}. The key
idea in this final step is to use the adversary’s computational
bound and show that the number of functions in CKT(r, cns) is
2poly(n). We remark that the bounded observation complexity
is critical to the proof since if we allow for unbounded circuit
complexity, the set CKT(r,∞) contains exp{2Ω(n)} functions.

4) Prior Work: The above approach is inspired by Lang-
berg’s framework [14] to study concentration of measure when
the function under analysis is smooth over a typical set T
of codebooks. The main technical contribution of [14] is to
carefully define T based on the codebooks’ list decodable
properties in a way where one can then apply Vu’s martingale-
type concentration inequalities for non-smooth functions [25].
We follow Langberg’s framework by also defining typicality
in terms of list decodability. However, we use concentration
inequalities derived via the entropy method.

The major technical difference between our work and
Langberg’s [14] lies at the definition of smoothness. Langberg
adopts a Lipschitz criterion of smoothness which states that
a function g is smooth if g has a sufficiently small typical
Lipschitz coefficient KT > 0; KT is said to be a typical
Lipschitz coefficient if for any Cin ∈ T , the quantity

W (Cin) = 2ρn max
j∈[2ρn],z∈{0,1}n

|g(Cin) − g(Cin(j, z))|2

is bounded above by KT . Similarly, a number KG is said
to be a global Lipschitz coefficient if for any (n, ρn) code-
book Cin, W (Cin) ≤ KG. Our work identifies and exploits two

advantages of using the variation criterion over the Lipschitz
criterion for characterizing smoothness in our setting. First,
for a typical codebook Cin ∈ T , variation V (Cin) captures
more information about the behavior of g locally around code-
book Cin than W (Cin). We leverage this additional information
to find typical variation coefficients for q′ that are smaller than
any typical Lipschitz coefficient. Second, for a non-typical
codebook Cin ̸∈ T , the best bound on W (Cin) is O(2ρn).
Thus, a good global Lipschitz coefficient of q′ is much larger
than the O(1) global variation coefficient established in our
proof.

Similar to our work and the work of [14], other works
adopt proof techniques that are combinatorial in nature. These
include the studies by Csiszár and Narayan [12], [13] on
ACVs with input and state constraints which adopt a method-
of-types approach. We note that the channel controlled by a
CKT(r, cns)-oblivious adversary with error budget p can be
formulated as an AVC with state constraints. These works also
include the study by Dey, Jaggi and Langberg [7] on myopic
adversarial channels.10

Lastly, we remark that our proof techniques and analysis
allow for generalization to other channel models. For example,
straightforward modifications of our techniques/analysis can
allow the bit flip channel from Alice to Bob to be generalized
to a q-ary error/erasure channel for q ≥ 2 in which Alice sends
symbols from a q-ary alphabet and the adversary can induce
both symbol errors and symbol erasures.

IV. PROOF OF THEOREM 1

In the sequel, we use the setup described in Section III-C.

A. Notation

The following notation will assist in our proof of Theorem 1.
For an observation function fn ∈ CKT(r, cns) and observation
ψ ∈ {0, 1}rn, we define the observation set Oψ = {z ∈
{0, 1}n : fn(z) = ψ}. Note that observing Ψ(m0) ≜
fn(Cn(m0)) = ψ is equivalent to knowing that Cn(m0) ∈
Oψ . Hence, the following two perspectives are equivalent:
a) the adversary draws an observation function fn and b)
the adversary draws a partition O⃗ = (O1, . . . ,O2rn) of the
space {0, 1}n consisting of 2rn non-empty observation sets.
With an abuse of notation, for fn ∈ CKT(r, cns), we write
O⃗ ∈ CKT(r, cns) to denote the partition of observation sets
corresponding to fn with circuit complexity upper bounded
by cns. Along the same lines, for (i, O⃗,ψ, e) ∈ P(2ρn)
and for an (n, ρn) codebook Cin, we write qi(O⃗,ψ, e, Cin)
to denote qi(fn,ψ, e, Cin).

B. Expectation of q

For any (i, O⃗,ψ, e) ∈ P(2ρn), the following result char-
acterizes the expectation of qi(O⃗,ψ, e, Cin) when the (n, ρn)
codebook Cin is drawn from distribution Q(n, ρn).

10We note that the proof techniques of [7] can provide a simple alternative
proof of Theorem 1. We provide an outline of this alternative proof in
Appendix A.
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Lemma 5:

lim
n→∞

max
(i,O⃗,ψ,e)∈P(2ρn)

ECin [qi(O⃗,ψ, e, Cin)] = 0.

Proof: Our approach is to find a small upper bound
of the expectation ECin [qi(O⃗,ψ, e, Cin)] that is independent

of the parameters i, O⃗, ψ and e. Let ∅ denote the empty
set and let (i, O⃗,ψ, e) ∈ P(2ρn). Observe that for an
(n, ρn) codebook Cin, qi(O⃗,ψ, e, Cin) is bounded above by
Pm0(Im0 ∩ Lin(y, Cin) ̸= ∅|Ψ(m0) = ψ). Hence, for any

(i, O⃗,ψ, e) ∈ P(2ρn) we have

ECin [qi(O⃗,ψ, e, Cin)]
≤ ECin [Pm0(Im0 ∩ Lin(m0, e, Cin) ̸= ∅|Ψ(m0) = ψ)]
= ECin

[
Em0|Ψ=ψ [1{Im0 ∩ Lin(y, Cin) ̸= ∅}]

]
= Em0|Ψ=ψ [ECin [1{Im0 ∩ Lin(y, Cin) ̸= ∅}]]

Thus, to prove Lemma 5, it is sufficient to show that the
quantity

max
(m,i,O⃗,ψ,e)

∈[2Rn]×P(2ρn)

ECin [1{Im ∩ Lin(y, Cin) ̸= ∅}|m0 = m] (18)

is going to zero in the limit as n → ∞. This sufficient
condition simplifies our problem as the expectation inside the
maximum of (18) only depends on parameters m, i and e,
but not on O⃗ or ψ. In the next steps, we will further bound
the expectation in (18) to relax its dependency on parameters
i and e by exploiting the list-decodability properties of the
random codebook Cin.

Let m ∈ [2Rn], (i, O⃗,ψ, e) ∈ P(2ρn) and let ym =
Cn(m)⊕e. By the definition of the set Im and a simple union
bound, the quantity ECin [1{Im ∩ Lin(y, Cin) ̸= ∅}|m0 = m]
is bounded above by∑

m′∈[2Rn]\{m}

PCin(Cout(m′) ∈ Lin(ym, Cin))

which in turn, by letting E be the event that Cin is [n2 + 1, p]
list decodable and by the law of total probability, is bounded
above by∑
m′∈[2Rn]\{m}

(PCin(Cout(m′) ∈ Lin(ym, Cin)|E) + PCin(Ec)) .

(19)

Note that for m′ ∈ [2Rn] \ {m}, PCin(Cout(m′) ∈
Lin(ym, Cin)|E) is bounded above by n2

2ρn−1 following that the
codeword Cin ◦ Cout(m′) can be one of at most n2 codewords
of Cin randomly chosen from 2ρn − 1 codewords (nb. we can
exclude codeword Cin ◦ Cout(m)) contained in Lin(ym, Cin)
by the list decodability properties of Cin. Also, by Lemma 1,
for large enough n, PCin(Ec) is bounded above by 2−(n2+1)/4.
It follows that quantity (19) is bounded above by 2Rn−1

2ρn−1 n
2 +

(2Rn−1)2−(n2+1)/4 which in turn is going to zero in the limit
as n → ∞ independent of (m, i, O⃗,ψ, e) ∈ [2Rn] × P(2ρn).

C. Approximation of q

For (i, O⃗,ψ, e) ∈ P(2ρn), we will not directly show
that the quantity q(O⃗,ψ, e, Cin) (as a function of Cin) is
concentrated. Instead, we will approximate q(O⃗,ψ, e, Cin)
with an approximation function q′(O⃗,ψ, e, Cin) and study
the concentration of q′(O⃗,ψ, e, Cin). We carefully define the
approximation function such that q′(O⃗,ψ, e, Cin) has good
smoothness properties (and thus q′(O⃗,ψ, e, Cin) concentrates
around its mean), and such that we can imply the concentration
of q(O⃗,ψ, e, Cin) from the concentration of q′(O⃗,ψ, e, Cin).

We first define typical codebooks. For the parameter δ0 > 0,
we define typical codebooks for all O⃗ ∈ CKT(r, cns) and
ψ ∈ {0, 1}rn such that the observation set Oψ is larger
than 2(1−R)n2δ0n. We remark that the condition |Oψ| ≥
2(1−R)n2δ0n is related to the pair (fn,ψ) being not infor-
mative (see definition of informative in the overview of
Section III-C). In our analysis of P̄ ub

e , we will let decoding
fail for all Oψ that are smaller than 2(1−R)n2δ0n. Hence, there
is no need to define typical codebooks for small observation
sets.

Definition 3 (Typical Codebooks): Suppose that O⃗ ∈
CKT(r, cns) and ψ ∈ {0, 1}rn such that |Oψ| ≥ 2(1−R)n2δ0n.
Set δ′0 = δ′0(O⃗,ψ, ϵρ, ϵR) ≥ δ0 to be the unique number such
that |Oψ| = 2(1−R)n2δ

′
0n. Set

ℓ(O⃗,ψ, ϵR, ϵρ) = 2
4δ′0
13 n

tL(O⃗,ψ, ϵR, ϵρ) = 2−(1−R)n|Oψ| − 2
3δ′0
4 n = 2δ

′
0n − 2

3
4 δ

′
0n

and

tU (O⃗,ψ, ϵR, ϵρ) = 2−(1−R)n|Oψ| + 2
3δ′0
4 n = 2δ

′
0n + 2

3
4 δ

′
0n.

An (n, ρn) codebook Cin is said to be typical w.r.t. the
parameters O⃗, ψ, ϵR, ϵρ if Cin is [ℓ, p] list decodable and
tL ≤ |Oψ ∩ Cn| ≤ tU where Cn = Cin ◦ Cout. Define the
typical set TOψ as the set of all (n, ρn) codebooks that are
typical w.r.t. O⃗, ψ, ϵR, ϵρ.

We now provide an equivalent expression of qi(O⃗,ψ, e, Cin)
that is convenient for defining our approximation function. For
m ∈ [2Rn] and for (i, O⃗,ψ, e) ∈ P(2ρn), define

ϕi,m(O⃗,ψ, e, Cin)
= 1{wi(m, e, Cin) ∈ Im ∩ Lin(ym, Cin)}1{Cn(m) ∈ Oψ}

and define

Φi(O⃗,ψ, e, Cin) =
∑

m∈[2Rn]

ϕi,m(O⃗,ψ, e, Cin).

For (i, O⃗,ψ, e) ∈ P(2ρn), note that

qi(O⃗,ψ, e, Cin) =
Φi(O⃗,ψ, e, Cin)

|Oψ ∩ Cn|
. (20)

Definition 4 (Approximation Function): Suppose that O⃗ ∈
CKT(r, cns) and ψ ∈ {0, 1}rn such that |Oψ| ≥ 2(1−R)n2δ0n.
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For i ∈ [2ρn], e ∈ Bpn(0) and (n, ρn) codebook Cin, define
the approximation function

q′i(O⃗,ψ, e, Cin) =
Φi(O⃗,ψ, e, Cin)

t(O⃗,ψ, Cin)
(21)

where t(O⃗,ψ, Cin) = max{|Oψ ∩ Cn|, tL}. Notice that
q′i(O⃗,ψ, e, Cin) ≤ qi(O⃗,ψ, e, Cin) with equality if Cin ∈ TOψ .
Furthermore, define the variation of q′i(O⃗,ψ, e, Cin) as

V ′
i (O⃗,ψ, e, Cin) =

2ρn∑
j=1

Ez
[

∆′(j, z, Cin)2
]

(22)

where the bounded difference

∆′(j, z, Cin) = |q′i(O⃗,ψ, e, Cin) − q′i(O⃗,ψ, e, Cin(j, z))|

and the expectation is taken over the random variable z
uniformly distributed in {0, 1}n.

The above definition of q′i(O⃗,ψ, e, Cin) is carefully set such
that V ′

i (O⃗,ψ, e, Cin) is well behaved for all non-typical Cin.
This behavior is established in Section IV-E.

D. Combinatorial Preliminaries

In this section, we prove a few claims about the combi-
natorial properties of the quantities defined thus far. These
claims will be used in the following section to characterize the
smoothness properties of the approximation function q′(·).

In the sequel, unless otherwise stated, we fix integer L >
1/ϵρ, fix (i, O⃗,ψ, e) ∈ P(L), and allow only the (n, ρn)
codebook Cin to vary. We drop the fixed variables from
our notation. We write q(Cin) to denote qi(O⃗,ψ, e, Cin).
Similarly, we write T to denote TOψ , Φ(Cin) to denote
Φi(O⃗,ψ, e, Cin), ϕm(Cin) to denote ϕi,m(O⃗,ψ, e, Cin), t(Cin)
to denote t(O⃗,ψ, Cin), V (Cin) to denote Vi(O⃗,ψ, e, Cin) and
V ′(Cin) to denote V ′

i (O⃗,ψ, e, Cin).
The following notation will be used throughout this section.

For m ∈ [2Rn], let ym = Cn(m)⊕e. For k = 1, . . . , 2ρn,
let the notation jk denote the the index int(wk(m, e,
Cin)) ∈ [2ρn].

For m ∈ [2Rn] and (n, ρn) codebook Cin, the first two
claims characterize how the ith closest codeword in codebook
Cin to received word ym (i.e., Cin(wi(m, e, Cin))) changes
when the jth

k codeword in Cin is replaced with a word
z ̸∈ Bpn(ym). The proof of these claims only require the
definition (2) of word wi(m, e, Cin).

Claim 1: Let Cin be an (n, ρn) codebook, m ∈ [2Rn],
z ̸∈ Bpn(ym) and k ∈ [2ρn]. Let C ′

in denote the codebook
Cin(jk, z). If Cin(jk) ̸∈ Bpn(ym) and

Cin(wi(m, e, Cin)) ̸∈ Bpn(ym),

then

C′
in(wi(m, e, C′

in)) ̸∈ Bpn(ym). (23)

Proof: The location of codewords Cin(wi(m, e, Cin))
and C′

in(wi(m, e, Cin
′)) around ym are illustrated in Fig. 2.

We begin by observing that Cin(wi(m, e, Cin)) ̸∈ Bpn(ym)
implies that |Cin ∩ Bpn(ym)| ≤ i − 1. Together with the fact
that z ̸∈ Bpn(ym) and Cin(jk) ̸∈ Bpn(ym), it follows that

Fig. 2. Location of the ith closest codeword to ym (a) before replacing
codeword Cin(jk) with word z and (b) after replacing codeword Cin(jk)
with word z. In this figure, the codebook C′in is equal to Cin(jk,z).

|C′
in ∩ Bpn(ym)| = |Cin ∩ Bpn(ym)| ≤ i − 1. This implies

equation (23).
Claim 2: Let Cin be an (n, ρn) codebook, m ∈ [2Rn], z ∈

{0, 1}n and k ∈ {i + 1, . . . , 2ρn} such that wk(m, e, Cin) ̸=
Cout(m). If

d(ym, Cin(wi(m, e, Cin))) < d(ym, z),

then wi(m, e, Cin) = wi(m, e, Cin(jk, z)).
Proof: The condition wk(m, e, Cin) ̸= Cout(m) ensures

that ym = Cin◦Cout(m)⊕e is equal to Cin(jk, z)◦Cout(m)⊕e,
and thus the center of the ball of radius pn around the received
word does not change when the jth

k codeword of Cin is replaced
with word z. For t = 1, . . . , i, note that the tth closest
codeword in Cin to ym (i.e., Cin(wt(m, e, Cin))) is at least
as close to ym as codeword Cin(jk), and is closer to ym
than word z. Therefore, by replacing the codeword Cin(jk)
with the word z, we do not change the position of the tth

closest codeword in Cin to word ym. Hence, wt(m, e, Cin) =
wt(m, e, Cin(jk, z)).

For m ∈ [2Rn] and (n, ρn) codebook Cin, the next two
claims build upon the first two claims and characterize how
the term ϕm(Cin) changes (and in turn, how the approximation
function q′(Cin) changes) when the jth

k codeword in Cin is
replaced with a word z ̸∈ Bpn(ym). In the following section,
these claims will help us in bounding the bounded difference
∆′(j, z, Cin) and variation V ′(Cin).

Claim 3: Let Cin be an (n, ρn) codebook, m ∈ [2Rn], z /∈
Bpn(ym) and k ∈ [2ρn] such that wk(m, e, Cin) ̸= Cout(m).
If either k > i or Cin(jk) ̸∈ Bpn(ym), then

1{wi(m, e, Cin) ∈ Im ∩ Lin(ym, Cin)}
= 1{wi(m, e, Cin(jk, z)) ∈ Im ∩ Lin(ym, Cin(jk, z))}.

(24)

Proof: We consider 2 cases depending on the dis-
tance of codeword Cin(wi(m, e, Cin)) from received word
ym. (Case 1): Suppose that Cin(wi(m, e, Cin)) ̸∈ Bpn(ym)
(i.e., wi(m, e, Cin) ̸∈ Lin(ym, Cin)). Note that by hypoth-
esis or by the condition that k > i, it follows that
Cin(jk) ̸∈ Bpn(ym), and in turn by Claim 1, we have
for C′

in = Cin(j, z) that C′
in(wi(m, e, C′

in)) ̸∈ Bpn(ym).
Furthermore, wi(m, e, Cin(j, z)) ̸∈ Lin(ym, Cin(j, z)). It fol-
lows that both sides of equation (24) are 0, and thus,
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Claim 3 holds in this Case. (Case 2): Suppose that
Cin(wi(m, e, Cin)) ∈ Bpn(ym) (i.e., wi(m, e, Cin) ∈
Lin(ym, Cin)). Then k > i and d(ym, Cin(wi(m, e, Cin))) <
d(ym, z), and in turn, following Claim 2, we have that
wi(m, e, Cin) = wi(m, e, Cin(j, z)). Furthermore, since the
received word Cin(jk, z) ◦ Cout(m)⊕e is equal to ym,
word wi(m, e, Cin(jk, z)) is in Lin(ym, Cin(jk, z)). Thus,
equation (24) holds, and in turn, Claim 3 holds in this
Case.

Claim 4: Let Cin be an (n, ρn) codebook, m ∈ [2Rn], z /∈
Bpn(ym) and k ∈ [2ρn] such that wk(m, e, Cin) ̸= Cout(m).
If either k > i or Cin(jk) ̸∈ Bpn(ym), then ϕm(Cin) =
ϕm(Cin(jk, z)).

Proof: Claim 4 follows from Claim 3 and the observation
that since k ∈ [2ρn] such that wk(m, e, Cin) ̸= Cout(m),
we have that 1{Cin ◦ Cout(m) ∈ Oψ} = 1{Cin(jk, z) ◦
Cout(m) ∈ Oψ}.

E. Smoothness of q′

The goal of this subsection is to establish two bounds on V ′.
We say that a number aT > 0 is a typical variation coefficient
of q′ if for any Cin ∈ T , we have V ′(Cin) ≤ aT . We say
that a number aG > 0 is a global variation coefficient of q′

if for any (n, ρn) codebook Cin, we have that V ′(Cin) ≤ aG.
This subsection characterizes the smoothness of q′ by finding
small typical and global variation coefficients that will later
prove useful in establishing the concentration of q′. We start
by finding a small global variation coefficient.

Lemma 6 (Global Variation Coefficient): If Oψ is bounded
in size such that for some δ′0 ≥ δ0 we have |Oψ| =
2(1−R)n2δ

′
0n, then for any (n, ρn) codebook Cin and for large

enough n (that depends only on δ0 and ϵρ), V ′(Cin) ≤ aG =
5i+ 14.

Note that if the value of i is small enough, the global
variation coefficient given in Lemma 6 is an improvement
over the trivial bound V ′(·) ≤ 2ρn. The proof of this
Lemma relies on the concatenated structure of the codebook
construction. Indeed, Lemma 6 is our primary motivation for
separating the codebook Cn into an inner codebook Cin and
outer codebook Cout. Before proving Lemma 6, we prove the
following useful inequality.

Lemma 7: For an (n, ρn) codebook Cin, for m ∈ [2Rn] and
for z ̸∈ Bpn(ym),

2ρn∑
j=1

|ϕm(Cin) − ϕm(Cin(j, z))| ≤ i+ 1.

Proof: [Proof of Lemma 7] For k = 1, . . . , 2ρn, let
the notation jk denote the the index int(wk(m, e, Cin)) ∈
[2ρn]. Following Claim 4, the quantity

∑2ρn

j=1 |ϕm(Cin) −
ϕm(Cin(j, z))| is equal to∑

k=1,...,i
or k:wk(m,e,Cin)=Cout(m)

|ϕm(Cin) − ϕm(Cin(jk, z))|,

which in turn is bounded above by i+ 1.
We are now ready to prove Lemma 6.

Proof: [Proof of Lemma 6] Let Cin be an (n, ρn) codebook.
Recall that V ′(Cin) is equal to

2ρn∑
j=1

∑
z∈{0,1}n

∣∣∣∣Φ(Cin)
t(Cin)

− Φ(Cin(j, z))
t(Cin(j, z))

∣∣∣∣2 2−n

≤
2ρn∑
j=1

∑
z∈{0,1}n

∣∣∣∣Φ(Cin)
t(Cin)

− Φ(Cin(j, z))
t(Cin(j, z))

∣∣∣∣ 2−n (25)

where the inequality follows from the fact that both Φ(Cin)
t(Cin)

and Φ(Cin(j,z))
t(Cin(j,z)) are in [0, 1]. In expression (25), we can cut

the summations by partitioning the set {j ∈ [2ρn]} into {j ∈
[2ρn] : Cin(j) ∈ Oψ} and {j ∈ [2ρn] : Cin(j) ̸∈ Oψ}, and by
partitioning the set {z ∈ {0, 1}n} into {z ∈ {0, 1}n : z ∈
Oψ} and {z ∈ {0, 1}n : z ̸∈ Oψ}. Hence, we write V ′(Cin)
as the sum of 4 terms:∑

j∈[2ρn]:
Cin(j)∈Oψ

∑
z∈Oψ

∣∣∣∣Φ(Cin)
t(Cin)

− Φ(Cin(j, z))
t(Cin)

∣∣∣∣ 2−n (26)

+
∑

j∈[2ρn]:
Cin(j)∈Oψ

∑
z ̸∈Oψ

∣∣∣∣Φ(Cin)
t(Cin)

− Φ(Cin(j, z))
t(Cin(j, z))

∣∣∣∣ 2−n (27)

+
∑

j∈[2ρn]:
Cin(j)̸∈Oψ

∑
z∈Oψ

∣∣∣∣Φ(Cin)
t(Cin)

− Φ(Cin(j, z))
t(Cin(j, z))

∣∣∣∣ 2−n (28)

+
∑

j∈[2ρn]:
Cin(j)̸∈Oψ

∑
z ̸∈Oψ

∣∣∣∣Φ(Cin)
t(Cin)

− Φ(Cin(j, z))
t(Cin)

∣∣∣∣ 2−n. (29)

We separately bound term (26) through term (29).
First Term: We first bound term (26). Writing Φ as a sum

of ϕm terms, term (26) is bounded above by∑
j∈[2ρn]:

Cin(j)∈Oψ

∑
z∈Oψ

∑
m∈[2Rn]:
Cn(m)∈Oψ

|ϕm(Cin) − ϕm(Cin(j, z))|
t(Cin)

2−n.

which in turn can be bounded above by partitioning the
set {z ∈ Oψ} into {z ∈ Oψ ∩ Bpn(ym)} and {z ∈
Oψ ∩ Bcpn(ym)}, and applying the following inequalities:
|Bpn(ym)| ≤ 2H(p)n and |Oψ ∩Cn| ≤ t(Cin); the bound is as
follows:∑

m∈[2Rn]:
Cn(m)∈Oψ

∑
z∈Oψ :

z∈Bc
pn(ym)

∑
j∈[2ρn]:

Cin(j)∈Oψ

|ϕm(Cin) − ϕm(Cin(j, z))|
t(Cin)2n

+ 2−ϵρn

which in turn is bounded above by i + 1 + 2−ϵρn following
Lemma 7.

Second Term: Next, we bound term (27). Let the notation
j ∈ Cout denote an index j ∈ [2ρn] that belongs to the set
{int(Cout(1)), int(Cout(2)), . . . , int(Cout(2Rn))}. In term (27),
we cut the summation over j by partitioning the set {j ∈
[2ρn] : Cin(j) ∈ Oψ} into the sets {j ∈ [2ρn] : Cin(j) ∈
Oψ, j ̸∈ Cout} and {j ∈ [2ρn] : Cin(j) ∈ Oψ, j ∈ Cout}.
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Since t(Cin(j, z)) is equal to t(Cin) when j ̸∈ Cout, term (27)
is equal to∑

j∈[2ρn]:
Cin(j)∈Oψ and j ̸∈Cout

∑
z ̸∈Oψ

|Φ(Cin) − Φ(Cin(j, z))|
t(Cin(j, z))

2−n

+
∑

j∈[2ρn]:
Cin(j)∈Oψ and j∈Cout

∑
z ̸∈Oψ

∣∣∣∣Φ(Cin)
t(Cin)

− Φ(Cin(j, z))
t(Cin(j, z))

∣∣∣∣ 2−n. (30)

To bound quantity (30), the following inequality will prove
useful: defining Φ ≜ Φ(Cin), Φ′ ≜ Φ(Cin(j, z)), t ≜ t(Cin)
and t′ ≜ t(Cin(j, z)), and using |t− t′| ≤ 1, we have that∣∣∣∣Φ(Cin)

t(Cin)
− Φ(Cin(j, z))
t(Cin(j, z))

∣∣∣∣ =

{
Φ
t − Φ′

t′ ,
Φ
t ≥ Φ′

t′

Φ′

t′ − Φ
t ,

Φ
t <

Φ′

t′

=

{
Φt′−Φ′t
tt′ , Φ

t ≥ Φ′

t′

Φ′t−Φt′

tt′ , Φ
t <

Φ′

t′

≤

{
Φ(t+1)−Φ′t

tt′ , Φ
t ≥ Φ′

t′
Φ′t−Φ(t−1)

tt′ , Φ
t <

Φ′

t′

=

{
Φ−Φ′

t′ + Φ
tt′ ,

Φ
t ≥ Φ′

t′

Φ′−Φ
t′ + Φ

tt′ ,
Φ
t <

Φ′

t′

=
|Φ(Cin) − Φ(Cin(j, z))|

t(Cin(j, z))
+

Φ(Cin)
t(Cin)t(Cin(j, z))

.

Following the above inequality, we have that (30) is
bounded above by∑

j∈[2ρn]:
Cin(j)∈Oψ and j ̸∈Cout

∑
z ̸∈Oψ

|Φ(Cin) − Φ(Cin(j, z))|
t(Cin(j, z))

2−n

+
∑

j∈[2ρn]:
Cin(j)∈Oψ and j∈Cout

∑
z ̸∈Oψ

|Φ(Cin) − Φ(Cin(j, z))|
t(Cin(j, z))

2−n

+
∑

j∈[2ρn]:
Cin(j)∈Oψ and j∈Cout

∑
z ̸∈Oψ

Φ(Cin)
t(Cin)t(Cin(j, z))

2−n

which in turn, following that t(Cin(j, z)) is bounded below
by t(Cin) − 1, is bounded above by∑

j∈[2ρn]:
Cin(j)∈Oψ

∑
z ̸∈Oψ

|Φ(Cin) − Φ(Cin(j, z))|
t(Cin) − 1

2−n

+
∑

j∈[2ρn]:
Cin(j)∈Oψ and j∈Cout

∑
z ̸∈Oψ

Φ(Cin)
t(Cin)(t(Cin) − 1)

2−n (31)

Following that Φ(Cin) ≤ t(Cin) and |{j ∈ [2ρn] : Cin(j) ∈
Oψ, j ∈ Cout}| ≤ t(Cin), we have that (31) is bounded above
by ∑

j∈[2ρn]:
Cin(j)∈Oψ

∑
z ̸∈Oψ

|Φ(Cin) − Φ(Cin(j, z))|
t(Cin) − 1

2−n +
t(Cin)

t(Cin) − 1

(32)

Similar to the bounding of term (26), we write Φ as a
sum of ϕm terms, partition the set {z ̸∈ Oψ} into {z ∈
Oc
ψ ∩ Bpn(ym)} and {z ∈ Oc

ψ ∩ Bcpn(ym)}, and apply
inequalities |Bpn(ym)| ≤ 2H(p)n, |Oψ ∩ Cn| ≤ t(Cin), and∑
m:C′

n(m)∈Oψ ϕm(Cin(j, z)) =
∑
m:Cn(m)∈Oψ ϕm(Cin(j, z))

where C′
n = Cin(j, z) ◦ Cout when j ∈ [2ρn] : Cin(j) ∈ Oψ

and z ∈ Oc
ψ , to bound equation (32) above by∑

m∈[2Rn]:
Cn(m)∈Oψ

∑
z∈Oc

ψ :

z∈Bc
pn(ym)

∑
j∈[2ρn]:

Cin(j)∈Oψ

|ϕm(Cin) − ϕm(Cin(j, z))|
(t(Cin) − 1) 2n

+
2−ϵρn

t(Cin) − 1
+

t(Cin)
t(Cin) − 1

which in turn is bounded above by(
i+ 1 +

2−ϵρn

t(Cin)
+ 1

)
t(Cin)

t(Cin) − 1
≤ 2(i+ 2) + 2−ϵρn+1

following Lemma 7 and the inequalities |Oψ ∩ Cn| ≤ t(Cin),
t(Cin) ≥ 1 and t(Cin)

t(Cin)−1 ≤ 2.
Third Term: Next, we bound term (28). Using a similar

approach to the bounding of term (27), term (28) is bounded
above by∑
j∈[2ρn]:

Cin(j) ̸∈Oψ

∑
z∈Oψ

|Φ(Cin) − Φ(Cin(j, z))|
t(Cin)

2−n

+
∑

j∈[2ρn]:
(Cin(j)̸∈Oψ)∩(j∈Cout)

∑
z∈Oψ

max{Φ(Cin),Φ(Cin(j, z))}
t2(Cin)

2−n

(33)

which in turn is bounded above by∑
j∈[2ρn]:

Cin(j)̸∈Oψ

∑
z∈Oψ

∑
m∈[2Rn]:
Cn(m)∈Oψ

|ϕm(Cin) − ϕm(Cin(j, z))|
t(Cin)

2−n

(34)

+
∑

j∈Cout:
Cin(j) ̸∈Oψ

∑
z∈Oψ

(
ϕmj

(Cin(j, z))
t(Cin)

+
Φmax
t2(Cin)

)
2−n (35)

where Φmax = max{Φ(Cin),Φ(Cin(j, z))} and where mj =
(Oψ ∩ Cin(j, z) ◦ Cout) \ (Oψ ∩ Cn) (if mj is the empty set
then we define ϕmj

(Cin(j, z)) = 0). In the above expression,
we are already familiar with how to bound term (34); using
the same approach used to bound (26), term (34) is bounded
above by i+1+2−ϵρn. Thus we only need to bound term (35).
Since Φmax ≤ t(Cin) + 1, term (35) is bounded above by∑
j∈[2ρn]:Cin(j) ̸∈Oψ,j∈Cin

∑
z∈Oψ 3 2−n

t(Cin) . By t(Cin) ≥ tL and
the value of tL given in Definition 3, this in turn is bounded
above by ∑

j∈[2ρn]:
Cin(j)̸∈Oψ and j∈Cout

∑
z∈Oψ

3(2−n)

2−(1−R)n|Oψ| − 2
3δ′0
4 n

. (36)

Following the hypothesis of Lemma 6, for large enough n

(which only depends on δ0), 2−(1−R)n|Oψ|−2
3δ′0
4 n is bounded
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above by 2−(1−R)n|Oψ|(1/2). Hence, for large enough n,
and by the inequality |{j ∈ [2ρn] : Cin(j) ̸∈ Oψ, j ∈
Cout}| ≤ 2Rn, equation (36) is bounded above by 6. Hence,
equation (33) is bounded above by i+ 7 + 2−ϵρn.

Fourth Term: Lastly, we bound term (29). Using the same
approach to bound term (26), term (29) is bounded above by
i+1+2−ϵρn. The desired result follows by summing together
the upper bounds of terms (26) through (29).

The following Lemma will help us find a small typical
variation coefficient of q′. The Lemma states that q′i(Cin) is
smooth for all Cin ∈ T in a Lipschitz sense.

Lemma 8: Define

KT = KT,i(O⃗,ψ, e) =
2ℓ+ 3
tL − 1

. (37)

If Cin ∈ T , then q′(Cin) is KT -Lipshitz, i.e., ∆′(j, z, Cin) ≤
KT for all j ∈ [2ρn], z ∈ {0, 1}n.

Proof: [Proof of Lemma 8] Let Cin ∈ T , j ∈ [2ρn]
and z ∈ {0, 1}n. For m ∈ [2Rn], let ym = Cin ◦
Cout(m)⊕e. We first count the number of messages m ∈
[2Rn] such that ϕm(Cin) ̸= ϕm(Cin(j, z)). Since Cin ∈
T , Cin is [ℓ, p] list decodable and the (n, ρn) codebook
C′
in resulting from a translation of Cin by the vector e

(i.e., C′
in = {Cin(1)⊕e, Cin(2)⊕e, . . . , Cin(2ρn)⊕e}) is also

[ℓ, p] list decodable. Hence, there exists at most 2ℓ mes-
sages m1, . . . ,m2ℓ such that for k = 1, . . . , 2ℓ, either
d(ymk

, Cin(j)) ≤ pn or d(ymk
, z) ≤ pn. With this obser-

vation, we can state the following claim.
Claim 5: For any message m ∈ [2Rn] that is not in the set

{m1, . . . ,m2ℓ},

1{wi(m, e, Cin) ∈ Im ∩ Lin(ym, Cin)}
= 1{wi(m, e, Cin(j, z)) ∈ Im ∩ Lin(ym, Cin(j, z))}. (38)

We observe that Claim 5 is a special case of Claim 3.
To see this, let m ∈ [2Rn] \ {m1, . . . ,m2ℓ} and ym =
Cin ◦ Cout(m)⊕e, and first observe that the ball Bpn(ym)
contains neither Cin(j) nor z. Let k ∈ [2ρn] such that j =
int(wk(m, e, Cin)). Since Cin(j) ̸∈ Bpn(ym), it follows that
wk(m, e, Cin) ̸= Cout(m). These conditions are sufficient to
satisfy the hypothesis of Claim 3.

Following Claim 5, the number of messages m ∈ [2Rn]
such that ϕm(Cin) ̸= ϕm(Cin(j, z)) is bounded above by 2ℓ+2
(where the 2 is added to account for the 2 possible messages
{m′

1,m
′
2} such that for k = 1, 2, 1{Cin ◦ Cout(m′

k) ∈ Oψ} ̸=
1{Cin(j, z) ◦ Cout(m′

k) ∈ Oψ}, which in turn may result
in ϕm′

k
(Cin) ̸= ϕm′

k
(Cin(j, z))). From the triangle inequality,

it follows that |Φ(Cin) − Φ(Cin(j, z))| ≤ 2ℓ+ 2.
We are now ready to prove Lemma 8. The proof involves an

upper bound of ∆′(j, z, Cin) = |Φ(Cin)
t(Cin) −

Φ(Cin(j,z))
t(Cin(j,z)) |, which we

illustrate by walking through the upper bound of the quantity
Φ(Cin)
t(Cin) − Φ(Cin(j,z))

t(Cin(j,z)) ; the upper bound of the negative of the
above quantity follows the same approach. We have that

Φ(Cin)
t(Cin)

− Φ(Cin(j, z))
t(Cin(j, z))

(a)

≤ Φ(Cin)(t(Cin) + 1)
t(Cin)t(Cin(j, z))

− Φ(Cin(j, z))t(Cin)
t(Cin)t(Cin(j, z))

(b)

≤ 2ℓ+ 2
t(Cin(j, z))

+
Φ(Cin)

t(Cin)t(Cin(j, z))
(c)

≤ 2ℓ+ 2
t(Cin(j, z))

+
1

t(Cin(j, z))
(d)

≤ 2ℓ+ 3
tL − 1

where inequality (a) follows from t(Cin(j, z)) ≤ t(Cin) + 1,
inequality (b) follows from |Φ(Cin) − Φ(Cin(j, z))| ≤ 2ℓ +
2 and inequality (c) follows from the inequalities Φ(Cin) ≤
|Cn ∩Oψ| ≤ max{|Cn ∩Oψ|, tL} ≜ t(Cin), and inequality (d)
follows from t(Cin(j, z)) ≥ t(Cin) − 1 and t(Cin) ≥ tL.

An immediate corollary of the previous Lemma is that for
all Cin ∈ T , V ′(Cin) ≤ 2ρnK2

T . In the following Lemma,
this bound is tightened by exploiting the fact that the bounded
difference ∆′(j, z, Cin) inside the definition of V ′(Cin) is often
much smaller than the Lipschitz coefficient KT for many j ∈
[2ρn] and z ∈ {0, 1}n.

Lemma 9 (Typical Variation Coefficient): For Cin ∈ T ,

V ′(Cin) ≤
(
tU (ℓ+ 1) + 2δ

′
0n+ϵRn

)
K2
T . (39)

Proof: [Proof of Lemma 9] To prove the upper bound on
V ′(Cin) for Cin ∈ T , the proof uses two facts: (a) q′i is KT

Lipschitz over T and (b) difference ∆′(j, z, Cin) is zero for
several pairs (j, z) ∈ [2ρn]×{0, 1}n. Fact (a) was established
above in Lemma 8. We specify and establish Fact (b) below
as the following claim.

For m ∈ [2Rn], define a set S1,m = {v ∈ Cin : v ∈
Bcpn(ym)} of all codewords outside the ball Bpn(ym) and
define a set S2,m = {v ∈ {0, 1}n : v ∈ Bcpn(ym) and v ∈
Oc
ψ} of all words outside both the ball Bpn(ym) and obser-

vation set Oψ . For k = 1, 2, define Sk = ∩m:Cn(m)∈OψSk,m.
Claim 6 (Fact (b)): For an (n, ρn) codebook Cin, for any

j ∈ [2ρn] such that Cin(j) ∈ S1 and for any z ∈ S2,
∆′(j, z, Cin) = 0.

We first prove Claim 6, which is a special case of Claim 4.
For an (n, ρn) codebook Cin, let j ∈ [2ρn] such that Cin(j) ∈
S1 and let z ∈ S2. First, it is easy to verify that this choice of
parameters satisfies the hypothesis of Claim 4. Second, note
that Cin(j) is not in Oψ ∩ Cn and z is not in Oψ . Hence,
Oψ∩Cn = Oψ∩Cin(j, z)◦Cout and thus t(Cin) = t(Cin(j, z)).
In turn, the difference ∆′(j, z, Cin) = |q′(Cin)− q′(Cin(j, z))|
is equal to ∣∣∣∣ ∑

m∈[2Rn]:
Cn(m)∈Oψ

ϕm(Cin) − ϕm(Cin(j, z))
t(Cin)

∣∣∣∣. (40)

Following Claim 4, ϕm(Cin) = ϕm(Cin(j, z)) for all m ∈
[2Rn], and thus, (40) is zero. This completes the proof of
Claim 6.

Let Cin ∈ T . Following Claim 6, V ′(Cin) is equal to∑
j∈[2ρn]:
Cin(j)∈Sc

1

Ez[∆′(j, z, Cin)2] +
∑

j∈[2ρn]:
Cin(j)∈S1

∑
z∈Sc

2

∆′(j, z, Cin)2

2n
.

(41)

To finish our proof of Lemma 9, we upper bound (41). Since
Cin ∈ T , codebook Cin is [ℓ, p] list decodable and we have
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that |Sc1 | is bounded above by |Oψ ∩Cn|ℓ. By a simple union
bound, |Sc2| is bounded above by |Oψ∩Cn|2H(p)n+ |Oψ| and
|S1| ≤ 2ρn. By Lemma 8, ∆′(j, z, Cin) ≤ KT for all j ∈ [2ρn]
and z ∈ {0, 1}n, and thus, equation (41) is upper bounded by
(|Sc1 | + |S1||Sc2 |2−n)K2

T , which in turn, is upper bounded by

|Oψ ∩ Cn|ℓK2
T

+
(
|Oψ ∩ Cn|2(H(p)−1+ρ)n + |Oψ|2−(1−ρ)n

)
K2
T .

Finally, (39) follows by applying the bound |Oψ ∩ Cn| ≤ tU .

F. Concentration of q

The following Lemma shows that if q′(Cin) = q(Cin)
w.h.p. over Q(n, ρn), then q′ concentrated implies that q is
concentrated.

Lemma 10: For any λ > 0,

PCin(q − ECin [q] > λ) ≤ PCin(q′ − ECin [q′] > λ)
+ PCin(q ̸= q′).

Proof: [Proof of Lemma 10] Let C denote the set of all
(n, ρn) codebooks, and for Cin ∈ C let Q(Cin) denote the
probability of drawing Cin. We have that PCin(q−ECin [q] > λ)
is equal to∑
Cin∈C

1{q(Cin) − ECin [q] > λ}Q(Cin)

=
∑

Cin∈C :

q(Cin)=q′(Cin)

1{q(Cin) − ECin [q] > λ}Q(Cin)

+
∑

Cin∈C :

q(Cin)̸=q′(Cin)

1{q(Cin) − ECin [q] > λ}Q(Cin)

(a)

≤
∑

Cin∈C :

q(Cin)=q′(Cin)

1{q′(Cin) − ECin [q′] > λ}Q(Cin)

+
∑

Cin∈C :

q(Cin) ̸=q′(Cin)

Q(Cin)

≤ PCin(q′ − ECin [q′] > λ) + PCin(q ̸= q′)

where inequality (a) follows from ECin [q′] ≤ ECin [q].
We now state and prove our concentration inequality for q′,

which follows from a modified logarithmic Sobolev inequality
[24, Theorem 2].

Lemma 11: Suppose that |Oψ| ≥ 2(1−R)n2δ0n, let i ∈ [L]
and suppose that the following Assumptions hold:

1) For large enough n (depending only on δ0, ϵρ and L),
there exists a global variation coefficient aG ∈ (0,∞)
such that V ′(Cin) ≤ aG for all (n, ρn) codebooks Cin.

2) There exists a typical variation coefficient aT ∈
(0,min{1, aG}) such that V ′(Cin) ≤ aT for all Cin ∈ T .

3) As a sequence in n, the ratio aG

a2
T

is o(− ln P(Cin ̸∈ T )).

Then for λ ∈ (
√
aT , 1) and for large enough n (depending

only on δ′0, ϵρ, L),

PCin (q′ − ECin [q′] > λ) ≤ exp
{
− λ2

8aT

}
. (42)

Proof: [Proof of Lemma 11] The proof follows a con-
ventional “entropy-method” proof for deriving concentration
inequalities [24]. A slight modification of the conventional
proof is needed to incorporate the typical and global variation
coefficients and prevent the inequality from blowing up over
a small set of (n, ρn) codebooks. We begin by restating a
modified logarithmic Sobolev inequality in a general form.

Lemma 12 ( [24, Theorem 2]): Suppose that X1, X2, . . . ,
Xn are independent random variables taking values in a mea-
surable set X , and define Z = g(X1, . . . , Xn) for some given
measureable function g : Xn → R. Furthermore, suppose that
X ′

1, . . . , X
′
n are independent copies of X1, . . . , Xn and define

both Z(j) = g(X1, . . . , Xj−1, X
′
j , Xj+1, . . . , Xn) and

V+ =
n∑
j=1

EX′
j

[
(Z − Z(j))2 1{Z > Z(j)}

]
.

Then for θ > 0 and µ ∈ (0, 1/θ),

ln E
[
eµ(Z−E[Z])

]
≤ µθ

1 − µθ
ln E

[
e

µV+
θ

]
.

Next, we apply the framework of Lemma 12 to our coding
problem. Recall that the 2ρn codewords of Cin are independent
random variables that take values in X = {0, 1}n. Setting
g = q′, it follows that (Z − Z(j))2 = ∆(j, z, Cin)2, and in
turn,

V+ =
2ρn∑
j=1

Ez
[
∆(j, z, Cin)21{q′(Cin) > q′(Cin(j, z))}

]
.

Note that V+ ≤ V ′ following the indicator bound 1{·} ≤
1 and the inequalities ∆(j, z, Cin)2 ≤ ∆(j, z, Cin) ≤ 1. Thus,
Lemma 12 implies that for θ > 0 and µ ∈ (0, 1/θ)

ln ECin

[
eµ(q′−ECin [q′])

]
≤ µθ

1 − µθ
ln ECin

[
e

µV ′
θ

]
. (43)

By Bayes formula and Assumptions 1 and 2, the expectation
in the RHS of (43) is bounded such that

ECin

[
e

µV ′
θ

]
≤ e

µaT
θ PCin(Cin ∈ T ) + e

µaG
θ PCin(Cin ̸∈ T )

≤ e
µaT

θ + e
µaG

θ PCin(Cin ̸∈ T ) (44)

We set θ such that the two terms in the sum of (44) are equal,
i.e., set θ = (aG−aT )µ

− ln PCin (Cin ̸∈T ) , and note that θ > 0 following
aG > aT > 0. Given this choice of θ, it follows from (44)
that ECin

[
exp{µV

′

θ }
]
≤ exp{µaT /θ + ln(2)}, and in turn,

following (43),

ECin

[
eµ(q′−ECin [q′])

]
≤ exp

{
µ2aT
1 − µθ

+
µθ ln 2
1 − µθ

}
.

Applying Markov’s inequality to the above inequality yeilds

P(q′ − ECin [q′] > λ) ≤ exp
{
µ2aT
1 − µθ

+
µθ ln 2
1 − µθ

− µλ

}
.

(45)

To finish the proof, we choose some round numbers to
simplify the RHS of (45). We set µ = λ/(2aT ), which is the
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value that minimizes the RHS of (45) over the optimization
variable µ ∈ (0,∞) when θ is treated as a constant fixed at
0. Note that this choice of µ satisfies for large enough n the
requirement of Lemma 12 that µ ∈ (0, 1/θ) since the quantity

µθ =
λ2

4a2
T

(
aG − aT

− ln P(Cin ̸∈ T )

)
→ 0 as n→ ∞

where the limit follows from the inequalities λ ∈ [0, 1]
and aT < aG, and Assumption 3 which states that

aG

−a2
T ln PCin (Cin ̸∈T )

tends to 0 as n tends to ∞. Following a
substitution of our choices of θ and µ, the RHS of (45) is
equal to

exp
{
λ2

4aT

(
1

1−o(1)

)
+ o(1)

1−o(1) −
λ2

2aT

}
(46)

which in turn, is bounded above by exp
{
− λ2

8aT

}
for large

enough n following the condition λ >
√
aT . Together

with (45), this yields the desired inequality.
The following concentration inequality for q is boot-

strapped from the above concentration inequality for q′ using
Lemma 10.

Lemma 13: If ϵR satisfies Condition 2, |Oψ| ≥
2(1−R)n2δ0n and i ∈ [L], then for large enough n (depending
only on δ0, L, and ϵρ),

PCin (q − ECin [q] > 1/n) ≤ 2 exp

{
−2

δ0n
30

8n2

}
.

Proof: [Proof of Lemma 13] The proof is a straightforward
application of Lemma 6 through Lemma 11, but requires a
little accounting to ensure that the chosen parameters check
out. Recall that δ′0 ≥ δ0 is the unique constant such that
|Oψ| = 2(1−R)n2δ

′
0n.

We first bound the probability that Cin is not typical. Note
that ECin |Oψ ∩ Cn| = 2−(1−R)n|Oψ| = 2δ

′
0n. Recall from

Definition 3 that ℓ = 2
4
13 δ

′
0n, tU = 2δ

′
0n + 2

3
4 δ

′
0n and tL =

2δ
′
0n − 2

3
4 δ

′
0n. It follows from Lemma 1 and Lemma 3 that

P(q′ ̸= q) ≤ P(Cin ̸∈ T ) ≤ 2−2
δ′0n

13 and P(|Oψ ∩Cn| < tL) ≤
2 exp{−2δ′0n/2

4 } for large enough n (depending only on δ0).
Define aLBT as the RHS of (39). Next, we bound KT

(defined by equation (37) and aLBT . Recall that KT is equal
to 2ℓ+1

tL−1 . From substitution of the typical parameters, KT is
equal to 2−

9
13 δ

′
0n + 2 for large enough n (depending only on

δ0). Similarly, aLBT is equal to 2−δ
′
0n/13+6 + 2−

5
13 δ

′
0n+ϵRn+4

for large enough n (depending only on δ0 and ϵR). Hence, for
large enough n (depending only on δ0 and ϵR) we can choose
any aT such that

aT ≥ aLBT = 2−δ
′
0n/13+6 + 2−

5
13 δ

′
0n+ϵRn+4 (47)

and have that V (Cin) ≤ aT for all Cin ∈ T .
Finally, we are ready to apply Lemma 11. We first check

that Assumption 3 of Lemma 11 holds. We have that
aG

a2
T (− ln P(Cin ∈ T ))

<
aG

a2
T 2

δ′0n

13

(48)

for large enough n (depending only on δ0 and ϵρ). Set aT =

2−
δ′0n

30 ; this choice of aT is possible under Condition 2 and

satisfies equation (47). Following Lemma 6, aG is bounded
above by 5L+ 14 for large enough n (depending only on δ0,
ϵρ, and L). In turn, using δ′0 ≥ δ0, the RHS of quantity (48)
is bounded above by

5L+ 14

2
2δ0n
195

for large enough n (depending on δ0, ϵρ and L), and therefore,
is o(1) and Assumption 3 holds.

To complete the proof, we apply Lemma 10 to bound the
quantity P(q − ECin [q] > 1/n) above by P(q′ − ECin [q′] >
1/n) + P(q′ ̸= q). Lemma 13 follows after applying
Lemma 11 to bound P(q′ − ECin [q′] > 1/n) above by
exp{−2δ0n/30/(8n2)} for large enough n (depending only on
δ0, ϵρ and L), and after observing that P(q′ ̸= q) is bounded
above by P(|Oψ ∩ Cn| < tL) ≤ exp{−2δ0n/30/(8n2)}.

G. Proof of Theorem 1

We are now ready to prove Theorem 1. Let L > 1/ϵρ be
an integer. Our strategy is to apply the sufficient condition
(Lemma 4) for the rate R to be (c, s)-achievable. Recall that
for one to apply Lemma 4, one must show that for any
ϵe > 0 and for large enough n, PCin(Cin /∈ H(L, ϵe)) <
1 − 1/n. To show this, we construct a set G of good (n, ρn)
codebooks such that G is contained in the set H(L, ϵe) and
limn→∞ PCin(Cin /∈ G) = 0, and conclude that for large
enough n, PCin(Cin /∈ H(L, ϵe)) ≤ PCin(Cin ̸∈ G) < 1 − 1/n.

For integer n ≥ 1, we define the set of good (n, ρn)
codebooks using the following sets: Let E1 be the set of
(n, ρn) codebooks Cin where there exists some (i, O⃗,ψ, e) ∈
P(L) : |Oψ| ≥ 2(1−R)n2δ0n such that qi(O⃗,ψ, e, Cin) is not
concentrated, i.e., qi(O⃗,ψ, e, Cin) > ECin [qi(O⃗,ψ, e, Cin)] +
1/n. Let E2 be the set of (n, ρn) codebooks Cin where
some small observation set is not typical, i.e., there exists
some (i, O⃗,ψ, e) ∈ P(L) : |Oψ| < 2(1−R)n2δ0n such that
|Oψ ∩ Cn| > 2(δ0+δ1)n. Finally, let G = (E1 ∪ E2)c denote
the set of good (n, ρn) codebooks. We say that an (n, ρn)
codebook Cin is not good if Cin is not in G. To see that
G ⊆ H(L, ϵe) for large enough n, we first observe that by
Lemma 5 and for large enough n,

max
(i,O⃗,ψ,e)∈P(L)

ECin [qi(O⃗,ψ, e, Cin)] + 1/n ≤ ϵe
2L
. (49)

Then for large enough n such that (49) holds, Cin ∈ G implies
that for all (i, O⃗,ψ, e) ∈ P(L),

qi(O⃗,ψ, e, Cin) ≤ ϵe
2L
, if |Oψ| ≤ 2(1−R)n2δ0n (50)

and

|Oψ ∩ Cn| ≤ 2(δ0+δ1)n, if |Oψ| > 2(1−R)n2δ0n. (51)

Following (51), Cin ∈ G implies that for all (i, ⃗O,ψ, e) ∈
P(L),

Pm0(Ψ(m0) = ψ) = Pm0(Cn(m0) ∈ Oψ)

= |Oψ ∩ Cn|2−Rn

≤ 2(δ0+δ1−R)n, if |Oψ| > 2(1−R)n2δ0n.
(52)
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Using the definition of set H(L, ϵe), it is easy to verify that for
any (n, ρn) codebook Cin such that both (50) and (52) hold,
we have that Cin ∈ H(L, ϵe).

We now bound the probability that Cin is not good by
bounding P(E1) and P(E2). The adversary’s computational
bound will help us to bound both P(E1) and P(E2). Let S
denote the number of unique observation sets in CKT(r, cns),
i.e., S = |{O ⊆ {0, 1}n : O⃗ ∈ CKT(r, cns),O =
Oψ for some ψ ∈ {0, 1}rn}|. We can bound S by counting
the number of Boolean circuits with cns logic gates.

Lemma 14: For large enough n (depending only on c and
s), the number of functions in CKT(r, cns) is bounded above
by 2n

s+2
, and thus S = S(r, cns) ≤ 2n

s+3
. Proof is in

Appendix E.
For large enough n (depending only on δ0, L, ϵρ, c and s),

P(E1) = PCin

 ⋃
(i,O⃗,ψ,e)∈P(L):

|Oψ|≥2(1−R+δ0)n

{q > ECin [q] + 1/n}


≤

∑
(i,O⃗,ψ,e)∈P(L):

|Oψ|≥2(1−R+δ0)n

PCin(q > ECin [q] + 1/n) (53)

≤ S2nL2 exp
{
−2δ0n/30

8n2

}
(54)

where (53) follows from a simple union bound and (54)
follows from Lemma 13. Furthermore, for large enough n
(depending only on δ0, δ1, c and s),

P(E2) ≤ S 2 exp
{
2−δ0n

}
which follows from a simple union bound and Lemma 3.
In turn, given the bound on S established in Lemma 14, it is
clear that both P(E1) and P(E2) are going to 0 in the limit as
n→ ∞. Hence, for ϵe > 0 and for large enough n, PCin(Cin ̸∈
H(L, ϵe)) ≤ PCin(Cin ̸∈ G) ≤ P(E1) + P(E2) < 1 − 1/n. This
completes the proof of Theorem 1.

V. CONCLUSION

In this work, we define and study a binary channel con-
trolled by a CKT(r, cns)-oblivious adversary (an adversary
that can observe a fraction r of all bits in the transmitted
codeword via some function f ∈ CKT(r, cns) of bounded
complexity and flip a fraction p of all bits). The capacity
C(p, r, c, s) of this channel is characterized for the parameter
range r < 1 − H(p) (i.e., a sufficiently myopic adversary)
under deterministic codes and average error criterion. We give
a proof of this result which is based on a new application
logarithmic Sobolev inequalities.

An alternative proof of the above result can be stated
using the proof techniques for sufficiently myopic channels
developed by Dey, Jaggi and Langberg [7]. The advantage of
the alternative proof is that it uses a simpler random coding
scheme, involves a simpler analysis, and can provide more
general results than the proof of Section IV. An outline of
this alternative proof is provided in Appendix A.

Lastly, we remark that a CKT(r, cns)-oblivious adversary
can be strictly less powerful than a CKT(r,∞)-oblivious

adversary (i.e., an adversary with no complexity constraint),
in the sense that C(p, r,∞,∞) is strictly less than C(p, r, c, s)
for some values of p ∈ (0, 1/2) and r < 1 −H(p). A proof
sketch is as follows. If no complexity constraint is imposed,
then the adversary can choose a function f (dependent on the
codebook Cn) that does the following:

1) Take the transmitted codeword x as input. Compute
the nearest codeword x′ to x and, in turn, compute an
“auxiliary” error vector s ∈ {0, 1}n such that x ⊕ s is
equal Hamming distance to both x and x′.

2) Let w(s) denote the Hamming weight of s. If w(s)
is small enough such that the total number of length-n
binary vectors of weight w(s) or less (call this number
Aw(s)) is at most 2rn, then “compress” s into an rn
bit vector and output this compressed vector. Otherwise,
output an error.

Let LP(δ) denote the linear programming bound for binary
codes with minimum distance δn, and let LP−1 denote
its inverse. By the linear programming bound (i.e., MRRW
bound) [3], x and x′ are (with positive probability) within
nLP−1(R) bits where R is the rate, and thus, w(s) is no
more than about n

2 LP−1(R) and Aw(s) is no more than
about 2nH( 1

2LP−1(R)). Hence, if r > H( 1
2LP−1(R)) and

p > 1
2LP−1(R), with positive probability, the adversary can

reconstruct s from the output of f and, in turn, choose the
true error vector e = s to confuse Alice as to whether x or
x′ was transmitted. As can be verified numerically, the above
adversarial strategy can be used to upper bound C(p, r,∞,∞)
and show that C(p, r,∞,∞) < C(p, r, c, s) for a certain range
of r < 1 −H(p).

APPENDIX A
ALTERNATIVE PROOF OF THEOREM 1

In this appendix, we present an outline of an alternative
proof of Theorem 1. The proof closely follows the achievabil-
ity proof of Dey, Jaggi and Langberg [7, Theorem III.1] for
sufficiently myopic channels. To follow this alternative proof,
we point the reader to this reference, and structure our outline
to emphasize the difference between the alternative proof and
the proof of [7, Theorem III.1]. For encoding, we replace
our concatenated code construction with a simple random
code where the codewords of code Cn are i.i.d. uniform in
{0, 1}n. For decoding, use the Hamming ball decoder as
in [7].

• Modify [7, Lemma IV.2] such that for any function
f : {0, 1}n → {0, 1}rn (not necessarily with polynomial
circuit complexity) and any rn-bit observation vector
ψ, the probability (over random code design) that there
are fewer than about |Oψ|2(R−1)n codewords compatible
with the output of the function f is exp{−2Ω(n)}.

• In [7, Lemma IV.3], instead of analyzing the event that
the number of codewords in a set V ⊆ {0, 1}n exceeds
Θ(n2), show that this number exceeds Θ(ns+4) with
probability 2−Ω(ns+4) over random code design.

• In [7, Corollary IV.4], the n2 is replaced by ns+4, and in
[7, Lemma IV.5] the n4 is replaced by n2(s+4).
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• The subsequent arguments in [7, Lemma IV.6] are simi-
larly modified, with n2 being replaced by ns+4.

• In each of these Lemmas, instead of union bounding
over all error vectors (numbering 2O(n)), one union
bounds over all error vectors and circuits in CKT(r, cns)
(numbering O(ns+3) following Lemma 14).

• In the analysis, allow decoding to fail over small obser-
vation sets as described in Section IV-C of this paper.
In the event that Alice’s transmitted codeword belongs
to a small set, this means that adversary has high cer-
tainty of Alice’s codeword/message upon observing ψ,
and thus, may be able design e well-tailored for this
codeword/message and induce a decoding error. However,
we can ignore this event in the analysis, since such an
event is unlikely and thus makes a negligible contribution
to the probability of error.

APPENDIX B
A TALAGRAND-TYPE CONCENTRATION INEQUALITY

Let g(·) be a function mapping the set of (n, ρn) codebooks
to (−∞,∞). For b > 0, g is said to be b-Lipshitz if for
any (n, ρn) codebooks Cin and C′

in differing by at most
1 codeword, then |g(Cin) − g(C′

in)| ≤ b. An index set J(·) ⊆
[2ρn] is said to be a certificate of g if for any (n, ρn) codebook
Cin, g(Cin) ≥ |J(Cin)| and g(C′

in) ≥ g(Cin) for any C′
in that

agrees with Cin on the codewords indexed in J(Cin). Lastly,
for c > 0, g is said to be c-certifiable if there exists a
certificate J of g such that |J(Cin)| ≤ cg(Cin) for all (n, ρn)
codebooks Cin.

Lemma 15 ( [26, Theorem 11.3]): Let M[g] denote a
median of g. For any t > 0,

PCin(g − M[g] > t) ≤ 2 exp
{

−t2

4b2c(M[g] + t)

}
and

PCin(g − M[g] < −t) ≤ 2 exp
{

−t2

4b2cM[g]

}
.

APPENDIX C
PROOF OF LEMMA 1

For y ∈ {0, 1}n, define gy(Cin) = |Cin ∩ Bpn(y)|. Our
goal is to show that gy is strongly concentrated around its
expectation ECin [gy]. Note the following: gy is 1-Lipschitz
and J(Cin) = {k ∈ [2ρn] : Cin(k) ∈ Bpn(y)} is a certificate
of gy(Cin) where it follows that gy is 1-certifiable.

Since gy(Cin) is a binomial random variable, the value
floor(ECin [gy]) is a median. Set M[gy] = floor(ECin [gy]). Note
that R < 1 − H(p) implies that ECin [gy] (which is equal to∑2Rn

i=1 PCin(xi ∈ Bpn(y)) ≤ 2(R−1+H(p))n) is going to zero
in n. It follows that for large enough n, M[gy] = 0.

By Lemma 15, for ℓ > 0 the probability that gy >

ℓ is at most 2− log(e) ℓ
4+1. In conclusion, PCin(∃y ∈

{0, 1}n s.t. gy(Cin) > ℓ) = PCin(∪y∈{0,1}n{gy(Cin) > ℓ}) <
2n2− log(e)

ℓ(n)
4 +1.

APPENDIX D
PROOF OF LEMMA 3

Define g(Cin) = |A ∩ Cn|. Note the following: g(·) is
1-Lipshitz and J(Cin) = {m ∈ [2Rn] : Cin◦Cout(m) ∈ A} is a
certificate of g(Cin) where it follows that g(Cin) is 1-certifiable.

Since g(Cin) is a binomial random variable, the expected
value ECin [g] is a median. Set M[g] = ECin [g] = 2−(1−R)n|A|.
The desired result follows from Lemma 15.

APPENDIX E
PROOF OF LEMMA 14

Let W be the number of functions of the form gn :
{0, 1}n → {0, 1} that can be computed by a Boolean circuit
(of n inputs and 1 output) of size cns. We first show that
W < 22(s+1)ns+1

.
Note that each gate can compute one of 16 unique functions

from {0, 1}2 to {0, 1}. Furthermore, for a given gate, the
number of ways to choose 2 gate inputs from n circuit inputs,
cns − 1 gate outputs, and 2 constant inputs (i.e., 0 and 1) is
bounded above by (n+cns+1)2. It follows that W is bounded
above by (16(n+cns+1)2)cn

s

which in turn, for large enough
n, is bounded above by (ns+1)c2n

s

= 22c(s+1)ns logn. Done.
We now prove Lemma 14. Any function in Fn,r that is

computable by a Boolean circuit (of n inputs and rn outputs)
of size cns can be computed by some rn Boolean circuits (of
n inputs and 1 output) each of size cns. Hence, the number of
functions in Fn,r that can be computed by a Boolean circuit
(of n inputs and rn outputs) of size cns is bounded above by
W rn. We finish the proof by observing that W rn is smaller
than 2n

s+2
for large enough n.
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