
Optimal Learning Rate of Sending One Bit Over

Arbitrary Acyclic BISO-Channel Networks

Chih-Chun Wang and David J. Love

Purdue ECE, Email: {chihw,djlove}@purdue.edu

Abstract—This work considers the problem of sending a 1-bit
message over an acyclic network, where the “edge” connecting
any two nodes is a memoryless binary-input/symmetric-output
(BISO) channel. For any arbitrary acyclic network topology
and constituent channel models, a min-cut-based converse of the
learning rate, denoted by r

∗, is derived. It is then shown that
for any r < r

∗, one can design a scheme with learning rate r.
Capable of approaching the optimal r

∗, the proposed scheme
is thus the asymptotically fastest for sending one bit over any
acyclic BISO-channel network. The construction is based on a
new concept of Lossless Amplify-&-Forward, a sharp departure
from existing multi-hop communication scheme designs.

I. PROBLEM FORMULATION

We model a network by a finite directed acyclic graph

(V,E). A source s ∈ V likes to communicate a 1-bit message

Θ ∈ {0, 1} to a destination d ∈ V . The “channel” along

each edge e = (u, v) is a memoryless point-to-point binary-

input/symmetric-output (BISO) channel [1], [2]. There is no

other restriction in our model, e.g., the network may be a line

network [3]–[7] or other configurations [8]–[11]. The channel

may be a Binary Symmetric Channel (BSC) for one edge [2]

and be a binary-input additive white Gaussian channel for the

other edge(s). While the input is always binary, the output of

the channel can be a high dimensional vector if desired.

For each discrete time t ∈ [1,∞), source s transmits a bit

X(s,w)(t) = ft,(s,w)(Θ) (1)

to its downstream neighbor w based on the message Θ. Any

node v ̸= s transmits a bit to its downstream neighbor w:

X(v,w)(t) = ft,(v,w)({Y(u,v)(τ) : ∀τ < t, u}) (2)

based on Y(u,v)(τ), the signal received at v from node u at

time τ < t. For any e = (u, v), the distribution of Ye(t) given

Xe(t) follows the specified BISO channel models. Destination

d then finds the Maximum Likelihood (ML) detector of Θ by

Θ̂(t) = argmax
θ∈{0,1}

P

(

{Y(u,d)(τ) : ∀τ ≤ t, u}
∣

∣

∣Θ = θ
)

(3)

Define the error probability (of destination d) at time t by

pϵ(t) ≜ max
θ=0,1

P(Θ̂(t) ̸= θ|Θ = θ) (4)

The achievable learning rate of a scheme {ft,e : ∀t, e} is

r ≜ lim inf
∆→∞

− log(pϵ(∆))

∆
. (5)

The optimal learning rate r
∗ is the supremum of the achiev-

able learning rates r of all possible schemes {ft,e : ∀t, e}.

Denote the delay needed to achieve a target error probability

pϵ by ∆(pϵ). By (5), we have

∆(pϵ) =
− log(pϵ)

r

+ o(− log(pϵ)) when pϵ → 0, (6)

As a result, we say any scheme that achieves or approaches the

largest r∗ is the asymptotically fastest (when pϵ → 0). With

the goal of designing ultra-low-latency multi-hop communi-

cation schemes for delay sensitive applications, e.g., remote

surgery, this work characterizes the r
∗ value.

A. Existing Results

If the network is a single hop from s to d, it is known that

the optimal learning rate of a BISO channel e = (s, d) is

r
∗
e = − log





∑

y∈Ye

√

PYe|Xe
(y|0) · PYe|Xe

(y|1)



 (7)

if the output alphabet Ye is discrete [12]. The formula can be

readily generalized for continuous alphabet Ye as well.

If the network is a 2-hop line network s → r → d and both

channels are discrete, [4] showed that for any

r < min
(

r
∗
(s,r), r

∗
(r,d)

)

, (8)

where r
∗
e is the optimal learning rate over a single hop e

as defined in (7), one can design an achievability scheme of

learning rate r. The results [4] were a major breakthrough after

several earlier attempts of designing (suboptimal) achievability

schemes [5], [7].

This work generalizes the characterization of r∗ from 2-hop

networks [4] to arbitrary acyclic multi-hop networks, a non-

trivial extension that requires many new analysis tools and

innovations. In addition, our result is based on a new concept

called Lossless Amplify-&-Forward (AF). The philosophy of

lossless AF is to effectively eliminate error accumulation when

concatenating two channels via AF, which allows us to harvest

the ultra-low-latency benefits of AF without its fatal draw-

back and is fundamentally different from existing multi-hop

schemes like decode-&-forward, compress-&-forward [13],

[14], quantize-&-forward [15], compute-&-forward [16].

II. THE CONVERSE

Proposition 1: The achievable learning rate r of any scheme

over an acyclic network must satisfy

r ≤ r
∗ ≜ min

cut(s,d)

∑

e∈cut(s,d)

r
∗
e (9)



where the minimization is over all edge cuts cut(s, d) sepa-

rating s and d, and r
∗
e was defined in (7).

The proof of Proposition 1 is a standard reduction-based

cutset bound argument. The detailed proof is thus omitted.

III. ACHIEVABILITY FOR r
∗-UNIFORM LINE NETWORKS

The greatest challenge of designing an achievability scheme

is to devise a systematic construction that is applicable to

any acyclic network topology while still admitting provable

performance. To that end, we first design an achievability

scheme for any L-hop line network with edges e1 to eL
satisfying

r
∗
e1

= r
∗
e2

= · · · = r
∗
eL

= r
∗ (10)

and show that the scheme can achieve learning rate r for

any r < r
∗. We call such a network r

∗-uniform L-hop line

network. Note that we require the same r
∗
e for each hop e but

the individual channel models can still be different. In Sec. IV,

we discuss how the “modularity” of our construction can be

used to achieve the converse (9) for general acyclic networks.

A. Construction of Abstract Binary-Input/γ-Output Channels

We denote any BISO channel with distribution PYe|Xe
by

CHe. For any integer γ ≥ 1, we first discuss how we can

convert m uses of CHe to a binary-input/γ-output (BI-γ-out)

abstract channel. This “abstract channel” is a key building

block of our scheme.

To that end, we define a “Ym
e -to-γ-ary-output quantizer” (or

just “γ-ary quantizer” as shorthand) πm, which is a mapping1

from Ym
e to {0, 1, · · · , γ− 1}. The construction is as follows.

For any given πm, suppose the abstract channel receives an

input bit b. We first repeat the input bit b by m times, and

send the resulting 0⃗ or 1⃗ vector over m uses of CHe. After

receiving the m outputs y⃗ ∈ Ym
e , we pass it through the γ-

ary quantizer and output Γ = πm(y⃗). The construction is

complete. It is worth noting that regardless of the m value, the

abstract channel is always of binary input and γ-ary output.

Definition 1: A quantizer πm is symmetric if the resulting

BI-γ-out channel is of binary-input symmetric-output (BISO).

B. LLR of the New Abstract Channels

Suppose the output of the abstract channel is Γ = γ, we

compute the LLR of the abstract (abs) channel by

L
(m)
abs ≜ log

(

P(Γ = γ|b = 0)

P(Γ = γ|b = 1)

)

(11)

= log





PY m
e |Xm

e

(

πm(Y⃗ ) = γ
∣

∣

∣⃗0
)

PY m
e |Xm

e

(

πm(Y⃗ ) = γ
∣

∣

∣⃗1
)



 (12)

where (12) is due to the construction of the abstract chan-

nel. When evaluating (12), we define log(p/0) = ∞ and

1The mapping can be either deterministic or randomized. The most rigorous
definition is to treat πm as a “channel” from Ym

e
to {0, 1, · · · , γ − 1}.

However, because the purpose of πm is mainly to quantize Y⃗ ∈ Ym
e

, we
describe it herein as a deterministic mapping for the ease of notation.

log(0/p) = −∞ for any p > 0. Since the event L
(m)
abs =

log(0/0) is of probability zero, it is ignored/excluded from

our discussion.

Definition 2: For any given πm, we define the sample space

of the LLR L
(m)
abs by Lm. Since there are exactly γ possible

output values Γ ∈ {0, · · · , γ − 1}, we can assume that Lm is

discrete and contains exactly γ distinct elements without loss

of generality.2 We denote Lm by

Lm = {ℓγ : γ ∈ {0, 1, · · · , γ − 1}} (13)

where ℓγ is the LLR value in (11) if Γ = γ. Without loss of

generality, we also assume the elements of Lm satisfying

ℓ0 > ℓ1 > · · · > ℓγ−1 (14)

by relabeling the γ indices according to the order of ℓγ .

Many stochastic properties of a binary-input channel can

be characterized by its LLR distributions. For our BI-γ-

out abstract channel, the probability mass function (pmf) of

P(L
(m)
abs = ℓγ |b), conditioning on the input b ∈ {0, 1}, can be

computed by finding the value of PY m
e |Xm

e
(Y⃗ ∈ π

−1
m (γ)|⃗b),

see (12). Assuming πm is symmetric, we introduce an alter-

native way of describing3 the conditional pmf of L
(m)
abs .

Definition 3: For any symmetric πm, define the LLR Rate

Function (LLR.rf) of the abstract channel as

LLR.rfm(ρ) ≜
− log

(

P(L
(m)
abs = ℓ

∣

∣b = 1)
)

m

if ρ =
ℓ

m
for some ℓ ∈ Lm (15)

and we say LLR.rfm(ρ) is undefined for other ρ values.

The intuition behind the LLR.rf definition is that since we

are interested in the learning rate, we take − log(·) of the pmf

values. Because each abstract channel consists of m uses of

CHe, we normalize both the LLR and the − log(pmf) values

by 1/m to quantify the average impact of each CHe usage.

Because both − log(·) and the normalization 1/m are bijec-

tive mappings, knowing the LLR.rfm(·) function is equivalent

to knowing the conditional pmf of L
(m)
abs given b = 1.

C. Analysis of the New Abstract Channels

With all the definitions of L
(m)
abs and LLR.rfm(ρ), we now

analyze the properties of this BI-γ-out abstract channel. Firstly,

we quantify the learning rate, see (5), of using this abstract

channel (repeatedly) to send a single-bit message:

Lemma 1: For any symmetric γ-ary quantizer πm, the m-

normalized learning rate of the resulting abstract channel is

r̄m =
− log

(

∑γ−1
γ=0

√

P(Γ = γ|b = 0)P(Γ = γ|b = 1)
)

m
(16)

2Sometimes Lm contains strictly less than γ elements if L
(m)
abs = log(0/0)

for some Γ = γ. If two γ1 ̸= γ2 result in the same L
(m)
abs value, the number

of distinct elements of Lm also decrements. Our results still hold for those
corner cases after some detailed and straightforward case discussion.

3With symmetric πm, the resulting abstract channel is BISO. Therefore,
Definition 3 focuses exclusively on the conditional distribution given b = 1.
The conditional distribution given b = 0 can be obtained/defined by symmetry.
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Fig. 1. Trajectories of LLR.rfm(ρ) for m = 7, 16, 24, 50, and ∞,
respectively. When m = 7, the four points spread the widest. As m
increases, the trajectories move inward and eventually converge to the line
f(ρ) = 0.5ρ+ 0.174.
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Fig. 2. The trajectory of the m-normalized learning rate r̄m; and the upper
bound r

∗

BSC(0.2).

of which the numerator is a straightforward application of (7).

Since our abstract channel consists of m uses of CHe, we add

the 1/m term to quantify the average impact of each CHe.

Definition 4: For any fixed d > 0 and γ values, we say a

class of symmetric γ-ary quantizers {πm : m ∈ {1, 2, · · · }} is

asymptotically d-linear, if all γ points of the limiting function

limm→∞ LLR.rfm(ρ) fall onto the line f(ρ) = 0.5ρ+ d.

For example, suppose the constituent channel CHe is a BSC

with cross probability p = 0.2. We have numerically found

a class of symmetric 4-ary quantizers {πm : m ∈ N} that

is asymptotically d-linear with d = 0.174. Fig. 1 plots the

trajectories of the γ = 4 points of LLR.rfm(ρ) for various m.

As can be seen, all 4 points of LLR.rfm(ρ) eventually converge

to the same line f(ρ) = 0.5ρ+ 0.174.

We now present our first main result of achievability.

Proposition 2: For any d > 0, any γ ≥ 2, and any class

of symmetric γ-ary quantizers {πm} that is asymptotically

d-linear, the m-normalized learning rate r̄m in (16) satisfies

lim
m→∞

r̄m = d. (17)

Continue our example of using BSC(0.2) as the constituent

channel. We have numerically found a symmetric γ = 8-ary

quantizer class {πm : m} that is asymptotically d-linear with

d = 0.204. Fig. 2 plots the corresponding r̄m (numerically

computed by (16)) for m = 2 to 50. As predicted, the m-

normalized learning rate converges to d = 0.204 as m → ∞.

By the data processing inequality, the m-normalized learn-

ing rate r̄m after γ-ary quantization πm must be less than

the native, before-quantization learning rate of BSC, denoted

by r
∗
BSC(0.2) = 0.223 as computed by (7). That said, the

simple 3-bit quantization γ ∈ {0, · · · , 7} of the πm used

in Fig. 2 already achieves 92% of the upper bound, since

d = 0.204 = 0.92r∗BSC(0.2). In fact, we have numerically

found a γ = 16-ary symmetric quantizer class {πm : m}
that is asymptotically d-linear with d = 0.97r∗BSC(0.2). This

shows that the price one pays for compressing an unboundedly

large m-dimensional observation Y⃗ ∈ Ym
e into a mere 4-bit

Γ value is only 3% of the normalized learning rate, even if

we let m → ∞!

The introduction of {πm} greatly simplifies the analysis

since the resulting abstract channel is BI-γ-out (thus having

fixed input and output alphabets) regardless of m. Further-

more, the conversion is almost lossless in the following sense.

Proposition 3: Consider any CHe with single-hop learning

rate r
∗
e . For any d < r

∗
e that can be arbitrarily close to r

∗
e ,

there exist a γ value and a symmetric γ-ary quantizer class

{πm : m} that is asymptotically d-linear.

Proposition 2 is proven by plugging (15) into (16) and

using Definition 4. Proposition 3 is proven by first choosing

a sufficiently large γ for the given d < r
∗
e and then explicitly

devising either a deterministic or a randomized mapping πm.

The detailed proofs are omitted due to space constraints.

D. The New Concept of Lossless Amplify-&-Forward

We now describe how one can serially concatenate two

abstract channels in an almost lossless fashion. Consider

two arbitrary physical channels CHe1 and CHe2 , and the

corresponding two symmetric quantizer classes {π
[1]
m } and

{π
[2]
m }, respectively. We assume that both {π

[1]
m } and {π

[2]
m }

are asymptotically d0-linear with the same d0, and the first

quantizer class is γ1-ary and the second quantizer class is γ2-

ary, where γ1 and γ2 may be different.

Since {π
[1]
m : m} is γ1-ary, its LLR.rfch1m (·) has γ1 “valid

points” and we denote their m → ∞ limits by

(x0, y0), (x1, y1), · · · , (xγ
1
−1, yγ

1
−1). (18)

where (xγ , yγ) is the x- and y-coordinates of the limiting

point corresponding to the event {Γ = γ}. For example, the

trajectories of LLR.rfm(·) in Fig. 1 converge to four different

points when m → ∞, and these four limiting points are

denoted by (18).

By (14), Γ = 0 corresponds to the largest LLR L
(m)
abs and

thus the largest x-coordinate. This implies

x0 > x1 > · · · > xγ
1
−1 (19)

By Definition 4, we have yγ = 0.5xγ+d0, which then implies

y0 > y1 > · · · > yγ
1
−1 (20)



Corollary 1: Without loss of generality, we may further

assume

(x0, y0) = (2d0, 2d0) and (xγ
1
−1, yγ

1
−1) = (−2d0, 0).

Corollary 1 is derived from the explicit construction of {πm}
that is used to prove Proposition 3.

For example, the four limiting points in Fig. 1 are

(x0, y0) = (0.348, 0.348), (x1, y1) = (0.0986, 0.223)

(x2, y2) = (−0.0986, 0.125), (x3, y3) = (−0.348, 0) (21)

and they satisfy Corollary 1 since d = 0.174.

We now describe our construction. Suppose the first abstract

channel uses CHe1 for m times and outputs Γ = γ. We then

construct a bit string b1b2 · · · bγ
1
−1 satisfying

bi =

{

0 if i < γ1 − γ and i ∈ {1, · · · , γ1 − 1}

1 if i ≥ γ1 − γ and i ∈ {1, · · · , γ1 − 1}
(22)

Recall that we have been given a class of symmetric γ2-ary

quantizers {π
[2]
m : m} for the physical channel CHe2 . We then

send bit bi over an abstract channel created by mi uses of

CHe2 using the symmetric quantizer π
[2]
mi , where

mi ≜

⌊

m · (yi−1 − yi)

y0

⌋

(23)

Namely, we “split” a single abstract channel that uses CHe2 for

m times to (γ1 − 1) abstract (sub-)channels, each uses CHe2

for mi times to send a single bit bi. This is possible since
∑γ

1
−1

i=1 mi ≤ m by (23). This concludes our concatenation of

m uses of physical channel CHe1 and
∑

mi uses of physical

channel CHe2 to create an end-to-end (e2e) new abstract

channel.

Three observations are in order. Firstly, the new e2e abstract

channel is of binary input since the m uses of CHe1 create a

binary-input abstract channel. The output of the e2e abstract

channel is of order (γ2)
γ
1
−1. The reason is that sending each

bi through a BI-γ2-out abstract channel (that uses CHe2 for

mi times) will have an output Γi ∈ {0, · · · , γ2− 1}. We have

(γ1 − 1) bits bi and the overall output is thus a (γ1 − 1)-
dimensional vector in {0, · · · , γ2 − 1}γ1

−1. Secondly, it is

possible that m >
∑

mi. Note that the m uses of CHe2 can

be viewed as a budget of how many times we are allowed to

use the physical channel CHe2 . If m >
∑

mi, then we do

not use CHe2 to its full extent and simply discard/ignore the

excess m−
∑

mi channel uses. Thirdly, we have

Lemma 2: The new e2e abstract channel is BISO.

The proof of this lemma is done by verifying the symmetry

between sending b = 0 versus sending b = 1.

To demonstrate our construction, suppose γ1 = 4 and the

four limiting points of {π
[1]
m : m} are as described in (21).

For any m, say m = 1000, we use the symmetric quantizer

π
[1]
1000 to create a BI-4-out abstract channel from 1000 uses of

CHe1 . Suppose the output of the abstract channel is Γ = 1,

then we construct a 3-bit string b1b2b3 = 001 according to

(22). Bit b1 = 0 will be sent through an abstract channel that

uses CHe2 for m1 = ⌊1000 · (0.348 − 0.223)/0.348⌋ = 359

times based on π
[2]
359. Bit b2 = 0 will be sent by using CHe2

for m2 = ⌊1000 · (0.223− 0.125)/0.348⌋ = 281 times based

on π
[2]
281. Bit b3 = 1 will be sent by using CHe2 for m3 =

⌊1000 · (0.125− 0)/0.348⌋ = 359 times based on π
[2]
359.

Suppose both symmetric quantizer classes {π
[1]
m : m} and

{π
[2]
m : m} are asymptotically d0-linear. We compute, using4

(11)–(15), the LLR.rfe2em (ρ) function of our new e2e abstract

channel. We then have:

Proposition 4: When m → ∞, all (γ2)
γ
1
−1 limiting points

of LLR.rfe2em (ρ) will fall onto the same line f(ρ) = 0.5ρ+ d0
as the limiting points of LLR.rfch1m (ρ) and LLR.rfch2m (ρ) of the

individual channels. Herein we slightly abuse the notation and

say the e2e abstract channel is also asymptotically d0-linear.

We call this new design lossless Amplify-&-Forward (loss-

less AF). The reason is that the output of abstract channel 1

is converted to a bit string b1 · · · bγ
1
−1 by (22) in a reversible

fashion. The relay then sends each bi directly over a split

version of abstract channel 2 with zero additional processing.

Therefore, it is along the spirit of AF, for which the received

signal from the previous hop is directly used as the input to

the next hop without any active processing that cleans up the

noise (such as decode-&-forward) or judiciously compresses5

the observations (such as compress-&-forward, quantize-&-

forward, compute-&-forward).

The reason that our new design is called lossless is that

Propositions 2 and 4 jointly imply:

lim
m→∞

r̄
[e2e]
m = d0 = lim

m→∞
r̄
[ch1]
m = lim

m→∞
r̄
[ch2]
m . (24)

Therefore, our AF design is (asymptotically) lossless in terms

of the m-normalized learning rate.

E. From Abstract Channels To Physical Implementation

We now explain how this exercise of creating abstract

channels and the corresponding lossless AF can be converted

to a new scheme for any r
∗-uniform L-hop line network with

learning rate r arbitrarily close to the min-cut r∗, see (10).

For any given ε > 0, we first construct L symmetric quan-

tizer classes {π
[l]
m : m}, one for each physical channel CHel

such that all of them are asymptotically d0-linear satisfying

d0 ≜ r
∗ − 0.5ε, which is feasible by Proposition 3. We then

concatenate the first two abstract channels using lossless AF.

The combined abstract channel is asymptotically d0-linear by

Proposition 4. We then apply lossless AF again to combine the

new channel with the third abstract channel. This is possible

since our construction is a black-box design that uses only the

locations of the limiting points (xγ , yγ), see (22)–(23), and

is oblivious of the construction of the abstract channel. By

repeatedly applying lossless AF, the e2e abstract channel is

4Eq. (11) was described for scalar Γ. Since the e2e abstract channel is
of vector output, one can first relabel each vector output by an integer in
{0, · · · , (γ2)

γ1−1 − 1} and then apply the formulas.
5Our abstract channels do involve quantizers πm. However, the quantizers

πm in our designs are part of the abstract channels, not part of the
concatenation mechanism. The mechanism in (22) that “concatenates two
abstract channels” is bijective and reversible, a defining feature of AF schemes.



Fig. 3. Illustration for a 2-hop line network.

still asymptotically d0-linear. We then choose an m0 such that

the e2e abstract channel’s normalized learning rate satisfies

r̄
[e2e]
m0

> d0 − 0.5ε = (r∗ − 0.5ε)− 0.5ε = r
∗ − ε (25)

which is doable because of Proposition 2. The chosen m0

value is then fixed throughout the rest of the discussion.

The next step is to let the physical L-hop network “simu-

late” the concatenation of the abstract channels we have just

designed. See Fig. 3 for illustration. E.g., the l-th relay will

carry out the “back-end” computation of the l-th BI-γl-out

channel, followed by the lossless AF concatenation, followed

by the “front-end” of the (l + 1)-th BI-γl+1-out channel.

For simplicity, Fig. 3 does not illustrate the detailed channel

splitting operations (22) and (23) of lossless AF concatnation.

Each simulation will take m0 channel uses, and we group

the corresponding m0 channel uses (also known as time slots)

as a “sub-block”. Because of the strict causality requirement in

(2), the beginning of a sub-block of the l-th hop can only start

after the end of the corresponding sub-block of the previous

hop. This can be achieved by shifting the time axis of the

l-th relay by l ·m0 time slots. The operation is repeated and

pipelined for K times. That is, each node will spend a sub-

block of m0 slots and collectively they (one source plus (L−1)
relays) will simulate one copy of the e2e abstract channel. We

then let the network simulate K copies of the e2e channel,

i.e., s uses slots [1,K ·m0] and the l-th relay uses slots [(l−
1)m0+1, (K+l)m0] for all l ∈ [1, L−1]. The destination will

finish receiving the observations by time (K + (L − 1))m0.

This pipelined, sub-block-based operations are standard in the

literature, see the detailed description in [3], [4].

Since the optimal scheme (over these K copies of the

e2e abstract channel) is just a simple repetition code, we let

source s repeat the message bit Θ ∈ {0, 1} for K times,

and send each of them over the K parallel copies of the e2e

abstract channels, respectively. Destination d will receive K
outputs, one from each copy of the e2e abstract channel, and

it then performs ML decoding described in (3). By letting

K → ∞ while keeping m0 fixed, this scheme thus achieves

the desired r̄
[e2e]
m0

in (25), which has already been normalized

over m0 uses of the physical channels, see (16). The slight

delay increase from Km0 to (K + (L − 1))m0 caused by

the time-shift at each relay is negligible in our learning-

rate analysis, which has K → ∞ while using a fixed m0.

Comparing (25) and Proposition 1, the converse bound of the

r
∗-uniform L-hop network can thus be approached arbitrarily

closely regardless how large L is.

IV. ACHIEVABILITY FOR GENERAL ACYCLIC NETWORKS

For a general acyclic network, let r
∗ denote the min-

cut bound in Proposition 1. By the max-flow/min-cut the-

orem, one can find a finite set of s-to-d directed paths

{path1, · · · , pathF }, where each pathf is associated with a

rate rpathf
≥ 0 satisfying

∀e ∈ E,
∑

pathf :pathf∋e

rpathf
≤ r

∗
e (26)

and
∑

pathf

rpathf
= r

∗. (27)

We now consider two cases. Case 1: All F paths are edge

disjoint. In this case, each pathf can be viewed as an indepen-

dent rpathf -uniform Lf -hop line network. By the discussion

in Sec. III-E, each line network can “simulate” an e2e BISO

abstract channel, of which the normalized learning rate is

arbitrarily close to rpathf
. Since we have F independent e2e

BISO abstract channels, the learning rate of the combined

F -dimensional vector abstract channel is the sum of the

individual learning rates. By the same sub-block-based im-

plementation in Sec. III-E that sends a repetition code over K
copies of the F -dimensional e2e vector abstract channel for

a sufficiently large K, our scheme achieves a learning rate r

arbitrarily close to r
∗, also see (27).

Case 2: Some of the F paths share an edge e. We address

this case by temporal multiplexing. For example, suppose

path1 and path2 share an edge e and they happen to have

rpath
1
= rpath

2
= 0.5r∗e . We then use the odd (resp. even)

time slots of CHe to carry out the traffic over path1 (resp.

path2). Since only 0.5m time slots of CHe are used to carry

out the traffic over pathi, when normalized over the original

m value, it is as if we are creating a new edge ẽi with learning

rate r
∗
ẽi

= 0.5r∗e for i ∈ {1, 2}. Since lossless AF is a black-

box design that uses only the locations of the limiting points

of LLR.rf(ρ) and is oblivious of the actual construction of the

abstract channel, the new ẽi can be readily concatenated with

the next hop of pathi. Case 2 is essentially reduced back to

Case 1 via this temporal multiplexing technique. By carefully

formulating it for general acyclic networks and by reusing the

arguments of Case 1, one can design a scheme that achieves

a learning rate r arbitrarily close to r
∗ in Case 2 as well.

V. CONCLUSION

This work has characterized the optimal learning rate r
∗ of

sending a one-bit message over any arbitrary acyclic BISO-

channel network.
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