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Abstract—The ever-increasing needs of supporting real-time
applications have spurred new studies on minimizing Age-
of-Information (AoI), a novel metric characterizing the data
freshness of the system. This work studies the single-queue
information update system and strengthens the seminal results
of Sun et al. on the following fronts: (i) When designing
the optimal offline schemes with full knowledge of the delay
distributions, a new fixed-point-based method is proposed with
quadratic convergence rate, an order-of-magnitude improvement
over the state-of-the-art; (ii) When the distributional knowledge
is unavailable (which is the norm in practice), two new low-
complexity online algorithms are proposed, which provably attain
the optimal average AoI penalty; and (iii) the online schemes
also admit a modular architecture, which allows the designer
to upgrade certain components to handle additional practical
challenges. Two such upgrades are proposed for the situations:
(iii.1) The AoI penalty function is also unknown and must be
estimated on the fly, and (iii.2) the unknown delay distribution
is Markovian instead of i.i.d. The performance of our schemes is
either provably optimal or within 3% of the omniscient optimal
offline solutions in all simulation scenarios.

Index Terms—Age-of-information, online algorithm, fixed-
point equation, stochastic approximation algorithm.

I. INTRODUCTION

Thanks to the accelerating growth of networked systems

in the past decades, the capability of providing real-time

status updates has been the cornerstone of many important

practical systems. Examples include remote health monitoring,

GPS location tracking and closed-loop drone control. Recent

development of the Internet of Things (IoT) also promises

real-time communication between numerous devices [3].

Since stale data is often of less value, it is crucial to optimize

the data freshness of the system. An elementary approach is to

transmit as many updates as possible. This, however, may clog

the network and consume excessive energy. Recently, Age-of-

Information (AoI) was introduced to characterize the level of

information freshness [4], which has since been the foundation

of many studies on data freshness control.
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Early AoI minimization works studied the model where

update packets arrive at the destination according to spe-

cific stochastic processes. [5], [6] studied the generate-at-

will model and showed that to minimize the average AoI,

the source node often has to wait before sending the next

packet even when the channel/queue is currently idle. [7],

[8] unified the freshness control [5] and remote estimation

settings of [9] under a new remote control setting and derived

the optimal joint source-&-destination policy. [10] found the

optimal scheduling policy of a joint network cost and AoI

minimization problem when multiple independent queues may

share a common network cost constraint.

This work revisits and significantly strengthens the existing

results [5], [6] with the following contributions: (i) When

designing the optimal offline schemes with full knowledge

of the delay distributions, all existing results [5]–[10] used

a bisection search to find the optimal policy, which exhibits

linear convergence rate. In contrast, we propose a fixed-point-

based method of computing the optimal policy under any ar-

bitrarily given AoI penalty function, which exhibits quadratic

convergence rate, an order-of-magnitude improvement over the

state of the art.

(ii) In most prior works [5]–[7], [9]–[13], the knowledge of

delay distribution is required before one can numerically find

the optimal waiting policy. In practice it may be difficult to

know the delay distribution a priori since each sample (i.e.,

packet transmission) takes a full round-trip-time to complete

and one may need many samples to accurately estimate the

probability density function, which can be exceedingly time

consuming. Furthermore, the delay distribution is constantly

subject to network topology changes and traffic fluctuations

[14], which further complicate the task of learning the distri-

bution. To address these issues, this work derives two new

low-complexity online algorithms for arbitrarily given AoI

penalty functions, and they provably converge to the optimum

without knowing the delay distribution, a result that could have

substantial impact on practical protocol designs.

(iii) The new online schemes admit a modular architecture,

which allows the designer to upgrade certain components to

tackle additional practical challenges. Two such upgrades are

proposed for the following two useful situations: Situation #1:

Existing works [5], [6] assumed that the AoI penalty function

γ(·) is known a priori. However, in practice, transmission

decision is often made at the source but the penalty is often

incurred at the destination. Therefore, it could be difficult for

the source to know the AoI penalty function γ(·) a priori.



A real-life analogy is that a vendor s (stands for the source)

understands that less fresh produce will make his/her customer

d (stands for the destination) unhappy but s may not know how

unhappy d would be until d eventually receives the (not-so-

fresh) produce. Furthermore, even d may not know how he/she

will react to the stale produce until he/she actually receives the

delivery. As a result, the AoI penalty function is not known

in advance and our goal is to design a near-optimal online

scheme with zero knowledge of either the delay distribution

or the γ(·) penalty function. In this work, we design such

a scheme by leveraging the monotonic regression method to

estimate any arbitrary, non-linear γ(·), which further broadens

the applicability.

Situation #2: The online schemes in (ii) provably converge

to optimality for any unknown i.i.d. delay. In practice, the

delay process may exhibit some memory/Markov behavior. We

have devised a more versatile scheme based on K-nearest-

neighbors (KNN). In our extensive simulation, even under the

most challenging setting of arbitrary unknown Markov delay

distribution and zero knowledge of γ(·), the performance of

the resulting scheme is always within 2% of the omniscient

offline optimal solution.

The rest of the paper is organized as follows. In Sec. II,

we make detailed comparison to existing works. In Sec. III,

we present our system model and problem formulation. In

Sec. IV, we derive the analytical results for the optimal

offline policy. Sec. V describes two online algorithms that

are provably convergent to the optimum under any unknown

i.i.d. delay distributions. Some practical issues are addressed

in Secs. VI (under i.i.d. delay setting) and VII (under Markov

delay setting). Numerical results are reported in Sec. VIII, and

we conclude our work in Sec. IX. Most of the proofs will be

provided in the appendices.

II. RELATED WORKS

One approach of handling unknown delay distribution is

to apply reinforcement learning (RL) [15], [16]. However,

none of these RL-based AoI minimization schemes has a

provable optimality guarantee and can be strictly suboptimal

in many cases. For example, while exhibiting some promising

performance, the RL scheme in [16] is not able to converge

to the optimal scheme in any of the experiments in [16].

In contrast, this work proposes two adaptive schemes that

converge to optimality both analytically and in numerical

experiments.

Additionally, some previous works proposed online algo-

rithms with bounded regret or provable performance [17], [18].

However, they all studied the simplest linear age penalty func-

tion or assumed the transmission delay is deterministic. For

example, a provably optimal online algorithm was derived in

[18] with the focus exclusively on linear AoI penalty function.

This works allows for non-linear AoI penalty function and

random transmission delay simultaneously. In terms of AoI

regret minimization, since our online schemes converge to

optimality, they achieve sub-linearly growing regret, the same

performance as in [18]. There are other related works on AoI

regret analysis, but the focus is on multiple sources [17] or

multiple channels [19] with deterministic delay, which is very

different from the two-way random delay setting in this work.

III. MODEL AND FORMULATION

A. System Model with Two-way Delay

Source

ACK

Destination
Forward Channel

with Delay Y

Backward Channel

with Delay Z

Fig. 1: Our system model with two-way delay.

Consider the system in Fig. 1, which comprises a source, a

destination, a forward source-to-destination (s2d) channel and

a backward destination-to-source (d2s) channel. We assume

the following ACK-based model: At any time instant t ∈ R+,

the source can generate a (status) update packet and transmit

it to the destination, the generate-at-will model [5], [6], [20].

When the destination receives the update packet, an ACK is

transmitted back to the source immediately. Once the source

receives the ACK, then it can either transmit the next update

packet immediately or wait for an arbitrary (but finite) amount

of time.1 After the next transmission, it again waits for ACK.

The process repeats itself indefinitely.

Both the s2d and d2s channels incur some random delay.2

We assume all packets are time stamped and describe the

detailed system evolution as follows.

Time sequences: The system consists of three discrete-

indexed real-valued non-negative random processes Xi, Yi,

and Zi, for all i ≥ 0. Xi is the waiting time of the i-th update

packet at the source; Yi (resp. Zi) is the random delay for the

i-th use of the s2d (resp. d2s) channel.

The instant when the i-th waiting time is over is denoted

by Si. That is, at time Si, the i-th packet is generated and

immediately transmitted. It is delivered to the destination at

time Di. The source will receive its ACK at time Ai. The

values of (Si, Di, Ai) refer to the absolute time instants while

the values of (Xi, Yi, Zi) represent the lengths of the intervals.

They are related by the following equations: Initialize A0 =
X0 = Y0 = Z0 = 0. For all i ≥ 1, we have Si = Ai−1 +Xi,

Di = Si + Yi, and Ai = Di + Zi. We call the time interval

[Ai−1, Ai) as the i-th round, which consists of the i-th waiting

time Xi at the source, the i-th forward delay Yi and backward

delay Zi. See Fig. 2. The AoI ∆(t) is defined by

∆(t) ≜ t−max{Si : Di ≤ t}. (1)

The AoI penalty function γ(·) : [0,∞) → [0,∞) quantifies

the cost of stale data. Three popular choices are: (i) linear

γlin(∆) = ∆ [5]; (ii) exponential γexp(∆) = ea∆−1 for some

1In this work, only after receiving the ACK can the source transmit the next
packet, a restrictive assumption that is widely used in the literature [1], [5]–[7],
[10]. For comparison, [21] removed this assumption and studied the benefits of
preemptively sending packets before ACK has arrived. Provably near-optimal
schemes were developed in [21] for general two-way delay settings.

2If we assume the d2s delay is zero with probability one, then the setting
is identical that of [5]. The consideration of random d2s delay is to provide
additional flexibility if needed.
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constant a > 0 [6]; and (iii) quadratic γqdr(∆) = ∆2 [5]. Our

results hold for any choice of γ(·) satisfying the technical

assumption described in the next paragraph.

Technical assumptions: We assume (i) there exist finite ymax,

zmax, and yzmin > 0 such that P(Yi ≤ ymax) = P(Zi ≤ zmax) =
P(Yi +Zi ≥ yzmin) = 1; (ii) (Yi, Zi) can be of arbitrary joint

distribution PY Z but the vector random process {(Yi, Zi) : i ≥
1} is stationary, Markov and ergodic; (iii) The AoI penalty

function γ(·) : [0,∞) → [0,∞) is a continuous and strictly

increasing function satisfying γ(0) = 0.

t

γ(Δ(t))

Si-1

Xi-1 Yi-1 Zi-1 Xi Yi Zi

Di-1 Ai-1 Si Di AiAi-2

Round i-1 Round i

G(Yi-1, Zi-1, Xi , Yi)

Fig. 2: Evolution of the AoI penalty function γ(∆(t)).

B. The Objective

Our goal is to minimize the long-term average AoI penalty:

β∗ ≜ inf
{Xi}

lim sup
T→∞

1

T

∫ T

0

E {γ(∆(t))} dt. (2)

To simplify (2), we define two deterministic functions:

G(y′, z′, x, y) ≜

∫ y′+z′+x+y

0

γ(t)dt−

∫ y

0

γ(t)dt (3)

G1(y
′, z′, x) ≜ E{G(y′, z′, x, Yi)|Yi−1 = y′, Zi−1 = z′}

(4)

where G1(y
′, z′, x) is the conditional expectation of

G(y′, z′, x, Yi) over Yi given Yi−1 = y′ and Zi−1 = z′.
The intuition behind (3) is that the shaded area in Fig. 2

is characterized by G(Yi−1, Zi−1, Xi, Yi). By noticing that

the overall area underneath γ(∆(t)) can be decomposed as

a summation of smaller sub-areas with shapes similar to the

shaded area G(Yi−1, Zi−1, Xi, Yi) in Fig. 2, the optimization

problem in (2) can be rewritten as

β∗ = inf
{Xi}

lim sup
n→∞

n
∑

i=1

E {G(Yi−1, Zi−1, Xi, Yi)}

n
∑

i=1

E {Yi−1 + Zi−1 +Xi}

. (5)

Since (5) is a Markov decision problem with stationary,

Markov and ergodic {(Yi, Zi)}, it suffices to find the optimal

policy for the single-round optimization problem instead (see

[5], [6] for the detailed derivation). The optimization problem

(5) can thus be simplified as

β∗ = inf
Xi

E {G1(Yi−1, Zi−1, Xi)}

E {Yi−1 + Zi−1 +Xi}
(6)

where the numerator of (6) follows from (4).

We conclude this subsection by defining a constant βZW that

would be useful for subsequent discussion.

βZW ≜
E {G1(Yi−1, Zi−1, 0)}

E {Yi−1 + Zi−1 + 0}
. (7)

That is, βZW is the objective function value in (6) when

evaluated using a Zero-Wait policy.

Lemma 1: We must have βZW < ∞.

Proof: By the assumption about ymax, zmax, yzmin, and the

monotonicity of γ(·), we have E{Yi−1}+E{Zi−1} ≥ yzmin >
0 and E{G1(Yi−1, Zi−1, 0)} ≤ E{G1(ymax, zmax, 0)} < ∞.

As a result, βZW < ∞.

IV. ANALYTICAL RESULTS

A. A Hitting-time-based Policy

At time Ai−1, the source has the knowledge of the past

delays Yi−1 and Zi−1 since all packets are time stamped. As a

result, we can write any waiting time rule Xi = ϕ(Yi−1, Zi−1)
as a function of (Yi−1, Zi−1).

Definition 1: We say a scheme S is of finite expected

duration (FED) if E{ϕ(Yi−1, Zi−1)} < ∞.
Practically speaking, it is crucial that the waiting time of each

packet transmission has finite expectation. We thus limit the

domain of the optimization problem of (6) to FED schemes

only and ignore schemes that are not of FED.

Once we specify a waiting time function ϕ(Yi−1, Zi−1), the

resulting3 averaged AoI penalty, not necessarily the minimum

one, becomes

Avg. AoI Penalty:
E {G1 (Yi−1, Zi−1, ϕ(Yi−1, Zi−1))}

E {Yi−1 + Zi−1 + ϕ(Yi−1, Zi−1)}
. (8)

For any FED scheme S , we denote its average AoI penalty by

βS , which is evaluated by (8).

Define

βUB ≜ lim
t→∞

γ(t) (9)

Note that the constant βUB can be either a finite constant 0 <
βUB < ∞ or infinity βUB = ∞ if γ(·) grows unbounded. We

then have the following lemma.

Lemma 2: For any arbitrary FED scheme S with average

AoI penalty βS , if βS < ∞, then βS ∈ [0, βUB).
Proof: See Appendix A.

The intuition of Lemma 2 is that βUB is a strict upper bound

for the performance of any reasonable scheme S (excluding

those poorly designed schemes having infinite average AoI

penalty βS = ∞).

Note that since zero-wait is a FED policy, by combining

Lemmas 1 and 2, we have

0 ≤ β∗ ≤ βZW < βUB ≤ ∞. (10)

We now describe a special scheme Γβ . For any given β ∈
[0, βUB), scheme Γβ has the following special decision rule:

Xi = ϕΓ,β(Yi−1, Zi−1)

≜ inf

{

t > 0 :
d

dt
G1(Yi−1, Zi−1, t) > β

}

. (11)

3The scheduling rule φ can be deterministic or randomized. In case of the
latter, the expectation in (8) takes the average over the randomness in φ.
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By (4), G1(Yi−1, Zi−1, t) is the expected AoI penalty (the

shaded area in Fig. 2) if the i-th waiting time is Xi = t.
Therefore, the decision rule ϕΓ,β in (11) essentially chooses

the hitting time for which the growth rate4 of the expected

AoI penalty G1(Yi−1, Zi−1, t) first hits the threshold β.

An important remark is that the input parameter β of the

above scheme Γβ must be within [0, βUB). The reason is due

to the following lemmas.

Lemma 3: For any given y′, z′, t < ∞, we have

d

dt
G1(y

′, z′, t)

= E {γ(y′ + z′ + t+ Yi)|Yi−1 = y′, Zi−1 = z′} . (12)

Proof: See Appendix B.

Lemma 4: For any arbitrary β ∈ [0, βUB), there exists

a tUB < ∞ such that d
dt
G1(y

′, z′, tUB) > β for all y′, z′.
Conversely, for any β ≥ βUB, d

dt
G1(y

′, z′, t) ≤ β for all finite

t, y′, z′ < ∞ values. See Appendix C for the proof.

Lemma 4 implies that for any β ∈ [0, βUB), the Xi value

computed by (11) satisfies Xi ≤ tUB < ∞ almost surely,

and the resulting Γβ is thus a FED scheme. On the other

hand, for any β ≥ βUB, the second half of Lemma 4 implies

that the Xi value computed by (11) is always infinite. The

resulting scheme thus has P(Xi = ∞) = 1 and is catastrophic

to the system. As a result, every time we describe/use the Γβ

scheme, it is critical to ensure the input parameter satisfying

β ∈ [0, βUB).
For this scheme Γβ , we use fΓ(β) to denote its average AoI

penalty, which can be computed by substituting the ϕ in (8)

with the ϕΓ,β in (11). The input argument “(β)” highlights the

fact that the average AoI penalty of the decision rule ϕΓ,β is

a function of the hitting time threshold β.

Proposition 1: For any FED scheme S with scheduling rule

ϕS and the corresponding average AoI penalty βS < ∞, the

following inequality must hold: fΓ(βS) ≤ βS .

The physical interpretation of this proposition is as follows.

For scheme S that satisfies βS < ∞, its average AoI penalty

must also satisfy βS ∈ [0, βUB) by Lemma 2. Since the new

scheme Γβ in (11) can take any arbitrary β ∈ [0, βUB) as

input, we can use βS as the hitting time threshold in (11).

Then fΓ(βS), the AoI penalty of the new scheme ΓβS
, will

be no worse than the average AoI penalty βS of the original

scheme S .

Proof: We provide high-level sketches. The details are

relegated to Appendix D.

For schemes S and ΓβS
, recall that ϕS(Yi−1, Zi−1) and

ϕΓ,βS
(Yi−1, Zi−1) are the waiting times for schemes S and

ΓβS
, respectively. For simplicity, we use ϕS and ϕΓ,βS

as

shorthand by dropping the input arguments (Yi−1, Zi−1).
Suppose we are in the event of ϕΓ,βS

≤ ϕS , i.e., the scheme

ΓβS
sends the i-th update earlier than the scheme S . During

the interval (ϕΓ,βS
, ϕS ], the growth rate of G1(Yi−1, Zi−1, t)

is strictly higher than βS . The reason is as follows. By the def-

inition of ϕΓ,βS
in (11), the growth rate of G1(Yi−1, Zi−1, t)

4As will be shown in Lemma 3, for any given (y′, z′), G1(y′, z′, t) is
differentiable with respect to t.

at time t = ϕΓ,βS
is greater than or equal to βS . Since the

growth rate of G1(Yi−1, Zi−1, t) is strictly increasing (due to

strictly increasing γ(·) and by Lemma 3), the growth rate of

G1(Yi−1, Zi−1, t) is strictly larger than βS during (ϕΓ,βS
, ϕS ].

Compared to the original scheme S , the new scheme ΓβS

avoids “higher-than-βS” AoI penalty accumulation rates dur-

ing the interval (ϕΓ,βS
, ϕS ], which in turn helps make its

average AoI penalty fΓ(βS) smaller than the benchmark βS .

Similarly, in the event of 0 ≤ ϕS < ϕΓ,βS
, during the

interval (ϕS , ϕΓ,βS
], the new scheme ΓβS

will experience

“no-higher-than-βS” AoI penalty accumulation rates since the

growth rate of G1(Yi−1, Zi−1, t) has not hit βS yet during

t ∈ (ϕS , ϕΓ,βS
], which again helps make fΓ(βS) lower than

βS .

Since in either case the average AoI penalty of ΓβS
has im-

proved over the benchmark βS , we have proven Proposition 1.

Recall that β∗ is the minimum of (6). Since β∗ ∈ [0, βUB)
by (10), Proposition 1 implies β∗ ≥ fΓ(β

∗). Since Γβ∗ is yet

another scheme, (6) implies β∗ ≤ fΓ(β
∗). Jointly we have

Corollary 1: The minimum average AoI penalty value β∗

is a root of the fixed-point equation

β = fΓ(β) (13)

over the domain [0, βUB).
One can complement this corollary by the following Lemma.

Lemma 5: For any given penalty function γ(·), the equation

β = fΓ(β) has a unique root in the domain β ∈ [0, βUB).
The proof of Lemma 5 is relegated to Appendix E. Jointly

Corollary 1 and Lemma 5 show that

Proposition 2: β∗ can be found by solving the fixed-point

equation (13) over the domain [0, βUB).
Moreover, if we know the value of β∗, then we can obtain

the optimal policy by plugging β∗ into the hitting time rule

ϕΓ,β(·, ·) in (11). Namely, the fixed-point equation not only

finds the β∗ but also finds a β∗-attaining optimal policy.

Remark 1: Proposition 2 is of similar form to [5, Theorem 3]

and [6, Theorem 1]. However, the way we derive Proposition

2 is new. In [5], [6], the authors first defined the corresponding

Lagrangian, then reformulated and solved it as a convex

optimization problem, and finally showed that it admits no

duality gap. In contrast, we first prove an intuitive result in

Proposition 1 and the optimality conditions then follow suit

naturally.

Remark 2: The function fΓ(β) can be computed easily by

(3), (4), (8), (11), together with the complete knowledge of

distribution PYi−1,Zi−1
.

Remark 3: Since β for the scheme Γβ must satisfy β ∈
[0, βUB), the corresponding average penalty value fΓ(β) is

defined only over the domain [0, βUB). It is possible to extend

the domain of fΓ(β) beyond [0, βUB) by defining fΓ(βUB) ≜
limβ→βUB

fΓ(β). Under this extended domain [0, βUB], it is

possible to have another fixed point βUB = fΓ(βUB) as

observed in [22]. At the same time, as explained in Lemma 4,

any β ≥ βUB will lead to schemes with P(Xi = ∞) = 1 and

such extended domain [0, βUB] is thus considered practically

irrelevant.
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B. Fast Fixed-point Iteration for Computing β∗

We now present a new way of computing β∗ using (13).

Proposition 3: Set β0 = 0 and iteratively compute βi =
fΓ(βi−1) for all i = 1, 2, 3, · · · . The resulting sequence

{βi : i ≥ 1} is non-increasing and converges to the optimal β∗.

Furthermore, if we also assume fΓ(β) is doubly continuously

differentiable in an open neighborhood of β∗,5 then the

convergence speed of this iterative computation is quadratic.

Proof: We first note that our function fΓ(β) is defined

only over the domain [0, βUB). As a result, we first need to

prove that βi ∈ [0, βUB) for all i ≥ 1. Since β0 = 0 ∈ [0, βUB),
the corresponding scheme Xi = ϕΓ,β(Yi−1, Zi−1) in (11)

always leads to Xi = 0, the zero-wait policy. As a result,

β1 = fΓ(0) = βZW. By (10), we have β1 ∈ [0, βUB).

We now prove that βi+1 ≤ βi ≤ β1 < βUB for all i ≥ 1. For

any i ≥ 1, since βi = fΓ(βi−1), the value of βi is the average

AoI penalty for the scheme Γβi−1
. If we temporarily call the

scheme Γβi−1
as Scheme S , then we can apply Proposition 1

and obtain

fΓ(βi) ≤ βi. (14)

The sequence {βi : i ≥ 1} is thus non-increasing. Since βi ≥
β∗ for all i ≥ 1, the sequence converges and we also have

limi→∞ βi ∈ [0, βUB).

Since limi→∞ βi must be a root of β = fΓ(β), Lemma 5

implies limi→∞ βi = β∗.

We now establish the quadratic convergence by proving the

following inequality for all i ≥ i0, where i0 is the first time

βi enters the neighborhood of β∗ for which fΓ(β) is doubly

differentiable.

Applying Taylor’s expansion to fΓ(β) near β∗, we have:

βi+1 − β∗ = fΓ(βi)− β∗

=

(

fΓ(β
∗) + (βi − β∗)f ′

Γ(β
∗) +

f ′′
Γ (zi)

2
(βi − β∗)2

)

− β∗

for some zi ∈ [β∗, βi]. Note that since fΓ(β) is doubly

continuous in an open neighborhood containing β∗ and since

β∗ minimizes fΓ(β), we must have f ′
Γ(β

∗) = 0. Then, by (i)

fΓ(β
∗) = β∗ and (ii) f ′

Γ(β
∗) = 0 we have

βi+1 − β∗ =
f ′′
Γ (zi)

2
(βi − β∗)2. (15)

Since zi ∈ [β∗, βi] ⊆ [0, β1], (15) implies

|βi+1 − β∗| ≤

(

max
z∈[β∗,β1]

|f ′′
Γ (z)|

2

)

· |βi − β∗|2, ∀i ≥ i0

(16)

5For instance, if (i) γ is doubly continuously differentiable and (ii) Yi and
Zi are discrete random variables with NY < ∞ and NZ < ∞ points having
strictly positive probabilities, then fΓ(β) is doubly continuously differentiable
for the entire domain (0, βUB) expect for up to NY · NZ points. Then as
long as the optimal β∗ does not fall into any of the NY · NZ points, then
this assumption holds. Another scenario for which such assumption holds is
if both Y and Z are well-behaved continuous random variables, e.g., both
being exponential or both being log-normal, etc. In this scenario, fΓ(β) is
doubly continuously differentiable for the entire domain (0, βUB) except for
a single point βsingular = sup{β ≥ 0 : fΓ(β) = βZW}.

We can further relax the condition i ≥ i0 by noting that

|βi+1 − β∗|

≤ max

(

max
z∈[β∗,β1]

|f ′′
Γ (z)|

2
,

|β1 − β∗|

(βi0−1 − β∗)2

)

· |βi − β∗|2,

∀i ≥ 1 (17)

which uses the fact that for all i ∈ [1, i0), we have

|βi+1 − β∗| ≤ |β1 − β∗|, and
|βi − β∗|2

|βi0−1 − β∗|2
≥ 1 (18)

due to the monotonicity of {βi}. The inequality in (17) implies

quadratic convergence rate of {βi}.

V. TWO DISTRIBUTION-OBLIVIOUS ONLINE ALGORITHMS

FOR THE I.I.D. DELAY SETTING

In the sequel, we propose two online algorithms that do

not need the detailed probability distribution PYi−1,Zi−1
. This

section considers the simpler setting in which the delay

(vector) process {(Yi, Zi) : i ≥ 1} is i.i.d., and we derive

two online algorithms that are provably convergent to the

optimal solution. Some practical issues will then be discussed

in Sec. VI. The general case where {(Yi, Zi) : i ≥ 1} can

be any ergodic stationary Markov process is considered in

Sec. VII, where we explain how the designed algorithms can

be seamlessly modified to accommodate the Markovian delay

even though we no longer have provable convergence.

Before proceeding, we introduce a few new notations nec-

essary when describing the algorithm. For any β ∈ [0, βUB)
and any 0 ≤ y′, z′ < ∞, we define

g1(y
′, z′, β) ≜ G1(y

′, z′, ϕΓ,β(y
′, z′)) (19)

g2(y
′, z′, β) ≜ y′ + z′ + ϕΓ,β(y

′, z′) (20)

g1(β) ≜ EYi−1,Zi−1
{g1(Yi−1, Zi−1, β)} (21)

g2(β) ≜ EYi−1,Zi−1
{g2(Yi−1, Zi−1, β)} (22)

Recalling that fΓ(β) is the average AoI penalty when Xi =
ϕΓ,β(Yi−1, Zi−1), by (8) we have

fΓ(β) =
g1(β)

g2(β)
, ∀β ∈ [0, βUB). (23)

A. Algorithm 1: Fixed-point-iteration-based Solution

The detailed step is described in Algorithm 1. At the

beginning of the i-th round (Line 4), the algorithm updates the

value βi, see Lines 6 and 8, and then use (11) to compute the

waiting time Xi = ϕΓ,βi
(Yi−1, Zi−1) (Line 10), and update

two register values (Lines 12 and 13). Then wait for Xi time

before sending out the i-th packet. After sending the packet,

source waits for the ACK of the i-th packet (Line 14) and the

iteration continues.

We now elaborate how to compute βi in Algorithm 1 in

Lines 6 and 8, which would then be used to find Xi in Line 10.

We initialize β1 = β2 = 0 in Line 6. For i ≥ 3, we use

the g1(y
′, z′, β) and g2(y

′, z′, β) functions defined in (19) and

(20), respectively, and compute

βi =

∑i−1
j=1 g1(Yj−1, Zj−1, βj)

∑i−1
j=1 g2(Yj−1, Zj−1, βj)

=

∑i−1
j=1 g1(Yj−1, Zj−1, βj)

Si−1
.

(24)
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The denominator of (24) is derived by noting that

g2(Yj−1, Zj−1, βj) = Yj−1 + Zj−1 + ϕΓ,βj
(Yj−1, Zj−1)

= Yj−1 + Zj−1 +Xj = Sj − Sj−1, ∀j ∈ [1, i− 1] (25)

and hence the denominator of (24) can be simplified by the

telescoping argument
∑i−1

j=1 g2(Yj−1, Zj−1, βj) = Si−1. That

is why we use the register snd.time to record the latest “send

time” in Line 13 and then use this value as the denominator

in Line 8.

In fact, one can prove that the snd.time of round 1 is

always S1 = 0 and the snd.time of round 2 is S2 > 0. Note

that in the beginning of round i, we use the snd.time value

of the previous round as the denominator of βi in Line 8, also

see (24). Therefore, only at round i = 3 can we start to have

a strictly positive denominator in Line 8 (and in (24)). That is

why we hardwire β1 = β2 = 0 in Line 6.

Algorithm 1 Fixed-point-iteration-based online algorithm

Universal input for every round: A set of statistics of Y ,

denoted as SYγ

Per-round input: (Yi−1, Zi−1)
Per-round output: Waiting time Xi in the i-th round

1: Initialize Y0 = Z0 = A0 = 0 (see Sec. III-A)

2: Maintain two scalar registers for snd.time and

sum.AoI.pnlty
3: Initialize snd.time = sum.AoI.pnlty = 0
4: for time instant Ai−1, i.e., the beginning of round i =

1, 2, 3, · · · do

5: if i ≤ 2 then

6: βi = 0
7: else

8: βi =
sum.AoI.pnlty

snd.time
, which implements (24)

9: end if

10: Use (11) and SYγ to compute Xi = ϕΓ,βi
(Yi−1, Zi−1)

11: Use (19) and SYγ to compute g1(Yi−1, Zi−1, βi)
12: Update sum.AoI.pnlty = sum.AoI.pnlty +

g1(Yi−1, Zi−1, βi)
13: Update snd.time = snd.time+ Yi−1 + Zi−1 +Xi

14: Wait for Xi time, send the i-th packet, and wait for

the ACK to start the next round

15: end for

The numerator of (24) can also be simplified. That is, there

is no need to repeat the summation
∑i−1

j=1 g1(Yj−1, Zj−1, βj)
for each i. Instead, we only need to “update” the sum by

adding the increment from the previous upper limit i − 2 to

the new upper limit i− 1, as shown in Line 12 of Algorithm

1. By combining these two simplifications, the actual update

of βi is carried out in Line 8 of Algorithm 1.

B. Intuition of Algorithm 1

Note that each g1(Yj−1, Zj−1, βj) term in the summation

can be viewed as the empirical AoI penalty experienced during

time interval (Sj−1, Sj). As a result, (24) computes the ratio

of the past total AoI penalty over the past duration [0, Si−1],
which is essentially the empirical average AoI penalty. We

then use it as the new threshold βi to decide the Xi =
ϕΓ,βi

(Yi−1, Zi−1) for the i-th round. This closely follows the

spirit of the fixed-point iteration

βi = fΓ(βi−1) =
g1(βi−1)

g2(βi−1)
(26)

in Proposition 3. The differences between (24) and (26) are

(i) (24) not only depends on βi−1 but also on {βj : j ≤
i− 1} and (ii) (24) uses the empirical g1(Yj−1, Zj−1, βj) and

g2(Yj−1, Zj−1, βj) rather than the expectations g1(βi−1) and

g2(βi−1). Therefore, {βi} in (24) is a random process but {βi}
in Proposition 3 (also in (26)) is a deterministic sequence.

C. Knowledge Required to Run Algorithm 1

In order to run Algorithm 1, we need to compute

ϕΓ,β(y
′, z′, β) and g1(y

′, z′, β) using (11) and (19), respec-

tively. Recall that in this section (Sec. V) we only consider the

i.i.d. vector random process {(Yi, Zi) : i ≥ 1}. By combining

(3), (4), (11), (12) and (19), we have a simplified version

ϕΓ,β(y
′, z′) = inf

{

t > 0 : E {γ(y′ + z′ + t+ Y )} > β
}

(27)

g1(y
′, z′, β) = EY

{

∫ y′+z′+φΓ,β(y
′,z′)+Y

Y

γ(t)dt

}

. (28)

Both still require some knowledge of the statistics of Y . That

is why in Algorithm 1, we use a notation SYγ to denote the

needed Statistics of Y (SY) and we clearly indicate that SYγ

is needed in Lines 10 and 11. As we will see, the set of needed

statistics depends on the AoI penalty function γ(·) and this is

why we have γ in the subscript of SYγ .

We discuss the cases of the most popular penalty functions

γlin(·), γqdr(·), and γexp(·). Note that the proposed algorithm

is not limited to the above choices and can be tailored for

other choices of γ(·) satisfying the technical assumption (iii)

described in Sec. III-A. One just has to analyze the needed

SYγ separately for other classes of penalty functions.

Case 1: Linear penalty γlin(∆) = ∆. We use ϕSY
lin,β(y

′, z′)
to denote the waiting time function ϕΓ,β(y

′, z′) specialized for

γlin(∆). Similarly, gSY
lin,1(y

′, z′, β) denotes the g1(y
′, z′, β) spe-

cialized for γlin(∆). The superscript “SY” indicates that this

function requires (knowing) some Statistics of PY . Applying

simple calculus to (3), (4), (11), and (19) shows that

ϕSY
lin,β(y

′, z′) = max (β − E{Y } − y′ − z′, 0) (29)

gSY
lin,1(y

′, z′, β) =

(

y′ + z′ + ϕSY
lin,β(y

′, z′)
)2

2
+
(

y′ + z′ + ϕSY
lin,β(y

′, z′)
)

E{Y }. (30)

From (29) and (30), it is clear that to calculate ϕSY
lin,β(y

′, z′)

and gSY
lin,1(y

′, z′, β), the only statistical knowledge we need is

a scalar SYγ = E{Y }.

Remark 4: In the case of the i.i.d. {(Yi, Zi) : i ≥ 1} and

the linear penalty γlin(∆) = ∆, the following modification of

Algorithm 1 will lead to a provably-convergent-to-optimality

online algorithm that completely waives the need of statistical
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knowledge SYγ = E{Y }. To that end, we note that the

objective function (6) can be simplified as

β∗ = inf
Xi

E
{

1
2 (Yi−1 + Zi−1 +Xi)

2
}

E {Yi−1 + Zi−1 +Xi}
+ E{Y } (31)

in the case of i.i.d. {(Yi, Zi) : i ≥ 1} and the linear penalty

γlin(∆) = ∆, which is also observed in [5], [18]. Since the

term E{Y } on the right-hand side of (31) is not dependent

on the decision variable Xi, if we define an auxiliary variable

ζ ≜ β − E{Y }, then (31) becomes

ζ∗ = β∗ − E{Y } = inf
Xi

E
{

1
2 (Yi−1 + Zi−1 +Xi)

2
}

E {Yi−1 + Zi−1 +Xi}
. (32)

Using the auxiliary variable ζ, the modified waiting time

function and empirical AoI penalty in Algorithm 1 then

become

ϕ̃lin,ζ(y
′, z′) = max (ζ − y′ − z′, 0) (33)

g̃lin,1(y
′, z′, ζ) =

(

y′ + z′ + ϕ̃lin,ζ(y
′, z′)

)2

2
(34)

where ϕ̃lin,ζ(y
′, z′) and g̃lin,1(y

′, z′, ζ) no longer need the

knowledge of E{Y }. Comparing (33), (34) with (29) and

(30), this is as if we are facing a system with E{Y } = 0
being known. Therefore, we can apply the same Algorithm 1

on finding ζ∗ with no modification other than (33) and (34).

However, the above modification using the auxiliary variable

only applies to the case of i.i.d. {(Yi, Zi) : i ≥ 1} and the

linear penalty γlin(∆) = ∆, where E{Y } is separated from

other terms (see (31)).

Case 2: Exponential penalty γexp(∆) = ea∆ − 1 for a

constant a that is known globally. Similar to the previous

case, we use ϕSY
exp,β(y

′, z′) and gSY
exp,1(y

′, z′, β) to describe the

ϕΓ,β(y
′, z′) and g1(y

′, z′, β) specialized for γexp(∆). Again,

applying simple calculus to (3), (4), (11), and (19) shows that

ϕSY
exp,β(y

′, z′)

= max

(

ln (β + 1)− ln
(

E{eaY }
)

a
− y′ − z′, 0

)

(35)

gSY
exp,1(y

′, z′, β)

=

(

ea(y
′+z′+φSY

exp,β(y
′,z′)) − 1

)

E{eaY }

a
−
(

y′ + z′ + ϕSY
exp,β(y

′, z′)
)

. (36)

From (35) and (36), it is clear that to calculate ϕSY
exp,β(y

′, z′)

and gSY
exp,1(y

′, z′, β), the only statistical knowledge we need is

a scalar SYγ = E{eaY } where a is the exponent of the γexp(·)
that is known globally in advance.

Case 3: Quadratic γqdr(∆) = ∆2. We use ϕSY
qdr,β(y

′, z′) and

gSY
qdr,1(y

′, z′, β) to describe the ϕΓ,β(y
′, z′) and g1(y

′, z′, β)

specialized for γqdr(∆). We then have

wqdr(β) ≜ ✶{β+(E{Y })2≥E{Y 2}}·
(

√

β + (E{Y })2 − E{Y 2} − E{Y }
)

(37)

ϕSY
qdr,β(y

′, z′) = max (wqdr(β)− y′ − z′, 0) (38)

gSY
qdr,1(y

′, z′, β) =

(

y′ + z′ + ϕSY
qdr,β(y

′, z′)
)3

3

+
(

y′ + z′ + ϕSY
qdr,β(y

′, z′)
)2

E{Y }

+
(

y′ + z′ + ϕSY
qdr,β(y

′, z′)
)

E{Y 2}. (39)

From (37) to (39), it is clear that to calculate ϕSY
qdr,β(y

′, z′)

and gSY
qdr,1(y

′, z′, β), the only statistical knowledge we need is

a pair SYγ =
(

E{Y },E{Y 2}
)

.

Depending on which γ(·) is considered, the corresponding

ϕΓ,β(·, ·) and g1(·, ·, ·) functions in Lines 10 and 11 are

different. For ease of exposition, we introduce the following

notation.

(i) ΞSY
lin denotes Algorithm 1 when specialized for γlin(∆) =

∆. In this case SYγ = E{Y }.

(ii) ΞSY
qdr denotes Algorithm 1 when specialized for γqdr(∆) =

∆2. In this case SYγ =
(

E{Y },E{Y 2}
)

.

(iii) ΞSY
exp denotes Algorithm 1 when specialized for

γexp(∆) = ea∆ − 1. In this case SYγ = E{eaY }.

One remarkable feature of Algorithm 1 is that instead of

requiring the knowledge of the entire delay distribution (e.g.,

pdf or cdf or pmf), it requires only a scalar statistic (Cases 1

and 2) or a pair of statistics (Case 3).

D. Feasibility and Convergence of Algorithm 1

One implicit but key assumption in Algorithm 1 is that when

describing the ϕΓ,β scheme, we require the input parameter

β to be in the range [0, βUB). Therefore, the feasibility of

Algorithm 1 hinges on that all βi computed in Line 8 are

in the range [0, βUB). We affirm this feasibility condition as

follows.

Lemma 6: For any γ(·) function, the random process βi

computed by the iterative formula (24) satisfies

sup{βi : i ∈ [1,∞)} ≤ βmax < βUB (40)

almost surely for some constant βmax.

Proof: See Appendix G.

For example, for the linear, quadratic, and exponential γ(·),
we have βUB = ∞. Since βi is the empirical average AoI

penalty (which remains finite all the time), the condition

βi < βUB is trivially true. However, for the signal-agnostic

sampling of the Ornstein-Uhlenbeck (OU) process [22], the

equivalent AoI penalty is γ(∆) = σ2

2θ (1 − e−2θ∆), and

the corresponding βUB = σ2

2θ . As a result, the inequality

βi < βUB becomes a non-trivial condition that needs to

carefully examined. Lemma 6 guarantees βi < βUB always

holds regardless whether βUB ≜ lim∆→∞ γ(∆) is infinite or

finite.

We now present the optimality results.
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Proposition 4 (Convergence in probability): There exist α ∈
(0, 0.5) and c1, c2, c3, c4 > 0 such that ∀i ≥ 1,

P

(

βi+1 < β∗ − c1 · i
−(0.5−α)

)

≤ c2 · exp
(

−c3 · i
2α
)

(41)

E{βi − β∗} ≤ c4 · i
−(0.5−α) (42)

Proof: See Appendices H and I.

Corollary 2 (Convergence in the 2nd mean (the L2 norm)):

The random process {βi} computed in (24) converges to β∗

in the 2nd mean (or equivalently the L2 norm).

Proof: See Appendix J.

E. Algorithm 2: A Root-finding-based Online Algorithm

A close look at Algorithm 1 shows that it consists of

two components. Firstly, create a (random) sequence βi that

eventually converges to the optimal β∗. Secondly, use each βi

to compute the waiting time Xi = ϕΓ,βi
(Yi−1, Zi−1) for the

i-th round. This decoupled structure immediately prompts the

following question: Can we design a different online algorithm

of computing βi that also converges to β∗? If so, then the

scheme will eventually have the optimal β∗ and the waiting

time Xi = ϕΓ,β∗(Yi−1, Zi−1) will also become optimal.

This observation prompts the second online algorithm that

uses the Robbins-Monro algorithm to compute/update βi. All

the subsequent discussion for this new algorithm assumes

βUB = limt→∞ γ(t) = ∞. The reason why we impose this

non-trivial assumption will be provided in Sec. V-G.

By Lemma 5, β∗ is the unique root of (13). Since g1(β), and

g2(β) in (21) and (22) are both finite for any β ∈ [0, βUB) =
[0,∞), β∗ is also the unique root of the equation

β · g2(β)− g1(β) = 0. (43)

Since g1(β) and g2(β) take the expectations of the functions

g1(·, ·, ·) and g2(·, ·, ·), respectively, the task of finding β∗ can

be solved by the Robbins-Monro algorithms [23], [24] that

find the root of (43), which results in our new Algorithm 2.

Algorithms 1 and 2 are very similar. Specifically, both use

the first two rounds i ≤ 2 for initialization. The computed βi

is then used to compute the waiting time Xi (see Lines 8 and

10 of Algorithm 1 and Lines 8 and 10 of Algorithm 2) in the

same way. The main difference between Algorithms 1 and 2

is how βi is computed. For any step-size parameter η > 0, for

all i ≥ 3, Line 8 of Algorithm 2 essentially computes

βi = βi−1

−
η

i
·
(

βi−1 · g2(Yi−2, Zi−2, βi−1)− g1(Yi−2, Zi−2, βi−1)
)

(44)

where g1(·, ·, ·) and g2(·, ·, ·) are defined in (19) and (20),

respectively.

Algorithm 2 Root-finding-based (Robbins-Monro) online al-

gorithm

Universal input for every round: η and SYγ (a set of

statistics of Y )

Per-round input: (Yi−1, Zi−1)
Per-round output: Waiting time Xi in the i-th round

1: Initialize Y0 = Z0 = A0 = 0 (see Sec. III-A)

2: Maintain two scalar registers curr.g1 and curr.g2
3: Initialize curr.g1 = curr.g2 = 0
4: for time instant Ai−1, i.e., the beginning of round i =

1, 2, 3, · · · do

5: if i ≤ 2 then

6: βi = 0
7: else

8: βi = βi−1−
η
i
·(βi−1 · curr.g2− curr.g1) based

on (44)

9: end if

10: Use (11) and SYγ to compute Xi = ϕΓ,βi
(Yi−1, Zi−1)

11: Use (19), βi, SYγ to compute curr.g1 =
g1(Yi−1, Zi−1, βi)

12: curr.g2 = Yi−1 + Zi−1 +Xi (see (20))

13: Wait for Xi time, then send the i-th packet, and wait

for the ACK to start the next round

14: end for

The update rule in (44) follows from standard Robbins-

Monro algorithm proposed in [23] since conditioning on the

previous βi−1 value, we have

E
{

βi−1 · g2(Yi−2, Zi−2, βi−1)− g1(Yi−2, Zi−2, βi−1)
∣

∣βi−1

}

= βi−1 · E{g2(Yi−2, Zi−2, βi−1)|βi−1}

− E{g1(Yi−2, Zi−2, βi−1)|βi−1} (45)

= βi−1 · g2(βi−1)− g1(βi−1) (46)

where (46) follows from the facts that (i) {(Yi−2, Zi−2)} is

independent of {(Yj , Zj)}
j−3
i=0 ; (ii) βi−1 in (44) was computed

by the history of {(Yj , Zj)}
j−3
i=0 and is thus independent of

Yi−2 and Zi−2; and (iii) the definitions in (21) and (22).

Blum [24] proved that the standard Robbins-Monro algo-

rithm (i.e., {βi} computed by (44)) converges to the unique

root (i.e., β∗) almost surely, provided that the following three

conditions are met.

(i) {βi} computed by (44) is uniformly bounded.

(ii) β · g2(β)− g1(β) is non-decreasing.

(iii) 0 < d
dβ

(β · g2(β)− g1(β))
∣

∣

∣

β=β∗

< ∞.

By proving that all three conditions hold in our AoI penalty

minimization setting, we have

Proposition 5 (Almost sure convergence): For any η > 0,

the sequence {βi} computed in (44) converges to β∗ almost

surely.

Proof: See Appendix M.

F. Knowledge Required to Run Algorithm 2

Algorithm 2 requires the computation of g1(y
′, z′, β),

g2(y
′, z′, β) and ϕΓ,β(y

′, z′) for any (Yi−1 = y′, Zi−1 = z′).

8



Since g2(y
′, z′, β) = y′ + z′ + ϕΓ,β(y

′, z′) (see (20)), it is

clear that Algorithm 2 only needs to compute g1(y
′, z′, β) and

ϕΓ,β(y
′, z′), which is also needed by Algorithm 1. From the

discussion in V-C, we conclude that Algorithm 2 requires the

same statistics of Y (i.e., SYγ) as Algorithm 1.6

For ease of future reference, we introduce another three

notations for the corresponding online algorithms.

(i) ΛSY
lin denotes Algorithm 2 when specialized for the linear

AoI penalty function γlin(∆) = ∆;

(ii) ΛSY
qdr denotes Algorithm 2 when specialized for the

quadratic AoI penalty function γqdr(∆) = ∆2;

(iii) ΛSY
exp denotes Algorithm 2 when specialized for the ex-

ponential AoI penalty function γexp(∆) = ea∆ − 1

where we use the Λ schemes for the Robbins-Monro-based

solution in this subsection (Ξ is reserved for the fixed-point-

based scheme in Sec. V-A). The superscript SY indicates that

these three schemes require the Statistics of Y .

G. Two Critical Differences between Algorithms 1 and 2

Difference #1: Algorithm 2 can be applied only if the AoI

penalty function γ(·) satisfies βUB = limt→∞ γ(t) = ∞ while

Algorithm 1 does not require this restrictive assumption. The

reason is as follows. Suppose βUB < ∞. We note that the

update rule (44) starts from the previous βi−1 value and then

adds a random disturbance term. In the initial rounds (when

i is still small), the step size η
i

is still large. Therefore, the

new βi after random perturbation may be outside the target

range [0, βUB). The impact of possibly having βi ≥ βUB

is catastrophic since it immediately results in an infinite

waiting time Xi = ϕΓ,βi
(·, ·) (see the discussion on βUB in

Sec. IV-A) that halts the entire system. This is the reason why

Algorithm 2, at least in its current form, is feasible only under

the assumption βUB = ∞, which guarantees βi < βUB = ∞
will always be within the right range.

One way to avoid having βi ≥ βUB is to choose a small

η to begin with, see (44). However, choosing a small η will

adversely affect the convergence speed even though eventually

it still converges to optimum. This leads to the second main

difference.

Difference #2: Finding the right step size η
i

that balances the

convergence speed and stability is important for the Robbins-

Monroe algorithms. For comparison, there is no step-size

parameter in the fixed-point-based solution in Algorithm 1.

In a broad sense, the fixed-point update rule in Algorithm 1

which uses the old empirical average as the new βi is able

to “self-regulate” the perturbation of each update step without

an explicitly specified step size needed in a Robbins-Monro

algorithm.

Remark 5: For the scenario of βUB < ∞, it is possible to add

a projection operation to the Robbins-Monro algorithm when

updating βi in (44). One natural choice is to project βi back

6As is discussed in Remark 4, in the case of i.i.d. {(Yi, Zi) : i ≥ 1}
and the linear penalty γlin(∆) = ∆, E{Y } is separated from other terms
in the objective function (see (31)). Hence, one can design a Robbins-Monro
online algorithm based on Algorithm 2 that does not require SYγ by using

φ̃lin,ζ(y
′, z′) and g̃lin,1(y

′, z′, ζ) (see (33) and (34)). Also see [18] for a
similar Robbins-Monro-based online algorithm that waives the need of SYγ

based on the observation E{Y } being separated from other terms.

to [0, βUB] so that all βi ≤ βUB. However, such immediate

modification still does not work since we need βi < βUB with

strict inequality (note that βi = βUB still leads to Xi = ∞).

As will be seen in the numerical results, Algorithm 1 offers

superior/equal performance to Algorithm 2 while being more

robust on all scenarios without the need of fine tuning step

sizes. We thus leave the generalization of Algorithm 2 for the

scenario of βUB < ∞ as future work.

VI. ADDRESSING PRACTICAL ISSUES IN THE I.I.D. DELAY

SETTING

A. Using Running Average to Replace SYγ

Note that both Algorithm 1 (Sec. V-A) and Algorithm 2

(Sec. V-E) require the knowledge of SYγ , some statistics of

Y , to run. Since estimating a statistic is much easier than

learning the entire distribution PY , we can further substitute

the values of SYγ in Algorithms 1 and 2 by the running

empirical averages to obtain truly distribution-oblivious online

algorithms.

For example, consider the linear γlin(∆) = ∆, in which case

SYγ = E{Y }. We first set the window size NRA > 0. Then,

for i = 1 (at the beginning of the first round), we use the

value 0 as the estimate of E{Y }. For i ≥ 2, we compute the

running empirical average that has a fixed window size NRA:

1

min(i− 1, NRA)

i−1
∑

j=min(1,i−NRA)

Yj . (47)

The complexity of computing the running empirical average

is O(1) per slot, since for every round one can simply add the

latest term Yi−1 and subtract the oldest term Yi−NRA
.

Once we replace the statistics SYγ by its running average,

we can carry out the computation of Lines 10 and 11 of

Algorithm 1 (resp. Algorithm 2) without knowing the true

value of SYγ . Similar RA-based substitution can be applied

to other non-linear γ(·) as well, including γqdr(·) and γexp(·).
We denote the resulting online algorithms by ΞRA

lin , ΞRA
qdr and

ΞRA
exp (resp. ΛRA

lin , ΛRA
qdr and ΛRA

exp) for the fixed-point-based

(resp. Robbins-Monro-based) algorithm.

B. The Case of Unknown AoI Penalty Function γ(·)

In all the previous sections, we implicitly assume that the

source has perfect knowledge of the AoI penalty function

γ(·), which may not always hold in real world. In particular,

the AoI penalty depends on the specific application that is

currently running at the destination. Although the source is

able to compute the value of the AoI using the time stamps, it

may not have access to the application layer (γ(∆) value)

at the destination. Even the destination may not have full

knowledge of its own AoI penalty function. See the discussion

in Sec. I. This section addresses this important practical need

of estimating γ(·) on the fly.

For any i, when the destination receives the update packet

at time Si + Yi, if we denote (Yi−1 = y′, Zi−1 = z′, Xi =
x, Yi = y) and define pi ≜ y′ + z′ + x + y, then the peak

AoI penalty at that time is γ(pi) (see Fig. 2). Suppose the

destination does not have full knowledge of γ(·). Instead,

9



destination can observe how good/poor the system state is at

that time instant and use it to estimate the scalar AoI penalty

value γ(pi). For example, say at time Si + Yi, the system is

on the brink of major disruption due to the inability to receive

update packets for a long time (large pi value), then the AoI

penalty γ(pi) value is likely to be large. On the contrary,

if at the time of receiving the latest packet, the system is

still functioning normally, then the γ(pi) value is likely to

be small. Since destination estimates γ(pi) by observing the

system state, we assume that destination knows the value of

qi = γ(pi) + ni, where ni’s are i.i.d. zero-mean Gaussian

random variables that represent the estimation/observation

error. The values of the pair (pi, qi) is then fed back to the

source via ACK.

At the i-th round, the source maintains the set of the

past Nγ̂ observations Sγ̂ = {(pj , qj)}
i−1
j=i−Nγ̂

. Any (pi, qi)
outside of this set is considered too old and is excluded from

consideration. Our goal is to estimate the true γ(·) using the

noisy observations Sγ̂ .

Step 1: Since the penalty function γ(·) is non-negative and

satisfies γ(0) = 0, we first add the point (0, 0) to the set Sγ̂ .

Step 2: We sort and relabel the elements of Sγ̂ in an ascend-

ing order of pi and thus we have 0 = p1 ≤ p2 ≤ · · · ≤ pNγ̂+1.

Note that since γ(·) is an increasing function, the sequence

{γ(pi)} after sorting is also increasing. However, with noisy

observation qi = γ(pi)+ni the corresponding {qi}
Nγ̂+1
i=1 may

not be an increasing sequence.

Step 3: Since the AoI analysis and scheduler designs

rely heavily on the assumption that γ(·) is monotonically

increasing, our plan is to first solve the following quadratic

programming problem

min
{q̂i}

Nγ̂+1

i=1

Nγ̂+1
∑

i=1

(q̂i − qi)
2

subject to q̂i ≤ q̂i+1, 1 ≤ i ≤ Nγ̂ (48)

that gives us a new sequence of pairs (pi, q̂i) that is non-

decreasing in both coordinates. We then set the estimated AoI

penalty function γ̂(·) to be a piece-wise linear function with

Nγ̂ pieces. For all i ∈ [1, Nγ̂ − 1], the i-th line segment

is connecting the two pairs (pi, q̂i) and (pi+1, q̂i+1). The

last segment (i = Nγ̂) is starting from (pNγ̂
, q̂Nγ̂

), going

through (pNγ̂+1, q̂Nγ̂+1), and extending all the way to infinity.

Mathematically, we can write γ̂(·) as follows.

γ̂(t) =















q̂i +
t−pi

pi+1−pi
(q̂i+1 − q̂i) if t ∈ [pi, pi+1],

1 ≤ i ≤ Nγ̂

q̂Nγ̂+1 +
t−pNγ̂+1

pNγ̂+1−pNγ̂

(q̂Nγ̂+1 − q̂Nγ̂
) if t ≥ pNγ̂+1.

(49)

In the literature, performing Step 3 to obtain the estimate

γ̂(·) is termed monotonic regression or isotonic regression. 7

7Our derivation assumes γ(·) to be strictly increasing and Step 3 only
guarantees a non-decreasing γ̂(·). Nonetheless, if we have enough observa-
tions (i.e., large Nγ̂ ), γ̂(·) is very well-behaved (very close to being strictly
increasing). As will be shown in the simulation results (Sec. VIII), the online
algorithms using γ̂(·) still achieve satisfactory performance.

Step 4: After obtaining γ̂(·), we can carry out the online

Algorithms 1 and 2 easily by substituting γ(·) by γ̂(·).
Specifically, since the γ̂(·) is piece-wise linear, two major

substitutions are needed that are different from our previous

discussion of γlin, γexp, and γqdr in Sec. V-C. First, we replace

the waiting time Xi = ϕΓ,βi
(y′, z′) in Algorithms 1 and 2

with

Xi = ϕRA
γ̂,βi

(y′, z′)

≜ inf
{

t > 0 :

∑i−1
j=i−Nsum

γ̂ (y′ + z′ + t+ Yj)

Nsum

> βi

}

(50)

where Nsum ≤ Nγ̂ samples from the past Yi are plugged into

the estimated γ̂(·) to approximate the expectation E(γ(y′ +
z′ + t+ Y )) in (11) and (12).

Step 5: The second substitution is for computing

g1(y
′, z′, βi). We first note that by (4) and (19), the value

g1(y
′, z′, βi) in Algorithms 1 and 2 is the expectation of an

integral with random upper and lower limits. As a result,

we again use the combination of running average (RA) and

estimated γ̂(·) to estimate the g1(y
′, z′, βi), and we have

gRA
γ̂,1(y

′, z′, βi)

≜

∑i−1
j=i−Nsum

(

Cumulative.trapezoidal.integralj
)

Nsum

(51)

where the summation and division are to compute the run-

ning empirical average, and we use the following cumulative

trapezoidal integral

Cumulative.trapezoidal.integralj

≜

Ntrapezoid
∑

n=1

γ̂(xn−1
j ) + γ̂(xn

j )

2
δj (52)

in which {xn
j }

Ntrapezoid

n=0 is a uniformly spaced partition points

of [Yj , Yj + y′ + z′ + ϕRA
γ̂,βi

(y′, z′)] (based on the j-th sample

Yj and the previously computed ϕRA
γ̂,βi

(y′, z′) value in (50))

and δj is the corresponding spacing between xn−1
j and xn

j .

Mathematically,

δj ≜
y′ + z′ + ϕRA

γ̂,βi
(y′, z′)

Ntrapezoid

(53)

xn
j ≜ Yj + nδj , ∀n ∈ [0, Ntrapezoid]. (54)

After the modification described in Steps 1 to 5, both

Algorithms 1 and 2 can be carried out for arbitrary unknown

γ(·), not limited to the previous γlin(·), γqdr(·) or γexp(·).
We now analyze the complexity incurred of estimating γ̂(·).

In Step 1, we add a point (0, 0) to the set Sγ̂ and hence the

complexity of O(1). For Step 2, we only need to update the

sorted list so that per-time-slot complexity is only logNγ̂ . To

carry out the monotonic regression in Step 3, one may use the

active set algorithms in [25] that have a complexity of O(Nγ̂).
For Step 4, given (y′, z′, βi), evaluating the summation

in (50) takes O(Nsum) time, and to compute the infimum t
value in (50) we use the bisection method over the inter-

val [0, tlarge] for a sufficiently large tlarge > 0. Depending

on the desired precision ϱ > 0, the combined complex-

ity of (50) is O(log(tlarge/ϱ)Nsum). For Step 5, since the

10



trapezoidal integral is done for each Yj and we have Nsum

such Yj , together the complexity is O(Nsum · Ntrapezoid). In

sum, the per-round complexity of this new modification is

O (Nγ̂ + logNγ̂ +Nsum · (log(tlarge/ϱ) +Ntrapezoid)).
We denote ΞRA

γ̂ (resp. ΛRA
γ̂ ) to be the online algorithm

that uses the above 5 steps to modify the original Algo-

rithm 1 (resp. Algorithm 2). The resulting algorithm is fully

distribution- and AoI-penalty-oblivious.

VII. ADDRESSING PRACTICAL ISSUES IN THE MARKOV

DELAY SETTING

In this section, we turn our attention to the case where

{(Yi, Zi)} is a stationary and ergodic Markov process (not

necessarily i.i.d.), and we propose leveraging the k-nearest

neighbors (KNN) algorithm to design an empirically-AoI-

optimal scheduling scheme in this new setting.

By examining the proposed ΞRA
γ̂ (resp. ΛRA

γ̂ ) in Sec. VI, we

notice that the proposed schemes have a desirable “modular”

structure. Namely, the estimation of the unknown γ(·) is

separated from the actual evaluation of the functions ϕΓ,β and

g1 in (50) and (51), respectively. With a Markov delay setting,

we can thus reuse the first 3 steps to estimate γ(·) and only

modify Steps 4 and 5 accordingly.

In the i.i.d.-based computation (50) and (51), we use all

the past Nsum observations {Yj}
i−1
j=i−Nsum

to compute the run-

ning empirical average. For the Markovian delay setting, we

propose using the k-nearest neighbors (KNN) algorithm that

computes PYi|Yi−1,Zi−1
by considering a set of k neighboring

points that are the nearest to the given (Yi−1, Zi−1) = (y′, z′)
[26].

Specifically, at the i-th round, among all the past Nsum

observed delay values {(Yj−1, Zj−1, Yj)}
i−1
j=i−Nsum

, we select

NKNN points such that the first two coordinates (Yj−1, Zi−1)
are of the shortest Euclidean distance to the latest observation

(Yi−1, Zi−1) = (y′, z′). Then the Modified Step 4 computes

Xi in Algorithms 1 and 2 using

Xi = ϕKNN
γ̂,βi

(y′, z′)

≜ inf

{

t > 0 :

∑NKNN

j=1 γ̂
(

y′ + z′ + t+ Y select
j

)

NKNN

> βi

}

.

(55)

Eq. (55) is almost identical to (50) except that Y select
j are the

third coordinates of the NKNN ≤ Nsum samples nearest to

(y′, z′) instead of all Nsum past samples.

Modified Step 5: Replace g1(y
′, z′, βi) in Algorithms 1 and

2 with

gKNN
γ̂,1 (y′, z′, βi) ≜

∑NKNN

j=1

(

Cumulative.trapezoidal.integralj
)

NKNN

(56)

where the cumulative trapezoidal integral is computed in the

same way as in (52), but replaces the Yj used in (52) with the

Y select
j from the NKNN samples nearest to (y′, z′). Since the

modified Steps 4 and 5 are very similar to the Steps 4 and 5

in Sec. VI-B, the KNN version has similar complexity as the

RA version.

We use ΞKNN
γ̂ (resp. ΛKNN

γ̂ ) to denote the online algorithm

that uses the modified Algorithm 1 (resp. modified Algorithm

2). Table I summarizes the notations used for the fixed-

point-based online algorithms. All the algorithms can be

divided to two major categories, depending on whether it is

developed exclusively for the i.i.d. delay models or for the

more general Markov models; and whether it assumes the

full knowledge of γ(·) or involves the penalty estimation γ̂(·)
component. Finally, we also distinguish the cases based on

whether some statistics of PY are known a priori versus the

truly distribution-oblivious setting for which the algorithm has

absolutely zero knowledge of the distribution or statistics.

As can be seen, four major sets of algorithms are developed.

We start from the most basic version that requires both the

statistics and γ(·). Next we introduce the running average

version that still requires γ(·). Then we introduce the compo-

nent of estimated γ̂(·). Finally, we relax the i.i.d. assumption

and extend the results to the Markov delay models. Four

other combinations are not considered in this work and they

correspond to the “ ” parts in Table I. If desired, our

approaches can be easily applied to those settings as well.

Remark 6: The online scheme using the KNN algorithm

described in this section works well in simulation, as will

be shown in Sec. VIII-B. The reason why we do not have

an analytical proof of convergence is the lack of martingales

due to the memory property inherent in the Markov delay

process (see Lemma 11 in Appendix H where martingales can

be constructed in the case of i.i.d. delay).

VIII. SIMULATION RESULTS

A. I.I.D. Delay

In this section, we consider i.i.d. {(Yi, Zi) : i ≥ 1} with

Yi and Zi being independent log-normal random variables

with (µY , σ
2
Y ) = (0.5, 0.25) and (µZ , σ

2
Z) = (0.5, 0.5). We

consider the quadratic AoI penalty function γqdr(∆) = ∆2.

0 4 8 12
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20
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40
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Fig. 3: Offline computation for β∗ under the i.i.d. delay.

The trajectories of the offline fixed-point computation

βi+1 = fΓ(βi), described in Sec. IV-B, versus the bisection

method are plotted in Fig. 3. The advantage of our scheme is

twofold. Firstly it converges faster than the bisection method.

Secondly, as proved in Proposition 3, the sequence {βi} is

non-increasing and thus does not fluctuate as in the case of

the bisection search.

We also run the fixed-point-iteration-based online algorithm

ΞSY
qdr. Fig. 4a plots the evolution of βi versus i and benchmarks

βi against β∗ (the red dashed line). The three curves in Fig. 4a

are generated by different random seeds. For each curve, βi

is within 8% of β∗ after just 103 iterations. Since it is an
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TABLE I: Summary of the fixed-point-based online algorithms. Each of the fixed-point-based algorithm Ξ has a stochastic

approximation Robbins-Monro-based counterpart, denoted by the symbol Λ (instead of Ξ).

Derived under i.i.d. delay Derived under Markov delay

Requiring statistics SYγ Estimating statistics SYγ Requiring statistics SYγ Estimating statistics SYγ

γ
• φSY

lin,βi
, φSY

qdr,βi
, φSY

exp,βi
derived

according to (29), (37), (35)

• Policies: ΞSY
lin

, ΞSY
qdr

, ΞSY
exp

• φRA
lin,βi

, φRA
qdr,βi

, φRA
exp,βi

use

running emp. avg. to replace SYγ ,
according to Sec. VI-A

• Policies: ΞRA
lin , ΞRA

qdr , Ξ
RA
exp

γ̂

• φRA
γ̂,βi

estimates γ(·) and uses

running emp. avg. according to
(50)

• Policy: ΞRA
γ̂

• φKNN
γ̂,βi

estimates γ(·) and

uses KNN according to (55)

• Policy: ΞKNN
γ̂

online algorithm, it means that using our distribution-oblivious

scheme, after sending just 1000 update packets, the average

AoI penalty of the underlying system (over the last 1000

packets) is already within 8% of the best offline solution that

requires complete knowledge of the delay distributions. The

gap is less than 4% after 104 iterations.

Note that Fig. 4a traces the evolution of the βi computed

by ΞSY
qdr. The value of βi is then fed into (11) to compute

the waiting time Xi. Fig. 4a shows that βi converges to

the optimal choice β∗ but does not evaluate how close the

empirical AoI penalty, resulting from these choices βi, is to the

optimal/minimal AoI penalty. To directly examine the penalty

performance, we compute the observed avg. AoI penalty
∫ Di
0 γ(t)dt

Di
for every i ≥ 1. The red horizontal dashed line is the

AoI penalty achieved by the best possible offline algorithm.

Similar to Fig. 4a, the observed avg. AoI penalty is within 7%
of β∗ after just 103 iterations, and the difference is less than

3% after 104 iterations.

Next we run the root-finding-based online algorithm ΛSY
qdr

where we choose the step-size to be 0.5
i

for the i-th update.8

The results are presented in Figs. 4c and 4d. Compared with

the fixed-point-iteration-based scheme ΞSY
qdr, βi using ΛSY

qdr is

generally higher for the first 1000 iterations (see Fig. 4a

versus Fig. 4c) and eventually converges to the optimal β∗.

We also directly examine the resulting empirical AoI in

Fig. 4d. Even though the βi chosen by the Robbins-Monro

algorithm is generally larger, their impact on the average AoI

performance is not significant. That is, after the 100 iterations,

the empirical AoI of both ΞSY
qdr and ΛSY

qdr are very close to

each other. This relative insensitivity to the βi choice could

be explained as follows. Recall that both ΞSY and ΛSY choose

their waiting time Xi based on the same water-filling rule (11).

Therefore, for a wide range of βi we will choose to zero-wait

ϕSY
qdr,βi

(y′, z′) = 0 when y′ and z′ in (11) are large. As a

result, different βi values have impacts only in the scenarios of

small (Yi−1, Zi−1) = (y′, z′) and thus the actual AoI penalty

performance is not very sensitive to the βi value.

8The step-size has to be carefully determined to balance the convergence
speed and numerical stability. For example, if we set the step-size to be 0.01

i
,

then βi is still unable to converge to β∗ even after 106 iterations. On the other
hand, if 3

i
is picked, then fatal instability is observed in our simulation, i.e.,

the observed avg. AoI could grow as high as 1041, which leads to numeric
overflow. The fixed-point-based online algorithm, however, does not have such
an issue. Also see the discussion in Sec. V-G.

However, the step-size η
i

used in the Robbins-Monro-based

online algorithm ΛSY
qdr has to be carefully determined to balance

the convergence speed and numerical stability. For example,

if we set η to be 0.05, then βi is not always convergent to β∗

even after 106 iterations (see Fig. 4e). On the other hand, if

η = 1.5 is picked, then a large βi is sometimes observed in our

simulation (see βi fluctuate between [−1500, 500] in Fig. 4g).

If βUB < ∞, then any βi that is strictly larger than βUB

immediately results in an infinite waiting time Xi = ϕΓ,βi
(·, ·)

that suspends future control actions. This is why we need

the non-trivial assumption that βUB = ∞ for the Robbins-

Monro-based online algorithm. The fixed-point-based online

algorithm, however, does not have such an issue. Also see the

discussion in Sec. V-G.

Since the fixed-point-iteration-based and root-finding-based

online algorithms (with a carefully chosen η
i
) achieve similar

performance, for the rest of the paper we will only present the

results of the fixed-point-iteration-based online algorithms.

We then consider the case of using the running average-

based online algorithm ΞRA
qdr . We set NRA = 103 and the results

are plotted in Figs. 5a and 5b. Comparing ΞSY
qdr and ΞRA

qdr , we

observe that for the first 100 iterations, with an insufficient

number of samples, ΞRA
qdr does not have an accurate estimate

of SYγ , and hence the resulting βi is slightly higher than ΞSY
qdr

(see Figs. 4a and 5a). However, the slightly higher parameter

βi choices do not impact much on the actual empirical AoI

penalty. The curves in Figs. 4b and 5b are almost identical.

After the first 100 iterations, both ΞSY
qdr and ΞRA

qdr have similar

βi and similar empirical AoI penalty, and eventually converge

to the optimal value. This confirms the benefits of using the

running empirical average as a substitute of the delay statistics

SYγ .

A more interesting scenario is when γ(·) is unknown. In

our simulation, the destination observes qi = γ(pi)+ni where

pi = Yi−1 +Zi−1 +Xi +Yi. We assume γ(∆) = ∆2 but this

fact is unknown to the source/destination pair, and we also

assume the observation error ni’s are i.i.d. Gaussian random

variables with mean zero and variance 0.05. Other parameters

are set as follows: Nγ̂ = 103, Nsum = 200 and Ntrapezoid = 103.

Fig. 6a plots the resulting γ̂(·) and the true underlying γ(·)
(those scattered red points are the elements in the set Sγ̂). As

can be seen from Figs. 6a and 6b (magnified version), γ̂(·)
is non-decreasing and sufficiently close to γ(·). At the end of

iteration (i = 106), βi from every curve in Fig. 6c is within 4%
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of β∗. Meanwhile, because the actual AoI penalty performance

is less sensitive to the βi value, the observed avg. AoI penalty

is within 1% of the best offline algorithm that knows both the

distribution PY and the γ(·). This demonstrates the superior

performance of ΞRA
γ̂ , which is not only distribution-oblivious,

but it is also able to estimate γ(·) in an online manner.

Finally, even though ΞKNN
γ̂ is originally derived assuming

Markov delay (see Sec. VII and Table I), we use it here to

examine its performance under the i.i.d. delay scenario. The

associated parameters are set as follows: Nγ̂ = 103, NKNN =
100 and Ntrapezoid = 103. At i = 106 iteration, for each random

seed βi is 15% away from β∗, see Fig. 7a. The reason is that

with NKNN set to be a small number 100, the estimation of the

expectations is not as accurate as the running average scheme

(which has Nsum = 200 observations), which leads to larger

error of βi, see see Figs. 5a and 7a. Nonetheless, the observed

avg. AoI penalty is only 3% away from the offline optimum

(see Fig. 7b), which shows the effectiveness and robustness of

ΞKNN
γ̂ even under the i.i.d. delay setting.

B. Markov Delay

In this section, we simulate Markov {(Yi, Zi) : i ≥ 1}.

Specifically, a stationary discrete Markov chain is considered:

We set P(Zi = 1) = 1, P(Yi = 1) = P(Yi = 2) = P(Yi =
3) = 1

3 and the transition matrix for Yi is




0.95 0.025 0.025
0.025 0.95 0.025
0.025 0.025 0.95



 . (57)

The exponential AoI penalty function γexp(∆) = e2∆ − 1 is

considered. The offline optimal hitting time threshold β∗ and

the corresponding optimal average AoI penalty is found by the

fixed-point computation βi+1 = fΓ(βi) in Sec. IV-B.

Next, we examine the performance degradation when the

delay process is Markov, but the source wrongly believes

that the process is i.i.d. That is, we run the best i.i.d.-delay-

assuming online algorithm ΞSY
exp while directly feeding the true

value of SYγ = E{eaY } to the algorithm, and plot the trace of

the observed avg. AoI penalty. Here we do not plot the trace

of βi for ΞSY
exp scheme anymore. The reason is that even if

there is a genie that gives ΞSY
exp the ideal β∗ value, the scheme

will still compute a suboptimal Xi since when computing

Xi, the i.i.d.-delay-assuming scheme (incorrectly) takes the

expectation of the marginal distribution PY in (11) and (12)

while an optimal Markov-delay-assuming scheme, given the

ideal β∗ value, would take the expectation over the conditional

distribution PYi|Yi−1,Zi−1
instead. As a result, how close βi is

to β∗ has little indication of how good the performance of the

i.i.d.-based ΞSY
exp scheme is when applied to a Markov setting.

The only meaningful metric is to directly measure the observed

avg. AoI penalty of different schemes. As shown in Fig. 8a,

at the end of iteration the avg. AoI penalty of the i.i.d.-based

ΞSY
exp is 11% away from optimal offline Markov scheme.

We then run the online algorithm ΞKNN
γ̂ with the associated

parameters Nγ̂ = 103, NKNN = 100 and Ntrapezoid = 103.

Without knowing that we are dealing with Markovian delay

and without the knowledge of the penalty function γ(·), our
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Fig. 4: Left: Evolution of βi using the online algorithms

Right: Evolution of the observed AoI penalty using the online

algorithms Different curves represent different random seeds.

The horizontal red dashed line represents β∗.
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Fig. 5: Simulation results using ΞRA
qdr under the i.i.d. delay.
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Fig. 6: Simulation results using the online algorithm ΞRA
γ̂ under

the i.i.d. delay.
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Fig. 7: Simulation results using the online algorithm ΞKNN
γ̂

under the i.i.d. delay.

scheme ΞKNN
γ̂ performs extremely well. Fig. 9a plots the

resulting γ̂(·) and the true underlying γ(·) (those scattered red

points are the elements in the set Sγ̂). This time, the estimator

γ̂(·) automatically adapts to a different underlying γ(·). The

scheme ΞKNN
γ̂ leads to 11% higher βi compared with β∗ (see

Fig. 9c) while the observed avg. AoI penalty, arguably the

more important metric, is within 2% of best possible offline

solution (see Fig. 9d). This again shows the strength of the

online algorithm ΞKNN
γ̂ .
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Fig. 8: Simulation results using the online algorithm ΞSY
exp

under the Markov delay.
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Fig. 9: Simulation results using the online algorithm ΞKNN
γ̂

under the Markov delay.

C. Bounded γ(·) for the OU Process

One critical difference between the fixed-point-based Al-

gorithm 1 and the Robbins-Monro-based Algorithm 2 is

that the former is capable of handling bounded γ(·) while

the latter is not. In this section, we consider the bounded

γOU(t) = σ2

2θ (1 − e−2θt) corresponding to signal-agnostic

sampling for the OU process [22] and the corresponding

βUB = lim∆→∞ γ(∆) = σ2

2θ < ∞.

Following the same manner in Sec.V-C, we use

ϕSY
OU,β(y

′, z′) to denote the waiting time function

ϕΓ,β(y
′, z′) specialized for the OU-process penalty. Similarly,

gSY
OU,1(y

′, z′, β) denotes the empirical AoI penalty function

g1(y
′, z′, β) specialized for the OU-process γOU(·). Applying

simple calculus to (3), (4), (11), and (19) shows that for

β < βUB = σ2

2θ , we have

ϕSY
OU,β(y

′, z′)

= max

(

1

2θ
ln

(

E{e−2θY }

1− 2θ
σ2 β

)

− y′ − z′, 0

)

(58)

gSY
OU,1(y

′, z′, β) =
σ2

2θ

(

y′ + z′ + ϕSY
OU,β(y

′, z′)
)

− (
σ

2θ
)2 ·
(

1− e−2θ(y′+z′+φSY
OU,β(y

′,z′))
)

· E{e−2θY }. (59)

From (58) and (59), it is clear that to calculate ϕSY
OU,β(y

′, z′)

and gSY
OU,1(y

′, z′, β), the only statistical knowledge we need is

a scalar SYγ = E{e−2θY }, which can be well estimated in

practice. ΞSY
OU denotes Algorithm 1 when specialized for the

OU-process AoI Penalty function γOU(∆) = σ2

2θ (1− e−2θ∆).
We consider the same log-normal delay as in Sec. VIII-A

and set σ = 4 and θ = 0.5. The simulation results running

ΞSY
OU are presented in Figs. 10a and 10b.

As shown in Fig. 10a, we always have βi < βUB = 16 (as

proved by Lemma 6), which demonstrates the applicability

of Algorithm 1 under the bounded γ(·). Moreover, compared

14



with the unbounded γqdr(·) (Figs. 4a and 4b), the convergence

rate of Algorithm 1 for the bounded γOU seems even faster.

Specifically, βi is already within 1% of β∗ after just 10
iterations, and the difference is less than 0.4% after 102

iterations. The observed avg. AoI penalty (Fig. 10b) is within

1.3% of offline optimum after 102 iterations.
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Fig. 10: Simulation results using the bounded γOU(·) corre-

sponding to the OU process.

IX. CONCLUSION

We have studied the AoI minimization problem based on

a new fixed-point-based framework, and derived the corre-

sponding optimal waiting policy. We have also developed the

first provably optimal distribution-oblivious online algorithms

on AoI minimization for arbitrary AoI penalty functions,

which may be bounded or unbounded. Additionally, we have

addressed several practical issues in the i.i.d. delay and Markov

delay settings, including proposing an effective solution to

estimating the AoI penalty function γ(·) using monotonic

regression. Simulation results verify the effectiveness of the

proposed schemes.

APPENDIX A

PROOF OF LEMMA 2

Consider the following two cases.

Case 1: βUB = ∞. This case is obviously true since

Lemma 2 considers an FED scheme S with finite βS < ∞.

Case 2: 0 < βUB < ∞. For any finite y′, z′, x, y < ∞, by

(3), we have

G(y′, z′, x, y) =

∫ y+x+y′+z′

y

γ(t)dt

<

∫ y+x+y′+z′

y

βUB · dt = βUB · (x+ y′ + z′) (60)

where the inequality follows since we assume γ(t) is strictly

increasing and βUB is the limit. As a result, from (4) and (60)

we have

G1(y
′, z′, x) < βUB · (x+ y′ + z′) (61)

for any finite x, y′, z′. From (61), since E{Xi} < ∞ and

(Yi−1, Zi−1) are of bounded support, we must have

E {G1(Yi−1, Zi−1, ϕS(Yi−1, Zi−1))}

< βUB · E {Yi−1 + Zi−1 + ϕS(Yi−1, Zi−1)} (62)

with strict inequality. Finally, since E{Yi−1 + Zi−1} > 0, we

can move the expected duration of (62) to the left-hand side

and have

βS ≜
E {G1(Yi−1, Zi−1, ϕS(Yi−1, Zi−1))}

E {Yi−1 + Zi−1 + ϕS(Yi−1, Zi−1)}
< βUB. (63)

The proof of Lemma 2 is thus complete.

APPENDIX B

PROOF OF LEMMA 3

For any given T > 0, we will prove that Lemma 3 holds

if we replace the range of t ∈ (0,∞) inside Lemma 3 by

t ∈ (0, T ). Once this is proven, we simply let T → ∞ and

we obtain our desired result.

Given any (Yi−1 = y′, Zi−1 = z′) and any t ∈ (0, T ), from

(4) we have

d

dt
G1(y

′, z′, t)

=
d

dt
EY {G(y′, z′, t, Y )|Yi−1 = y′, Zi−1 = z′} (64)

which involves differentiation of a conditional expectation. We

then observe that G(y′, z′, t, Yi) satisfies the following three

conditions.

(i) EYi
{G(y′, z′, t, Yi))|Yi−1 = y′, Zi−1 = z′} < ∞ for

all t ∈ (0, T ), namely, G(y′, z′, t, Yi) is a Lebesgue-

integrable function of Yi for each t ∈ (0, T ). This is

true because of the assumption that Y ≜ Yi, Y
′ ≜ Yi−1,

and Z ′ ≜ Zi−1 all have bounded support, t < T , and

the function G(·, ·, ·, ·) is strictly increasing for all four

input variables (due to γ(·) being strictly increasing).

(ii) Given any Y = y and any t ∈ (0, T ), since γ is

continuous, we immediately have

d

dt
G(y′, z′, t, y) = γ(y′ + z′ + t+ y) (65)

by (3) and the first fundamental theorem of calculus.

(iii) Since Y and Z are of bounded support, P(Y ≤ ymax, Z ≤
zmax) = 1. Given any Y = y and any t ∈ (0, T ), we then

have
∣

∣

∣

∣

d

dt
G(y′, z′, t, y)

∣

∣

∣

∣

= γ (y′ + z′ + t+ y) (66)

≤ γ (ymax + zmax + T + ymax) (67)

where (66) follows from (65) and (67) holds since γ
is strictly increasing. By (67), for any Y = y and

any t ∈ (0, T ), there exists a constant (and hence a

Lebesgue-integrable function of Y ) that upper bounds
∣

∣

d
dt
G(y′, z′, t, y)

∣

∣.

Since G(y′, z′, t, Y ) satisfies the above three conditions, by

Leibniz’s integral rule [27], we can interchange the differen-

tiation and the expectation. Finally, we have

d

dt
EY {G(y′, z′, t, Y )|Yi−1 = y′, Zi−1 = z′}

= EY

{

d

dt
G(y′, z′, t, Y )|Yi−1 = y′, Zi−1 = z′

}

= EY {γ(y′ + z′ + t+ Y )|Yi−1 = y′, Zi−1 = z′} (68)

where (68) follows from (65). Lemma 3 follows from (64) and

(68).
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APPENDIX C

PROOF OF LEMMA 4

We first prove the first half of Lemma 4. By Lemma 3, it

is sufficient to show that for any β ∈ [0, βUB), there exists a

tUB < ∞ such that E{γ(tUB+y′+z′+Yi)|Yi−1 = y′, Zi−1 =
z′} > β for all y′, z′. Since γ(·) is continuous and strictly

increasing and β < βUB, we can choose tUB ≜ γ−1(β) and

we thus have

E{γ(tUB + y′ + z′ + Yi)|Yi−1 = y′, Zi−1 = z′}

≥ γ(tUB + yzmin) > γ(tUB) = β. (69)

The first half of the proof is complete.

On the other hand, since supt→∞ γ(t) = βUB, for any β ≥
βUB and any finite t, y′, z′ < ∞, we have

E{γ(t+ y′ + z′ + Yi)|Yi−1 = y′, Zi−1 = z′} ≤ βUB ≤ β.
(70)

By Lemma 3, the second half of the proof of Lemma 4 is

complete.

APPENDIX D

PROOF OF PROPOSITION 1

The proof of Proposition 1 will need the following lemma.

Lemma 7: For any positive finite constants p1, T1, r1, p2, T2,

r2, τ , rτ > 0, we have the following two “=⇒” statements:

p1T1r1 + p2(T2r2 + τrτ )

p1T1 + p2(T2 + τ)
≤ rτ (71)

=⇒
p1T1r1 + p2T2r2
p1T1 + p2T2

≤
p1T1r1 + p2(T2r2 + τrτ )

p1T1 + p2(T2 + τ)
(72)

and

p1T1r1 + p2T2r2
p1T1 + p2T2

≥ rτ (73)

=⇒
p1T1r1 + p2(T2r2 + τrτ )

p1T1 + p2(T2 + τ)
≤

p1T1r1 + p2T2r2
p1T1 + p2T2

. (74)

Proof: Consider any arbitrary positive and finite constants

A,B, a, b > 0. It is straightforward to verify the following

equivalent statements.

a

b
≥

A+ a

B + b
⇐⇒

a

b
≥

A

B
⇐⇒

A+ a

B + b
≥

A

B
(75)

By choosing A = p2τrτ , B = p2τ , a = p1T1r1 + p2T2r2,

b = p1T1 + p2T2, and using the “⇐=” direction of the first

⇐⇒ relationship in (75), we have proven the relationship in

(73) and (74).

By choosing A = p1T1r1 + p2T2r2, B = p1T1 + p2T2,

a = p2τrτ , b = p2τ , and using the “=⇒” direction of both

⇐⇒ relationships in (75), we have proven the relationship in

(71) and (72).

For schemes S and ΓβS
, recall that ϕS(Yi−1, Zi−1) and

ϕΓ,βS
(Yi−1, Zi−1) are the waiting times for schemes S and

ΓβS
, respectively. For simplicity, we use ϕS and ϕΓ,βS

as

shorthand by dropping the input arguments (Yi−1, Zi−1).
Suppose we are in the event of ϕΓ,βS

≤ ϕS , i.e., the scheme

ΓβS
sends the i-th update earlier than the scheme S . During

the interval (ϕΓ,βS
, ϕS ], the growth rate of G1(Yi−1, Zi−1, t)

is strictly higher than βS . The reason is as follows. By the def-

inition of ϕΓ,βS
in (11), the growth rate of G1(Yi−1, Zi−1, t)

at time t = ϕΓ,βS
is either greater than or equal to βS

if ϕΓ,βS
is zero, or is equal to βS if ϕΓ,βS

is strictly

greater than zero. Since the growth rate of G1(Yi−1, Zi−1, t)
is strictly increasing (due to strictly increasing γ(·) and by

Lemma 3), in either case the growth rate of G1(Yi−1, Zi−1, t)
is strictly larger than βS during (ϕΓ,βS

, ϕS ]. Compared to the

original scheme S , the new scheme ΓβS
avoids “higher-than-

βS” average during the interval (ϕΓ,βS
, ϕS ], which in turn

helps make its average AoI penalty fΓ(βS) smaller than the

benchmark βS .

Mathematically speaking, the average AoI penalty is the

ratio of two expectations. If we use a simplified probabilistic

model for discussion, then the left-hand side of (71) in

Lemma 7 is indeed a ratio of two expectations. In the event

with probability p2, there is a duration of length τ with average

growth rate within that duration of τ being rτ . The left-hand

side of (71) is how we calculate the overall average AoI

penalty. The statement in (71) then says that if the penalty

growth rate rτ in the small duration τ is larger than the current

average, then we always have (72). That is, by avoiding this

duration of τ , the new average (the left-hand side of (72)) is

better than the original average AoI penalty (the right-hand

side of (72)).

Similarly, in the event of 0 ≤ ϕS < ϕΓ,βS
, during the

interval (ϕS , ϕΓ,βS
], the new scheme ΓβS

will experience

“no-higher-than-βS” growth rate since the growth rate of

G1(Yi−1, Zi−1, t) has not hit βS yet for t ∈ (ϕS , ϕΓ,βS
],

which again helps make fΓ(βS) lower than βS .

Mathematically speaking, the left-hand side of (73) repre-

sents the current average AoI penalty, and the inequality (73)

says that if the growth rate rτ of a duration τ is smaller than

the current average, then by adding a duration of length τ
that has the penalty growth rate rτ , the new average (the left-

hand side of (74)) is again lower than the original average AoI

penalty (the right hand side of (74)).

Since in either case the average AoI penalty of ΓβS
has im-

proved over the benchmark βS , we have proven Proposition 1.

APPENDIX E

PROOF OF LEMMA 5

From Corollary 1, we know β∗ is one root of β = fΓ(β)
within the domain β ∈ [0, βUB). Suppose that there exists

another root β0 ∈ [0, βUB) and β0 ̸= β∗.

Case 1: If β0 < β∗, then we have the following contradic-

tion

β0 < β∗ ≤ fΓ(β0) = β0 (76)

where the “≤” follows from (6).

Lemma 8: For any arbitrarily given penalty function γ(·)
and any β ∈ [0, βUB), we always have

(β − β∗)g2(β
∗) ≤ β · g2(β)− g1(β) (77)

regardless whether β < β∗ or β ≥ β∗.

Proof: See Appendix F.
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Case 2: Next we consider the case of β∗ < β0, which

implies

0 < (β0 − β∗)g2(β
∗) (78)

since g2(β
∗) ≥ E{Y + Z} > 0. At the same time, if we

substitute β = β0 in (77) in Lemma 8, we have

(β0 − β∗)g2(β
∗) ≤ β0 · g2(β0)− g1(β0). (79)

Finally, β0 being a fixed point implies

β0 =
g1(β0)

g2(β0)
⇐⇒ β0 · g2(β0)− g1(β0) = 0 (80)

since by Lemma 4, we have g2(β0) < ∞ as long as β0 ∈
[0, βUB). Concatenating the above three inequalities (78) to

(80) implies the contradiction 0 < 0. As a result, no such β0

exists. The proof of uniqueness is complete.

APPENDIX F

PROOF OF LEMMA 8

We prove Lemma 8 by first showing that for any βL ≤
βU ∈ [0, βUB),

βL (g2(βU )− g2(βL)) ≤ g1(βU )− g1(βL)

≤ βU (g2(βU )− g2(βL)) . (81)

By noticing that g1(β) and g2(β) are both non-decreasing

function with respect to β, from (81) we immediately have

g1(β1)− g1(β2) ≤ β1 (g2(β1)− g2(β2)) . (82)

for all β1, β2 ∈ [0, βUB) regardless of whether β1 > β2 or

β1 ≤ β2. By choosing β1 to be an arbitrary β value and

setting β2 = β∗, the optimal β value, we then have

g1(β)− g1(β
∗) ≤ β (g2(β)− g2(β

∗)) . (83)

By Corollary 1 and (23), we have g1(β
∗) = β∗ · g2(β

∗).
Eq. (77) in Lemma 8 then follows directly from (83).

In the sequel, we prove (81). From (11), given any (Yi−1 =
y′, Zi−1 = z′), ϕΓ,β(y

′, z′) is non-decreasing in β and hence

we must have ϕΓ,βL
(y′, z′) ≤ ϕΓ,βU

(y′, z′). From (3), (4),

(19) and (21), we then have

g1(βU )− g1(βL)

= E

{

✶{0<φΓ,βL
(Yi−1,Zi−1)≤φΓ,βU

(Yi−1,Zi−1)}·

E

{

∫ φΓ,βU
(Yi−1,Zi−1)+Yi−1+Zi−1+Y

φΓ,βL
(Yi−1,Zi−1)+Yi−1+Zi−1+Y

γ(t)dt
∣

∣

∣
Yi−1, Zi−1

}}

+ E

{

✶{0=φΓ,βL
(Yi−1,Zi−1)<φΓ,βU

(Yi−1,Zi−1)}·

E

{

∫ φΓ,βU
(Yi−1,Zi−1)+Yi−1+Zi−1+Y

Yi−1+Zi−1+Y

γ(t)dt
∣

∣

∣
Yi−1, Zi−1

}}

+ E

{

✶{0=φΓ,βL
(Yi−1,Zi−1)=φΓ,βU

(Yi−1,Zi−1)} · 0

}

(84)

where (84) considers three partitioning events that discuss

the order relationship among the three values: 0 versus

ϕΓ,βL
(Yi−1, Zi−1) versus ϕΓ,βU

(Yi−1, Zi−1).

By similarly decomposing the expectation according to its

three partitioning events, we also have

g2(βU )− g2(βL)

= E

{

✶{0<φΓ,βL
(Yi−1,Zi−1)≤φΓ,βU

(Yi−1,Zi−1)}·

(

ϕΓ,βU
(Yi−1, Zi−1)− ϕΓ,βL

(Yi−1, Zi−1)
)

}

+ E

{

✶{0=φΓ,βL
(Yi−1,Zi−1)<φΓ,βU

(Yi−1,Zi−1)}·

ϕΓ,βU
(Yi−1, Zi−1)

}

+ E

{

✶{0=φΓ,βL
(Yi−1,Zi−1)=φΓ,βU

(Yi−1,Zi−1)} · 0

}

. (85)

Under the first event in (84)

{0 < ϕΓ,βL
(Yi−1, Zi−1) ≤ ϕΓ,βU

(Yi−1, Zi−1)}, we have

E

{

∫ φΓ,βU
(Yi−1,Zi−1)+Yi−1+Zi−1+Y

φΓ,βL
(Yi−1,Zi−1)+Yi−1+Zi−1+Y

γ(t)dt
∣

∣

∣Yi−1, Zi−1

}

≤ (ϕΓ,βU
(Yi−1, Zi−1)− ϕΓ,βL

(Yi−1, Zi−1)) ·

E

{

γ(ϕΓ,βU
(Yi−1, Zi−1) + Yi−1 + Zi−1 + Y )

∣

∣

∣Yi−1, Zi−1

}

(86)

= (ϕΓ,βU
(Yi−1, Zi−1)− ϕΓ,βL

(Yi−1, Zi−1)) · βU (87)

where (86) follows from the fact that γ is strictly

increasing. Since ϕΓ,βU
(Yi−1, Zi−1) > 0, from the

definition of ϕΓ,β(Yi−1, Zi−1) in (11) and the result in (12),

E

{

γ(ϕΓ,βU
(Yi−1, Zi−1) + Yi−1 + Zi−1 + Y )

∣

∣

∣
Yi−1, Zi−1

}

=

βU and thus (87) holds.

The same arguments also imply

E

{

∫ φΓ,βU
(Yi−1,Zi−1)+Yi−1+Zi−1+Y

φΓ,βL
(Yi−1,Zi−1)+Yi−1+Zi−1+Y

γ(t)dt
∣

∣

∣
Yi−1, Zi−1

}

≥ (ϕΓ,βU
(Yi−1, Zi−1)− ϕΓ,βL

(Yi−1, Zi−1)) ·

E

{

γ(ϕΓ,βL
(Yi−1, Zi−1) + Yi−1 + Zi−1 + Y )

∣

∣

∣Yi−1, Zi−1

}

(88)

= (ϕΓ,βU
(Yi−1, Zi−1)− ϕΓ,βL

(Yi−1, Zi−1)) · βL (89)

That is, instead of upper bounding the expectation, we now

lower bound it.

Now consider the second event in (84)

{0 = ϕΓ,βL
(Yi−1, Zi−1) < ϕΓ,βU

(Yi−1, Zi−1)}. We have

E

{

∫ φΓ,βU
(Yi−1,Zi−1)+Yi−1+Zi−1+Y

Yi−1+Zi−1+Y

γ(t)dt
∣

∣

∣
Yi−1, Zi−1

}

≤ ϕΓ,βU
(Yi−1, Zi−1)·

E

{

γ(ϕΓ,βU
(Yi−1, Zi−1) + Yi−1 + Zi−1 + Y )

∣

∣

∣Yi−1, Zi−1

}

(90)

= ϕΓ,βU
(Yi−1, Zi−1) · βU (91)

where (90) holds since γ is strictly increasing, and

(91) holds since ϕΓ,βU
(Yi−1, Zi−1) > 0 and thus
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E{γ(ϕΓ,βU
(Yi−1, Zi−1) + Yi−1 + Zi−1 + Y )

∣

∣

∣
Yi−1, Zi−1} =

βU . Similarly, we also have

E

{

∫ φΓ,βU
(Yi−1,Zi−1)+Yi−1+Zi−1+Y

Yi−1+Zi−1+Y

γ(t)dt
∣

∣

∣Yi−1, Zi−1

}

≥ ϕΓ,βU
(Yi−1, Zi−1)·

E

{

γ(Yi−1 + Zi−1 + Y )
∣

∣

∣Yi−1, Zi−1

}

(92)

≥ ϕΓ,βU
(Yi−1, Zi−1) · βL (93)

where the last inequality uses the fact that

since ϕΓ,βL
(Yi−1, Zi−1) = 0 we must have

E{γ(Yi−1 + Zi−1 + Y )
∣

∣

∣Yi−1, Zi−1} ≥ βL.

From (84), (87) and (91), we have

g1(βU )− g1(βL)

≤ E

{

✶{0<φΓ,βL
(Yi−1,Zi−1)≤φΓ,βU

(Yi−1,Zi−1)}·

βU · (ϕΓ,βU
(Yi−1, Zi−1)− ϕΓ,βL

(Yi−1, Zi−1))

}

+ E

{

✶{0=φΓ,βL
(Yi−1,Zi−1)<φΓ,βU

(Yi−1,Zi−1)}·

βU · ϕΓ,βU
(Yi−1, Zi−1)

}

= βU (g2(βU )− g2(βL)) (94)

where (94) follows from (85).

From (84), (89) and (93), we have

g1(βU )− g1(βL)

≥ E

{

✶{0<φΓ,βL
(Yi−1,Zi−1)≤φΓ,βU

(Yi−1,Zi−1)}·

βL · (ϕΓ,βU
(Yi−1, Zi−1)− ϕΓ,βL

(Yi−1, Zi−1))

}

+ E

{

✶{0=φΓ,βL
(Yi−1,Zi−1)<φΓ,βU

(Yi−1,Zi−1)}·

βL · ϕΓ,βU
(Yi−1, Zi−1)

}

= βL (g2(βU )− g2(βL)) (95)

where (95) follows from (85). Jointly we have proven (81).

APPENDIX G

PROOF OF LEMMA 6

We first prove

Lemma 9: For any given (Yi−1 = y′, Zi−1 = z′) and for

any β ∈ [0, βUB),

g1(y
′, z′, β)

g2(y′, z′, β)
(96)

is non-decreasing with respect to β.

Proof: Define a positive function

g̃1(w) = E

{

∫ w+Y

Y

γ(t)dt
∣

∣

∣Yi−1 = y′, Zi−1 = z′

}

(97)

which satisfies g̃1(0) = 0 and g̃1(g2(y
′, z′, β)) = g1(y

′, z′, β).
We then have

g1(y
′, z′, β)

g2(y′, z′, β)
=

g̃1(g2(y
′, z′, β))

g2(y′, z′, β)
. (98)

From (98), since g2(y
′, z′, β) is a non-decreasing function

of β (because ϕΓ,β(y
′, z′) is a non-decreasing function of β,

see (11)), if we can show that

g̃1(w)

w
(99)

is a non-decreasing function of w, then the term in (98) is a

non-decreasing function of β and the proof would be complete.

We now prove that
g̃1(w)

w
is a non-decreasing function of w.

Using Leibniz’s integral rule as in Lemma 3, for any w > 0,

the derivative of g̃1(w) can be computed by

d

dw
g̃1(w) = E{γ(w + Y )

∣

∣Yi−1 = y′, Zi−1 = z′} (100)

which is strictly increasing since γ is strictly increasing. From

(100), since the derivative of g̃1(w) is increasing, g̃1(w) is a

convex function of w. By the property of a convex function,

for any 0 < w1 < w2, we must have

g̃1(w1)− g̃1(0)

w1 − 0
≤

g̃1(w2)− g̃1(0)

w2 − 0
. (101)

Since g̃1(0) = 0, from (101) we know
g̃1(w)

w
is a non-

decreasing function of w.

Lemma 10: Recall that ymax and zmax are the upper bounds

of the random variables Y and Z. Define

βmax ≜ γ(2ymax + zmax + 1) < βUB. (102)

For any arbitrary (Yi−1 = y′, Zi−1 = z′) and any arbitrary

β ≤ βmax, we always have

g1(y
′, z′, β)

g2(y′, z′, β)
≤

g1(y
′, z′, βmax)

g2(y′, z′, βmax)
≤ βmax. (103)

Proof: The first inequality in (103) holds by Lemma 9.

We now prove the second inequality.

Proceeding from the proof of Lemma 9, for any given

(Yi−1 = y′, Zi−1 = z′), we have

βmax = E{γ(w + Y )
∣

∣Yi−1 = y′, Zi−1 = z′}
∣

∣

∣

w=g2(y′,z′,βmax)

(104)

which follows from (i) the definition g2(y
′, z′, βmax) =

ϕΓ,βmax
(y′, z′) + y′ + z′ in (19), (ii) because the βmax in (102)

is sufficiently large, by the definition of ϕΓ,β(y
′, z′) in (11),

we always have ϕΓ,βmax
(y′, z′) > 0 for any (y′, z′). (i) and (ii)

jointly imply that the expectation is indeed βmax.
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We then have

g1(y
′, z′, βmax)

g2(y′, z′, βmax)
=

g̃1(g2(y
′, z′, βmax))

g2(y′, z′, βmax)

=
g̃1(g2(y

′, z′, βmax))− g̃1(0)

g2(y′, z′, βmax)− 0

≤
d

dw
g̃1(w)

∣

∣

∣

∣

w=g2(y′,z′,βmax)

= E{γ(w + Y )
∣

∣Yi−1 = y′, Zi−1 = z′}
∣

∣

∣

w=g2(y′,z′,βmax)

= βmax. (105)

where the first equality follows from the definition of g̃1 in

(97); the second equality follows from the fact that g̃1(0) = 0;

the first inequality follows from the property of the convex

function g̃1(w) and the fact that g̃1(0) = 0 < g2(y
′, z′, βmax);

the third equality follows from (100); the fourth equality

follows from the discussion after (104). The second equality

in (103) is thus proved.

Since 0 < βmax, Lemma 6 holds clearly for i = 1 and 2.

For any i ≥ 3, by (24) we have

βi ≤ max
j∈[1,i−1]

g1(Yj−1, Zj−1, βj)

g2(Yj−1, Zj−1, βj)
≤ βmax (106)

where the last inequality follows from iteratively applying

Lemma 10 for all i ≥ 3. The proof is complete.

APPENDIX H

PROOF OF (41) IN PROPOSITION 4

The proof of Proposition 4 consists of two halves, the proof

of (41) (Appendix H) and the proof of (42) (Appendix I). We

first prove (41).

We define two random processes Mi and Ni as follows. Set

M0 = N0 = 0 and for any i ≥ 1,

Mi =

i−1
∑

j=1

(g1(Yj−1, Zj−1, βj)− g1(βj)) (107)

Ni =

i−1
∑

j=1

(g2(Yj−1, Zj−1, βj)− g2(βj)) . (108)

Define Fi ≜ {(Yj , Zj) : j ≤ i−2} as the set of all the previous

forward and backward channel delays up to the (i − 2)-th
packet.

Lemma 11: {Mi} and {Ni} are martingales with respect to

Fi.

Proof: First, since {Yi}, {Zi} and {βi} are all bounded,

we have E{|Mi|} < ∞ and E{|Ni|} < ∞.

We then have

E{Mi −Mi−1|Fi−1}

= E{g1(Yi−2, Zi−2, βi−1)− g1(βi−1)|Fi−1} (109)

= E{g1(Yi−2, Zi−2, βi−1)|Fi−1} − g1(βi−1) = 0 (110)

where the first equality in (110) follows from the fact that

βi−1 is completely determined by Fi−1 (see (24) and the

definition of Fi in the above); and the second equality in (110)

follows from {(Yi−2, Zi−2)} being i.i.d. and independent of

Fi−1. Similar reasoning gives E{Ni −Ni−1|Fi−1} = 0.

Lemma 12: For α > 0 and for all i ≥ 1, there exist two

positive constants k1, k2 > 0 such that (111) and (112) hold.

P





i
∑

j=1

g1(Yj−1, Zj−1, βj) < −i(0.5+α) +

i
∑

j=1

g1(βj)





≤ exp

(

−i2α

2(k1)2

)

(111)

P





i
∑

j=1

g2(Yj−1, Zj−1, βj) > i(0.5+α) +

i
∑

j=1

g2(βj)





≤ exp

(

−i2α

2(k2)2

)

. (112)

Though admitting a complicated form, the intuition of

Lemma 12 is simple. Because Mi and Ni are Martingales,

the growth rates of both Mi and Ni should be within ±i0.5+α

with close-to-one probability. Nonetheless because we only

need one side of it, we bound the probability of Mi being too

small in (111) and bound the probability of Ni being too large

in (112).

Proof: Recall that P(Y ≤ ymax, Z ≤ ymax) = 1. We then

have

|Mi −Mi−1| = |g1(Yi−2, Zi−2, βi−1)− g1(βi−1)| (113)

≤ g1(ymax, zmax, βmax) + g1(βmax) (114)

where (113) follows from (107); and (114) follows from {Yi},

{Zi} and {βi} all being bounded and g1(·, ·, β) and g1(β) are

non-decreasing in β.

Similarly, we have

|Ni −Ni−1| ≤ g2(ymax, zmax, βmax) + g2(βmax). (115)

Since {Mi} and {Ni} are martingales satisfying (114)

and (115), by Azuma’s inequality [28], there exist positive

constants k1 and k2 such that (111) and (112) hold.

Lemma 13: For α > 0 and i ≥ 1, there exists a positive

constant k3 > 0 such that

P

(

∑i
j=1 g1(Yj−1, Zj−1, βj)

∑i
j=1 g2(Yj−1, Zj−1, βj)

<
−i(0.5+α) +

∑i
j=1 g1(βj)

i(0.5+α) +
∑i

j=1 g2(βj)

)

≤ 2exp

(

−i2α

2(k3)2

)

. (116)
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Proof: We first define 3 events.

A1 ≜







i
∑

j=1

g1(Yj−1, Zj−1, βj) < −i(0.5+α) +

i
∑

j=1

g1(βj)







(117)

A2 ≜







i
∑

j=1

g2(Yj−1, Zj−1, βj) > i(0.5+α) +

i
∑

j=1

g2(βj)







(118)

A ≜

{

∑i
j=1 g1(Yj−1, Zj−1, βj)

∑i
j=1 g2(Yj−1, Zj−1, βj)

<
−i(0.5+α) +

∑i
j=1 g1(βj)

i(0.5+α) +
∑i

j=1 g2(βj)

}

(119)

Eq. (116) is equivalent to P(A) ≤ 2exp
(

−i2α

2·(k3)2

)

.

We then observe that (A1)
c ∩ (A2)

c ⊆ Ac, which implies

P(A) ≤ P (A1 ∪ A2). By the union bound and by choosing

k3 = max(k1, k2), we have completed the proof.

Lemma 14: For any positive constants a, b, c, d > 0, if c−
d ≥ 0, then we have

c− d

a+ b
≥ (c− d)

(

1

a
−

b

a2

)

≥
c

a
−

d

a
−

bc

a2
. (120)

Proof: The second inequality can be easily proved by

observing

(c− d)

(

1

a
−

b

a2

)

=
c

a
−

d

a
−

bc

a2
+

bd

a2
≥

c

a
−

d

a
−

bc

a2
.

(121)

We now prove the first inequality. We have

a2 ≥ a2 − b2 = (a− b)(a+ b)

=⇒
1

a+ b
≥

a− b

a2
=

1

a
−

b

a2

=⇒
c− d

a+ b
≥ (c− d)

(

1

a
−

b

a2

)

.

Lemma 15: Given any α ∈ (0, 0.5), define

I1 ≜

⌈

g1(0)
( −1

0.5−α )
⌉

. (122)

Then, for all i ≥ I1,

g1(0) · i ≥ i(0.5+α). (123)

Proof: Eq. (123) holds if

i(0.5−α) ≥
1

g1(0)
(124)

⇐⇒ ln(i) ≥
1

(0.5− α)
· ln

(

1

g1(0)

)

(125)

⇐⇒ i ≥ g1(0)
( −1

0.5−α ). (126)

Lemma 16: Given any α ∈ (0, 0.5), for i ≥ I1,

P

(

∑i
j=1 g1(Yj−1, Zj−1, βj)

∑i
j=1 g2(Yj−1, Zj−1, βj)

<

∑i
j=1 g1(βj)

∑i
j=1 g2(βj)

−
i−(0.5−α)

g2(0)
−

g1(βmax) · i
−(0.5−α)

(g2(0))
2

)

≤ 2exp

(

−i2α

2(k3)2

)

. (127)

Proof: The proof is a directly combination of Lemmas 13

to 15. Given any α ∈ (0, 0.5) and i ≥ I1, for notational

simplicity, we set

a ≜

i
∑

j=1

g2(βj) ≥ i · g2(0) (128)

b = d ≜ i(0.5+α) (129)

i · g1(0) ≤ c ≜

i
∑

j=1

g1(βj) ≤ i · g1(βmax) (130)

where the inequalities in (128) and (130) follow from the fact

that g1(β) and g2(β) are both non-decreasing in β.

The reason why we define a to d is that the event in (116)

involves an inequality, for which the right-hand side is exactly
c−d
a+b

. Note that a, b, c, d are positive constants. Further, from

(129) and (130), we have c−d ≥ i ·g1(0)− i(0.5+α) ≥ 0 since

we consider the case where i ≥ I1. Since a, b, c and d are all

positive, we can use Lemma 14 in the proof.

From (128) and (130), we have

−
d

a
= −

d
∑i

j=1 g2(βj)
≥ −

i(0.5+α)

i · g2(0)
= −

i−(0.5−α)

g2(0)
(131)

and

−
bc

a2
≥ −

b · i · g1(βmax)

a2
≥ −

i(0.5+α) · i · g1(βmax)

(i · g2(0))
2

=
g1(βmax) · i

−(0.5−α)

(g2(0))
2

. (132)

Putting them together, we have

2exp

(

−i2α

2(k3)2

)

≥ P

(

∑i
j=1 g1(Yj−1, Zj−1, βj)

∑i
j=1 g2(Yj−1, Zj−1, βj)

<
c− d

a+ b

)

(133)

≥ P

(

∑i
j=1 g1(Yj−1, Zj−1, βj)

∑i
j=1 g2(Yj−1, Zj−1, βj)

<
c

a
−

d

a
−

bc

a2

)

(134)

≥ P

(

∑i
j=1 g1(Yj−1, Zj−1, βj)

∑i
j=1 g2(Yj−1, Zj−1, βj)

<

∑i
j=1 g1(βj)

∑i
j=1 g2(βj)

−
i−(0.5−α)

g2(0)
−

g1(βmax) · i
−(0.5−α)

(g2(0))
2

)

(135)

where (133) follows from Lemma 13; (134) follows from

Lemma 14; (135) follows from the definitions in (128), (129)

and (130) and the inequalities in (131) and (132).
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Since

β∗ = min
β

g1(β)

g2(β)
≤

g2(βj)

g2(βj)
(136)

for any βj (see the discussions in Proposition 1 and Corol-

lary 1), we must have

β∗ ≤

∑i
j=1 g1(βj)

∑i
j=1 g2(βj)

. (137)

Continuing from (133) and (137), we have

Lemma 17: Given any α ∈ (0, 0.5), for i ≥ I1, there exists

a constant k4 such that

P

(

∑i
j=1 g1(Yj−1, Zj−1, βj)

∑i
j=1 g2(Yj−1, Zj−1, βj)

< β∗ − k4 · i
−(0.5−α)

)

≤ 2exp

(

−i2α

2(k3)2

)

(138)

Proof: Ineq. (138) follows directly from (135) and (137)

by setting

k4 ≜
1

g2(0)
+

g1(βmax)

(g2(0))
2
. (139)

By the βi update rule in (24), Lemma 17 can be rewritten

as

P

(

βi+1 < β∗ − k4 · i
−(0.5−α)

)

≤ 2exp

(

−i2α

2(k3)2

)

, ∀i > I1. (140)

Given any α ∈ (0, 0.5), we set the positive constants in (41)

in the following way:

c1 ≜ k4 =
1

g2(0)
+

g1(βmax)

(g2(0))
2

(141)

c2 ≜ max
(

2, exp
(

c3 · (I1)
2α
))

(142)

c3 ≜
1

2(k3)2
. (143)

The above specific choices of c1 to c3 plus the inequality (140),

we have proven (41).

APPENDIX I

PROOF OF (42) IN PROPOSITION 4

Lemma 18: For any positive constant a > 0 and any non-

negative constants, b, c, d ≥ 0, we have

c+ d

a+ b
≤ (c+ d)(

1

a
−

b

a2
+

b2

a3
)

≤
c

a
+

d

a
−

bc

a2
+

b2c

a3
+

b2d

a3
. (144)

Proof: The second inequality in (144) follows from

expanding the previous term and adding a non-negative term
bd
a2 . We hence only need to prove the first inequality in (144).

a3 ≤ a3 + b3 = (a+ b)(a2 − ab+ b2) (145)

=⇒
1

a+ b
≤

a2 − ab+ b2

a3
=

1

a
−

b

a2
+

b2

a3
(146)

=⇒
c+ d

a+ b
≤ (c+ d)(

1

a
−

b

a2
+

b2

a3
). (147)

We define

g2,min ≜ yzmin. (148)

Since g2(·, ·, ·) is non-decreasing with respect to all three input

variables and P(Y +Z > yzmin) = 1, we have P(g2(Y, Z, β) >
g2,min) = 1.

Similarly, we define

g2,max ≜ g2(ymax, zmax, βmax) (149)

g1,max ≜ g1(ymax, zmax, βmax) (150)

such that P(g2(Y, Z, β) ≤ g2,max) = 1 and P(g1(Y, Z, β) ≤
g1,max) = 1, where βmax is first defined in (102).

Lemma 19: There exists a positive constant k5 > 0 such

that for all i ≥ 3, we have

βi+1 =

∑i
j=1 g1(Yj−1, Zj−1, βj)

∑i
j=1 g2(Yj−1, Zj−1, βj)

(151)

≤ βi −
βi · g2(Yi−1, Zi−1, βi)− g1(Yi−1, Zi−1, βi)

∑i−1
j=1 g2(Yj−1, Zj−1, βj)

+
k5

(i− 1)2
. (152)

Proof: Eq. (151) follows from (24). We now prove (152).

For notational simplicity, we set

a ≜

i−1
∑

j=1

g2(Yj−1, Zj−1, βj) (153)

b ≜ g2(Yi−1, Zi−1, βi) (154)

c ≜
i−1
∑

j=1

g1(Yj−1, Zj−1, βj) (155)

d ≜ g1(Yi−1, Zi−1, βi). (156)

From (24) and since i ≥ 3, we have

c

a
= βi. (157)

Next, we have

d

a
=

g1(Yi−1, Zi−1, βi)
∑i−1

j=1 g2(Yj−1, Zj−1, βj)
. (158)

Then, from (157) we have

−
bc

a2
= −(

c

a
)(
b

a
) = (−βi)(

b

a
) =

−βi · g2(Yi−1, Zi−1, βi)
∑i−1

j=1 g2(Yj−1, Zj−1, βj)
.

(159)
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Further,

b2c

a3
= (

b

a
)2(

c

a
) =

(

g2(Yi−1, Zi−1, βi)
∑i−1

j=1 g2(Yj−1, Zj−1, βj)

)2

· βi

(160)

≤

(

g2,max

(i− 1)g2,min

)2

· (βmax) =
l1

(i− 1)2
(161)

where

l1 ≜ βmax ·

(

g2,max

g2,min

)2

(162)

is a positive constant. Eq. (160) follows from the definitions

in (153), (154) and (155); the inequality in (161) follows from

(148) and (149) and βi ≤ βmax in Lemma 6; the equality in

(161) follows from (162). Similarly,

b2d

a3
=

(g2(Yi−1, Zi−1, βi))
2
g1(Yi−1, Zi−1, βi)

(

∑i−1
j=1 g2(Yj−1, Zj−1, βj)

)3

≤
(g2,max)

2
g1,max

((i− 1) · g2,min)
3 =

l2
(i− 1)3

(163)

where

l2 ≜
(g2,max)

2
g1,max

(g2,min)
3 (164)

is a positive constant.

Finally, we have

(151) =
c+ d

a+ b
≤

c

a
+

d

a
−

bc

a2
+

b2c

a3
+

b2d

a3
(165)

≤ βi +
g1(Yi−1, Zi−1, βi)

∑i−1
j=1 g2(Yj−1, Zj−1, βj)

−
βi · g2(Yi−1, Zi−1, βi)
∑i−1

j=1 g2(Yj−1, Zj−1, βj)
+

l1
(i− 1)2

+
l2

(i− 1)3

(166)

≤ βi −
βi · g2(Yi−1, Zi−1, βi)− g1(Yi−1, Zi−1, βi)

∑i−1
j=1 g2(Yj−1, Zj−1, βj)

+
k5

(i− 1)2
(167)

where k5 ≜ l1+l2. Eq. (165) follows from (144); (166) follows

from (157), (158), (159), (161) and (163); (167) follows from

k5 ≜ l1 + l2. Lemma 19 is proved.

Recall that Fi ≜ {(Yj , Zj) : j ≤ i − 2} is the set of all

the previous forward and backward channel delays up to the

(i−2)-th packet. Since βi is completely determined by Fi (see

(24)), if we take the conditional expectation EYi−1,Zi−1{·|Fi}
and subtract β∗ from both sides of (152), we get

E{βi+1 − β∗|Fi}

≤ βi −
βi · g2(βi)− g1(βi)

∑i−1
j=1 g2(Yj−1, Zj−1, βj)

− β∗ +
k5

(i− 1)2
. (168)

From (77), we also have

− (βi · g2(βi)− g1(βi)) ≤ − (βi − β∗) g2(β
∗) (169)

Eqs. (168) and (169) jointly imply

Lemma 20: For all i ≥ 3,

E{βi+1 − β∗|Fi}

≤ (βi − β∗)

(

1−
g2(β

∗)
∑i−1

j=1 g2(Yj−1, Zj−1, βj)

)

+
k5

(i− 1)2
.

(170)

The intuition is that in average (βi−β∗) will have a tendency

to shrink by a factor that is strictly less than 1, if we ignore

the k5/(i − 1)2 term. Namely, the difference to β∗ would

shrink gradually in a way similar to having negative drift

in Lyapunov analysis. However, the subtlety of this equation

is that the factor is a random variable that depends on the

historical values (Y1, Z1) to (Yi−2, Zi−2) (recall that we set

Y0 = Z0 = β0 = 0). Therefore, the shrinking factor and the

target term (βi − β∗) is highly correlated. Therefore, it is not

possible to take the expectation of the right-hand side of (170)

and hope to bootstrap the results to show E{βi−β∗} is always

decreasing.

In addition to the correlation between the shrinking factor

and the target term (βi − β∗), the second complication is

that there is no guarantee that βi − β∗ is positive. If we

are shrinking the βi − β∗ term when βi − β∗ < 0, it could

actually make the overall expectation E{βi−β∗} bigger since

the right-hand side of (170) (multiplying βi − β∗, a negative

term, by a factor that is less than one) grows larger than

the original βi − β∗. This is against the goal of proving that

limi→∞ E{βi − β∗} ≤ 0. To overcome these two subtleties,

further derivation is provided in the sequel.

Lemma 21: Define

I2 ≜ max

(

3,

⌈

g2(β
∗)

g2,min

+ 1

⌉)

. (171)

For all i ≥ I2, we have

1−
g2(β

∗)
∑i−1

j=1 g2(Yj−1, Zj−1, βj)
≥ 0. (172)

Proof: First, we notice that (172) holds if

i−1
∑

j=1

g2(Yj−1, Zj−1, βj) ≥ g2(β
∗). (173)

For i ≥ 3, if

i ≥
g2(β

∗)

g2,min

+ 1 (174)

then

i−1
∑

j=1

g2(Yj−1, Zj−1, βj) ≥ (i− 1) · g2,min ≥ g2(β
∗) (175)

and hence (172) holds. The second inequality in (175) follows

from the condition in (174). Therefore, Lemma 21 follows

from the definition of I2 in (171).

If we further bound the right-hand-side of (170), we have
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Lemma 22: Given any α ∈ (0, 0.5), there exist positive

constants k6 and k7 such that for all i ≥ I2,

E{βi+1 − β∗|Fi}

≤ (βi − β∗)

(

1−
g2(0)

(i− 1) · g2,max

)

+
k5

(i− 1)2

+ ✶{β∗−c1·(i−1)−(0.5−α)≤βi<β∗} ·
k6

(i− 1)(1.5−α)

+ ✶{0≤βi<β∗−c1·(i−1)−(0.5−α)} ·
k7

(i− 1)
(176)

where the expression of c1 can be found in (141) (c1 is the

same constant used in (41)).

Proof: See Appendix K.

That is, the shrinking factor of (βi − β∗), which was

a random variable in (170), now becomes a deterministic

constant in (176). Taking the expectation from both sides of

(176), we have

E{βi+1 − β∗|Fi}

≤ E{βi − β∗}

(

1−
g2(0)

(i− 1) · g2,max

)

+
k5

(i− 1)2

+
k6

(i− 1)(1.5−α)
+

k7
(i− 1)

· c2 · exp
(

−c3 · (i− 1)2α
)

.

(177)

where (177) follows from (176), the fact that P(·) ≤ 1 and

the result in (41).

The next step is to notice that the among the last three terms

of (177), the second term k6

(i−1)1.5−α decreases to 0 the most

slowly. Therefore, we have

Lemma 23: Given any α ∈ (0, 0.5), there exists a constant

k8 such that for all i ≥ I2,

E{βi+1 − β∗}

≤ E{βi − β∗}

(

1−
g2(0)

(i− 1) · g2,max

)

+
k8

(i− 1)(1.5−α)
. (178)

Proof: See Appendix L.

Define Ei ≜ E{βi − β∗}. Then, from (178), we have for

i ≥ I2,

Ei+1 ≤ (1−
e

i− 1
)Ei +

k8
(i− 1)(1.5−α)

(179)

≤ (1−
e

i
)Ei +

k8
(i− 1)(1.5−α)

(180)

where

0 < e ≜
g2(0)

g2,max

< 1. (181)

We are now ready to prove (42). Recall the definition of

e ∈ (0, 1) in (181). Since e ∈ (0, 1), there exists α ∈ (0, 0.5)
such that α ∈ (0.5− e, 0.5).

Consider α ∈ (0.5 − e, 0.5). We then define b ≜ 0.5 − α.

Note that b ∈ (0, 0.5) since α ∈ (0, 0.5).

We set the term c4 in (42) to be

c4 ≜ max

(

βmax · (I2)
(0.5−α),

sup
i≥I2

(

k8
e− b

)

·

(

i

i− 1

)b+1
)

(182)

where the second term in max operation is finite since

limi→∞( i
i−1 )

b+1 = 1. Hence, c4 must be finite. In the

following, we prove that (42) holds by considering two cases.

Case 1: When i < I2, we have

Ei = E{βi − β∗} ≤ βmax =
βmax · (I2)

(0.5−α)

(I2)(0.5−α)

≤
c4

(I2)(0.5−α)
(183)

where the first inequality follows from βi ≤ βmax almost

surely, and the last inequality follows from the definition of

c4 in (182), i < I2 and α ∈ (0, 0.5).
Case 2: When i ≥ I2, we will prove (42) holds using

mathematical induction.

First, from the last inequality of (183), when i = I2, (42)

holds. Now suppose (42) holds for I2 ≤ i ≤ i0. Then for

i = i0 + 1, we have

Ei0+1 ≤ (1−
e

i0
)Ei +

k8
(i0 − 1)(1.5−α)

(184)

≤ (1−
e

i0
)

(

c4
(i0)(0.5−α)

)

+
k8

(i0 − 1)(1.5−α)
(185)

≤
c4

(i0 + 1)(0.5−α)
(186)

where (184) follows from (180); (185) follows from the

induction hypothesis that (42) holds for I2 ≤ i ≤ i0; (186)

holds for the following reasons.

Rearranging the inequality in (186), it is sufficient to show

that the positive constant c4 defined in (182) satisfies the

following inequality for all i ≥ I2.

k8
c4

·
1

(i− 1)(b+1)
≤

1

(i+ 1)b
−

1

ib
+

e

i(b+1)
(187)

Since 0 < b ≜ 0.5− α , the function x−b is convex for the

range of x ∈ (0,∞). As a result, for any given i value, by

comparing x−b to the tangent line at x = i, we have

x−b ≥ i−b − b · i(−b−1)(x− i) (188)

Plugging x = i+ 1 into (188), we have

(i+ 1)−b ≥ i−b − b · i(−b−1) (189)

From (189), the right-hand-side of (187) thus satisfies

(i+ 1)−b − i−b + e · i(−b−1)

≥ (−b) · i(−b−1) + e · i(−b−1) = (e− b) · i(−b−1) (190)

Comparing (187) and (190), it is clear that if there exists a

finite c4 satisfying

c4 ≥ sup
i≥I2

(

k8
e− b

)

·

(

i

i− 1

)b+1

(191)

then such a c4 will satisfy (187). Since we define c4 as in (182),

(187) (and thus (186)) holds. The proof of (42) is complete.
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APPENDIX J

PROOF OF COROLLARY 2

From (41), we have

lim
i→∞

E{(β∗ − βi)
+} = 0. (192)

From (42) we have

lim
i→∞

E{βi − β∗} ≤ 0. (193)

By the following inequality 0 ≤ |a−b| ≤ (a−b)+2 ·(b−a)+,

we thus have

lim
i→∞

E{|βi − β∗|} = 0. (194)

Next, for i ≥ 1, we have

E{(βi − β∗)2} ≤ E{(βmax − 0) · |βi − β∗|} (195)

= βmax · E{|βi − β∗|} (196)

where (195) follows from Lemma 6. Jointly (194) and (196)

imply Corollary 2.

APPENDIX K

PROOF OF LEMMA 22

For notational simplicity, we first define two functions

h1(β) ≜ (β − β∗) ·

(

1−
g2(β

∗)
∑i−1

j=1 g2(Yj−1, Zj−1, βj)

)

(197)

h2(β) ≜ (β − β∗) ·

(

1−
g2(0)

(i− 1) · g2,max

)

(198)

where h1(β) represents the right-hand-side of (170) (if ignor-

ing k5/(i−1)2). Our goal is to first upper bound h1(β) using

h2(β), and then add k5/(i−1)2 back. Recall that in Lemma 21,

we have proved that when i ≥ I2, 1− g2(β
∗)

∑i−1
j=1 g2(Yj−1,Zj−1,βj)

≥

0. Therefore, the terms after (β − β∗) in (197) and (198) are

both non-negative. Also note that by the monotonicity of g2
and g2 functions, we have

g2(β
∗)

∑i−1
j=1 g2(Yj−1, Zj−1, βj)

−
g2(0)

(i− 1) · g2,max

≥ 0. (199)

Since

h2(β)− h1(β) = (β − β∗)·
(

g2(β
∗)

∑i−1
j=1 g2(Yj−1, Zj−1, βj)

−
g2(0)

(i− 1) · g2,max

)

(200)

we have

h1(β) ≤ h2(β), if β − β∗ ≥ 0. (201)

Note that if β < β∗, we will have h2(β) ≤ h1(β). As a

result, to remove the conditioning inequality in (201), we add

a couple of indicator functions and write

h1(β) ≤ h2(β)

+ ✶{β∈[β∗−c1·(i−1)−(0.5−α),β∗)} · (h1(β)− h2(β))

+ ✶{β∈[0,β∗−c1·(i−1)−(0.5−α))} · (h1(β)− h2(β)) (202)

by considering two partitioning events when β < β∗. In the

following we further upper bound the second and the third

term in (202).

Case 1: For β ∈ [β∗ − c1 · (i− 1)−(0.5−α), β∗), we have

h1(β)− h2(β)

≤ h1(β)− h2(β)
∣

∣

∣

β=β∗−c1·(i−1)−(0.5−α)
(203)

= c1 · (i− 1)−(0.5−α)·
(

g2(β
∗)

∑i−1
j=1 g2(Yj−1, Zj−1, βj)

−
g2(0)

(i− 1) · g2,max

)

(204)

≤ c1 · (i− 1)−(0.5−α) ·

(

g2(βmax)

(i− 1) · g2,min

−
g2(0)

(i− 1) · g2,max

)

(205)

=
k6

(i− 1)(1.5−α)
(206)

where (203) follows from that the largest distance between

two linear functions (h1(β) and h2(β)) happens at the furthest

point away from the intersecting point β = β∗; (206) follows

from (205) by setting

k6 ≜ c1 ·

(

g2(βmax)

g2,min

−
g2(0)

g2,max

)

. (207)

Case 2: For β ∈ [0, β∗ − c1 · (i− 1)−(0.5−α)), we have

h1(β)− h2(β)

≤ h1(β)− h2(β)
∣

∣

∣

β=0
(208)

= β∗ ·

(

g2(β
∗)

∑i−1
j=1 g2(Yj−1, Zj−1, βj)

−
g2(0)

(i− 1) · g2,max

)

(209)

≤ β∗ ·

(

g2(βmax)

(i− 1) · g2,min

−
g2(0)

(i− 1) · g2,max

)

(210)

=
k7

(i− 1)
(211)

where (208) follows from the same reasoning as in (203);

(210) follows from the monotonicity of g2 and g2; (211)

follows from (210) by setting

k7 ≜
g2(βmax)

g2,min

−
g2(0)

g2,max

. (212)

By combining (202), (206) and (211) with the above dis-

cussion, we have

h1(β) ≤ h2(β)

+ ✶{β∈[β∗−c1·(i−1)−(0.5−α),β∗)} ·
k6

(i− 1)(1.5−α)

+ ✶{β∈[0,β∗−c1·(i−1)−(0.5−α))} ·
k7

(i− 1)
(213)

Eq. (176) follows from upper bounding the right-hand-side

of (170) using the result in (213).
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PROOF OF LEMMA 23

Given any α ∈ (0, 0.5), for all i ≥ 2, we have

k5
(i− 1)2

≤
k5

(i− 1)(1.5−α)
(214)

since 0 < 1.5− α < 2.

Next, there exists a positive integer I ≥ 2 such that for all

i ≥ I , we have

exp
(

−c3 · (i− 1)2α
)

≤
1

(i− 1)(0.5−α)
(215)

since the former is exponentially decreasing and the latter is

is polynomially decreasing. Hence, we define

θ ≜ max

(

1, max
2≤i≤I

(i− 1)(0.5−α) · exp
(

−c3 · (i− 1)2α
)

)

.

(216)

One can easily verify that for all i ≥ 2, we have

exp
(

−c3 · (i− 1)2α
)

≤
θ

(i− 1)(0.5−α)
. (217)

From (214) and (217), Eq. (178) follows from (177) by

setting

k8 ≜ k5 + k6 + k7 · c2 · θ. (218)

APPENDIX M

PROOF OF PROPOSITION 5

Blum [24] proved that the standard Robbins-Monro algo-

rithm (i.e., {βi} computed by (44)) converges to the unique

root (i.e., β∗) almost surely, provided that the following three

conditions are met.

(i) {βi} computed by (44) is uniformly bounded.

(ii) β · g2(β)− g1(β) is non-decreasing.

(iii) 0 < d
dβ

(β · g2(β)− g1(β))
∣

∣

∣

β=β∗

< ∞.

We will prove that all three conditions hold in our AoI penalty

minimization setting.

Conditions (ii) and (iii) are satisfied from the following

lemma.

Lemma 24: Under the assumption of βUB = ∞, β · g2(β)−
g1(β) is a continuous and strictly increasing function of β.

Furthermore, its value is strictly negative when β = 0 and it

approaches ∞ when β → ∞.

Proof: See Appendix N.

The following lemma proves that Condition (i) also holds.

Lemma 25: There exist four positive values

β, δ+, δ−,1, δ−,2 > 0 and one negative value β < 0

such that (i) if βi ≥ β > 0, then βi+1 ≤ βi; (ii) if

0 ≤ βi ≤ β, then

βi+1 ≤ βi + δ+; (219)

(iii) if β ≤ βi < 0, then

βi ≤ βi+1 ≤ βi + δ−,1; (220)

and (iv) if βi ≤ β < 0, then βi ≤ βi+1 ≤ δ−,2.

Note that this lemma immediately implies uniform bound-

edness. In particular, we will have

βi ≤ βRM,UB ≜ max
(

β + δ+, δ−,1, δ−,2

)

. (221)

The proof is done by induction. Since β0 = 0, we have (221)

for i = 0; by (i) and (ii), we have βi+1 ≤ βRM,UB if βi ≥ 0;

and by (iii) and (iv) we have βi+1 ≤ βRM,UB if βi ≤ 0. The

proof of (221) is complete.

We will also have ∀i ≥ 0,

βi ≥ βRM,LB ≜ min
(

β,−η · βRM,UB · g2(ymax, zmax, βRM,UB)
)

(222)

where η is the parameter used in the step size η
i
. The proof is

carried out again by induction. Since β0 = 0, we have (222)

for i = 0. If βi ≥ 0, then because βi is upper bounded by

βRM,UB > 0, from (44) it is clear that

βi+1 ≥ βi − η · βRM,UB · g2(ymax, zmax, βRM,UB) ≥ βRM,LB.
(223)

If βi ≤ 0, by (iii) and (iv), βi+1 ≥ βi ≥ βRM,LB. The proof

of (222) is complete.

From (221) and (222), Condition (i) (uniform boundedness

of βi) holds and the proof of Proposition 5 is complete.

The rest of the proof is thus to show that Lemma 25 is true.

Statement (i) of Lemma 25 can be proved as follows. Define

β ≜ E {γ(ymax + zmax + Y + 1)} > 0. (224)

If βi ≥ β, from the definition of ϕΓ,βi
(y′, z′) in (11) and

the result in (12), we must have ϕΓ,βi
(y′, z′) > 0 for any

(Yi−1 = y′, Zi−1 = z′). The following Lemma 26 directly

leads to βi+1 ≤ βi and Statement (i) of Lemma 25 is thus

proved.

Lemma 26: Given any (Yi−1 = y′, Zi−1 = z′), if

ϕΓ,βi
(y′, z′) > 0, then we have βi+1 ≤ βi.

Proof: If ϕΓ,βi
(y′, z′) > 0, then at time Ai−1 +

ϕΓ,βi
(y′, z′), the AoI penalty growth rate is exactly βi. Since

the AoI penalty growth rate is strictly increasing, during the

time [Ai−1, Ai−1+ϕΓ,βi
(y′, z′)) the AoI penalty growth rate is

strictly lower than βi. As a result, βi ·g2(y
′, z′, ϕΓ,βi

(y′, z′))−
g1(y

′, z′, ϕΓ,βi
(y′, z′)) is strictly positive. By (44), βi+1 ≤ βi.

Statement (ii) of Lemma 25 can be proved as follows. First,

we present the following

Corollary 3: Given any (Yi−1 = y′, Zi−1 = z′), βi+1 > βi

only if ϕΓ,βi
(y′, z′) = 0.

Corollary 3 directly follows from Lemma 26.

Define

δ+ ≜ η · g1,β=0,max (225)

where

g1,β=0,max ≜

∫ 2ymax+zmax

0

γ(t)dt. (226)

Note that for any (Yi−1 = y′, Zi−1 = z′), we have

g1(y
′, z′, 0) ≤ g1,β=0,max (227)

using the definition of g1(·, ·, ·) in (19) and P(Y ≤ ymax, Z ≤
ymax) = 1.
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Recall that we focus on the scenario of 0 ≤ βi ≤ β, we

then have

βi+1 − βi = −
η

i+ 1
· (βi · g2(y

′, z′, βi)− g1(y
′, z′, βi))

≤
η

i+ 1
· g1(y

′, z′, 0) (228)

≤ η · g1,β=0,max (229)

≤ δ+ (230)

where (228) holds because of the following reasons. If βi+1 ≤
βi, then (228) holds naturally since g1(y

′, z′, 0) ≥ 0. If

βi+1 ≥ βi, then we first notice that since βi ≥ 0 in

our scenario, the left-hand side of (228) is no larger than
η

i+1 · g1(y
′, z′, βi). However, by Corollary 3, βi+1 ≥ βi only

occurs when ϕΓ,βi
(y′, z′) = 0 = ϕΓ,0(y

′, z′). Therefore,

g1(y
′, z′, βi) = g1(y

′, z′, 0) if βi+1 ≥ βi. We thus have (228).

Ineq. (229) follows by removing the denominator (i+1) in

(228) and by (227); (230) follows from the definition of δ+ in

(225). Ineq. (230) immediately implies the Statement (ii) of

Lemma 25.

The first inequality βi ≤ βi+1 in Statements (iii) and

(iv) can be proved as follows. Since βi < 0, the term

βi+1 − βi = − η
i+1 · (βi · g2(y

′, z′, βi)− g1(y
′, z′, βi)) is

strictly positive and we therefore have βi ≤ βi+1 (see the

update formula in (44)).

The second inequality in Statement (iii) of Lemma 25 can

be proved as follows. Next, we define

β ≜ − (1 + η · (ymax + zmax)) · η · g1,β=0,max (231)

where g1,β=0,max is defined in (226) and

δ−,1 ≜ η ·
(

|β| · (ymax + zmax) + g1,β=0,max

)

. (232)

If β ≤ βi < 0, then

βi+1 − βi = −
η

i+ 1
· (βi · g2(y

′, z′, βi)− g1(y
′, z′, βi))

≤ η ·
(

|β| · g2(y
′, z′, βi) + g1(y

′, z′, βi)
)

(233)

≤ η ·
(

|β| · (ymax + zmax) + g1,β=0,max

)

(234)

= δ−,1 (235)

where (233) holds since η > 0 and β ≤ βi < 0; Since βi < 0,

for any (Yi−1 = y′, Zi−1 = z′) we have ϕΓ,βi
(y′, z′) = 0

and hence (i) g2(y
′, z′, βi) = y′ + z′ ≤ ymax + zmax, and (ii)

g1(y
′, z′, βi) ≤ g1,β=0,max; (234) therefore follows from (233);

(235) follows from the definition of δ−,1 in (232). The second

inequality in Statement (iii) of Lemma 25 is proved.

The second inequality in Statement (iv) of Lemma 25 can

be proved as follows. We consider two cases depending on the

index i of βi,

Case 1: 1 ≤ i ≤ ⌈η · (ymax + zmax) + 1⌉ − 1. We derive a

(loose) upper bound of |βi+1| in this case. From (44), we have

|βi+1| ≤|βi| · (1 + η · g2(ymax, zmax, |βi|))

+ η · g1(ymax, zmax, |βi|) (236)

by simple algebra. From (236), since the right-hand-side is

an increasing function of |βi|, the upper bound of |βi| is also

increasing, and hence we only need to consider the bound for

|βi+1| when i = ⌈η · (ymax + zmax) + 1⌉−1. Since β1 = 0, the

upper bound can be iteratively computed as follows. Define a

function of β

v(β) ≜ β · (1 + η · g2(ymax, zmax, β)) + η · g1(ymax, zmax, β).
(237)

Then run the following Algorithm 3.

Algorithm 3 Derive the upper bound of |β⌈η·(ymax+zmax)+1⌉|

Universal input for every round: η, ymax, zmax and SYγ (a

set of statistics of Y )

Output: The upper bound of |β⌈η·(ymax+zmax)+1⌉|

1: Initialize µ1 = 0
2: Maintain a scalar register µi

3: for round i = 1, 2, ..., ⌈η · (ymax + zmax) + 1⌉ − 1 do

4: Use (19), (20), η, ymax, zmax, µi, SYγ to compute

g1(ymax, zmax, µi) and g2(ymax, zmax, µi)
5: Use (237) to compute µi+1 = v(µi)
6: end for

7: Return µ⌈η·(ymax+zmax)+1⌉ as the upper bound of

|β⌈η·(ymax+zmax)+1⌉|

We then define

δ−,2 ≜ µ⌈η·(ymax+zmax)+1⌉ (238)

and therefore βi+1 ≤ |βi+1| ≤ δ−,2 for all 1 ≤ i ≤
⌈η · (ymax + zmax) + 1⌉ − 1 in Case 1.

Case 2: i ≥ ⌈η · (ymax + zmax) + 1⌉. In this case, we will

show that if βi ≤ β < 0, then βi+1 < 0. This, together

with the discussion in Case 1 will complete the proof of the

second inequality in Statement (iv) of Lemma 25. Specifically,

we have

βi+1 = βi −
η

i+ 1
(βi · g2(y

′, z′, 0)− g1(y
′, z′, 0)) (239)

≤ βi ·

(

1−
η

i+ 1
g2(y

′, z′, 0)

)

+ η · g1(y
′, z′, 0) (240)

where (239) is by (44) and the fact that when βi < 0,

ϕΓ,βi
(y′, z′) = 0 and we can thus replace the βi inside (239)

by 0. Ineq. (240) is by changing the coefficient in front of

g1(y
′, z′, 0) from η/(i+ 1) to η.

Since g2(y
′, z′, 0) = y′ + z′ ≤ ymax + zmax and since we

consider only those i satisfying i+ 1 ≥ η · (ymax + zmax) + 1,

we have

1−
η

i+ 1
g2(y

′, z′, 0) ≥ 1−
η · (ymax + zmax)

1 + η · (ymax + zmax)
> 0.

(241)

Using (241) and continuing from (240), since βi < 0 we

have

βi+1 ≤ βi ·

(

1−
η · (ymax + zmax)

1 + η · (ymax + zmax)

)

+ η · g1,β=0,max.

(242)

Finally because βi ≤ β = −(1 + η · (ymax + zmax)) · η ·
g1,β=0,max, plugging this inequality into (242) we have βi+1 ≤
0.
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For any β ≥ 0, we define

q(β) ≜ β · g2(β)− g1(β). (243)

By the definition of g1 and g2 functions, we immediately

have

q(β) = β · E{Yi−1 + Zi−1 + ϕΓ,β(Yi−1, Zi−1)}

−E{G1(Yi−1, Zi−1, ϕΓ,β(Yi−1, Zi−1)}. (244)

We first argue that q(β) can be viewed as the objective function

of the following maximization problem:

q(β) = sup
Xi≥0

β · E{Yi−1 + Zi−1 +Xi}

− E{G1(Yi−1, Zi−1, Xi)}

Xi is computed by a FED scheme. (245)

The reason is very similar to that of Proposition 1. Namely,

because the scheme Γβ sends the packet when the marginal

increase rate of G1 is larger than β, the waiting time decision

ϕΓ,β also maximizes the (245) since any further waiting will

decrease the objective value. Since we focus on the FED

scheme, E{Yi−1 + Zi−1 + Xi} < ∞, see Definition 1. As

result, q(β) < ∞ for any finite β ≥ 0.

Once (245) is established, we note that q(β) is a supre-

mum of a set of linear functions of β. Furthermore, because

g2(Yi−1, Zi−1, β) ≥ Yi−1 + Zi−1 ≥ yzmin, the set of linear

functions are all of strictly positive slopes. Furthermore, if we

hardwire Xi = 0 (one instance of the optimization domain),

the constant term satisfies 0 ≥ −E{G1(Yi−1, Zi−1, 0)} >
−∞. Jointly we thus have that q(β) must be (i) continuous; (ii)

strictly increasing; (iii) convex; and (iv) limβ→∞ q(β) = ∞.

Finally we notice that when β = 0, we have q(0) =
−G1(Yi−1, Zi−1, 0). Note that −G1(Yi−1, Zi−1, ) is strictly

negative since the duration of each round Yi−1 + Zi−1 ≥
yzmin > 0 and the AoI penalty function is strictly increasing

while satisfying γ(0) = 0. This thus implies q(0) < 0. The

proof is complete.
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