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ABSTRACT
In this paper, we consider a status update system, where an access

point collects measurements from multiple sensors that monitor a

common physical process, fuses them, and transmits the aggregated

sample to the destination over an erasure channel. Under a typical

information fusion scheme, the distortion of the fused sample is

inversely proportional to the number of measurements received.

Our goal is to minimize the long-term average age while satisfying

the average energy and general age-based distortion requirements.

Specifically, we focus on the setting in which the distortion require-

ment is stricter when the age of the update is older. We show that

the optimal policy is a mixture of two stationary, deterministic,

threshold-based policies, each of which is optimal for a parameter-

ized problem that aims to minimize the weighted sum of the age and

energy under the distortion constraint. We then derive analytically

the associated optimal average age-cost function and characterize

its performance in the large threshold regime, the results of which
shed critical insights on the tradeoff among age, energy, and the

distortion of the samples. We have also developed a closed-form

solution for the special case when the distortion requirement is

independent of the age, arguably the most important setting for

practical applications.
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• Networks → Network performance evaluation; Network per-
formance analysis;
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1 INTRODUCTION
For status update systems, it is important that the destination re-

ceives fresh updates. However, a traditional metric like delay cannot
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fully characterize the freshness of information updates. For exam-

ple, if the information is updated infrequently, then the updates are

not fresh even though the delay is small. To this end, the age of

information or simply the age was introduced in [1] as a metric to

represent the freshness (more precisely the staleness) of an update

that simultaneously take into the update frequency and the delay

into a single metric.

1.1 Problem and Applications
In this paper, we consider a status update system, in which an access

point receives measurements from multiple sensors, fuses them and

transmits the aggregated sample to a remote monitor over wireless

erasure channels.

Examples of the system can be found in wireless sensor networks

(WSNs) and IoT systems. In certain IoT or WSNs applications like

smart camera networks [2] or healthcare applications [3], multiple

nodes (IoT devices/sensors) are used to observe a common physical

process. In [4–8], the authors took this scenario into account in

age relevant problems. In addition, in wireless sensor networks or

IoT systems, instead of allowing all nodes to directly communicate

with the receiver, one node may be selected as a gateway/relay to

forward collected data to the receiver in order to reduce the energy

consumption [9]. Specifically, we have two examples as follows:

Example 1: healthcare. In healthcare architectures [10, 11], a sink

node like a mobile device or a smart watch collects health indica-

tors from wearable biomedical and activity sensors including ECG

collection, blood pressure, blood oxygen. Then, the collected data is

sent to a cloud or back-end server for further processing/analysis.

Example 2: smart agriculture. In one mode of smart agriculture

[12], sensor nodes in a mesh network collect and transmit data first

to the gateway, a designated node in the mesh network. Then, the

gateway forwards this data to the farm management system using

the WAN network.

Since wireless channels are not reliable and different sensor

nodes may have their own sleep-wake schedules, the access point

usually receives a random number of measurements at each time

slot. In this work, we assume the sensors nodes (in different posi-

tions) observe a common process from different views. Under this

assumption, the larger the number of received measurements, the

higher the quality of the collected data in each time instant, and

the less distortion of the update for the physical process. To ensure

that precious resources are only used to forward samples of high

quality, we impose a distortion requirement such that at each time

slot the access point can forward the fused/aggregated sample only
if the number of received measurements is no less than a predefined

threshold, which thus guarantees low distortion of each update.

In addition to jointly considering age and distortion, we note

that nodes in status update systems are usually battery-powered

https://doi.org/10.1145/3565287.3610266
https://doi.org/10.1145/3565287.3610266


MobiHoc ’23, October 23–26, 2023, Washington, DC, USA Guidan Yao, Chih-Chun Wang, and Ness B. Shroff

Table 1: Related Works

Ref. Goal

Energy

Constraint

Distortion

Requirement

Channel

State Information

[13]

Minimize the average age by

optimizing the transmit power and the

maximum allowable transmission times

Average power

consumption
No

Error-prone

channel with

fixed probability

[14]

Minimize the weighted sum of

the age and total energy consumption

Limit number of

retransmissions
No

Distribution information

or unknown

[15, 16] Minimize long-term average age

Average energy

consumption
No

Fading channel

imperfect channel

information

[17] Minimize long-term average age

Energy causality

constraint at the

EH sensor

No

Erasure channel with

fixed error probability

[18]

Study age-energy region by

studying average age minimization

Limited by

harvested energy
No Fixed noise power

[19]

Minimize the weighted sum of the

age, distortion and energy
No

Soft constraint on controllable

distortion due to compression
No transmission failure

[20]

Minimize the weighted sum of the

age and distortion caused by noise

Limited by

harvested energy

Soft constraint on controllable

distortion due to observation noise
Gaussian channel

[21, 22] Minimize the average age over a time𝑇 No

Hard constraint on controllable

distortion due to processing time
No transmission failure

and thus energy limited. See the two examples discussed earlier.

Since communication energy/cost savings is a critical design con-

sideration of any IoT device schedulers, the goal of this paper is to

minimize the long-term average age under a long-term energy con-

straint, while respecting the aforementioned distortion requirement

for each update.

1.2 Related Works
There is a large body of literature that studies the trade-off between

the age and energy. In [13], the authors studied the trade-off in an

IoT system by controlling the allowable times of retransmissions.

[14] studied power control policies that minimize the weighted sum

of the age and energy consumption (including sensing and trans-

mission energy costs) with constraint on times of retransmissions.

[16] and [15] studied transmission scheduling over time-correlated

fading channel to minimize long-term average age under an energy

constraint. In [18], the authors investigated the trade-off between

the age and the storable energy at the IoT device in a wireless pow-

ered communication network. The authors in [17] designed optimal

online status updating policy to minimize the long-term average

age at the destination, subject to the energy causality constraint at

an energy-harvesting sensor.

Different from the above works, one key consideration of this

work is the focus on the distortion requirement. This requirement

is hard in the sense that it has to be met all the time. In contrast,

some papers deal with a soft distortion requirement [19, 20], which

assume there exists a trade-off between the age and distortion.

Although both requirements have applications, in practical sys-

tem, it can be more difficult to satisfy requirements from different

aspects of the system simultaneously. As will be seen, our paper

directly links the distortion to the (random) number of received

measurements at any time slot. In general, distortion may be caused

by other sources as well. For example, the distortion considered

in [19, 23] is caused by compression. In particular, [19] studied a

scheduling problem which aims to minimize the weighted sum of

the age, distortion and energy, where distortion is determined by

the number of bits sent for each source. Paper [23] investigated the

trade-off between the age and the distortion caused by compres-

sion via assigning compression bits to packets in the queue and

transmission scheduling. Distortion may also be caused by obser-

vation noise. In [20], the authors considered this type of distortion

and studied the optimal power control policy that minimizes the

weighted sum of the age and distortion. In [21, 22], the authors

considered the distortion caused by the processing time and studied

age-optimal distortion constrained updating policies. Specifically,

[21] considered a fixed distortion requirement while [22] consid-

ered an age-dependent distortion requirement. For comparison, we

summarize the related works in Table 1.

1.3 Key Contributions
In the paper, we focus on the setting for which the distortion re-

quirement of each update is stricter when the age of the system

is older. The idea is that if the age is also a source of distortion (a

reasonable assumption, since the larger the age, the more likely that

the estimates are poorer), then as the age increases, we would like

to place a stricter allowable distortion criterion (i.e., larger lower

bound) of new updates to ensure that the overall quality of trans-

mission is maintained. We then develop the optimal transmission

control policy that minimizes the long-term average age under a

long-term energy constraint while respecting the given age-based

distortion requirement on each update. Our key contributions are

as follows:

• We investigate the trade-offs among the age, energy and

the distortion. Under our setting, we show that the optimal

policy, which minimizes the long-term average age with the

energy and distortion requirements, is a mixture of two sta-

tionary deterministic policies (Theorem 3.1). We also show

that each stationary deterministic policy is optimal for a pa-

rameterized average cost problem, which aims to minimize

the weighted sum of the age and energy while respecting

the given age-based distortion requirement (Theorem 3.1).

Further, we prove that the policy is of a threshold-type, i.e.,

a transmission is scheduled if (i) the age exceeds a certain
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threshold, and (ii) the distortion requirement is met (Theo-

rem 4.1).

• We derive the average cost of the parameterized average cost

problem (Theorem 4.3), and prove that it is a piecewise func-

tion of the earlier mentioned threshold (Theorem 4.2), and

analytically characterize the property of the function (Theo-

rem 4.3). By leveraging Theorems 4.2 and 4.3, we circumvent

the difficulty in dealing with an infinite state space when

using classical solutions like the Relative Value Iteration

(RVI). This allows us to develop low-complexity algorithms

for both parameterized average cost problem (Algorithm 1)

and the original problem (Algorithm 2).

• In additional to characterizing the optimal policy for the gen-

eral setting, we consider a special case of the parameterized

average cost problem, where the distortion requirement is a

constant that is independent of the age, arguably the most

important setting for practical applications. In this important

but simpler setting, we obtain a closed form expression for

the optimal threshold (Corollary 4.4), which allows us to ex-

amine the relationship among (a) the transmission threshold;

(b) the probability of meeting the distortion requirement;

and (c) the erasure probability of the access point’s trans-

mission. Specifically, we show that (i) the optimal threshold

increases with the probability that the distortion require-

ment is met; (ii) when the energy is the dominant issue, the

optimal threshold increases with the error probability of

transmission from the access point to destination (Theorem

4.5). But the situation reverses (from being an increasing

function of the error probability to being a decreasing one)

if the age is the dominant issue.

Due to space limit, we provide full proofs in technical report [24].

2 SYSTEM MODEL
We consider a status update system, in which an access point re-

ceives measurements from multiple sensors, fuses them, and then

transmits the aggregated sample to a remote monitor/receiver,

as shown in Fig. 1. We consider a time-slotted system and use

𝑡 ∈ {1, 2, · · · } as the time index. At the beginning of each time

slot, 𝑀 sensors measure the same physical process from their own

perspectives and transmit the measurements to the access point

over the wireless channels. Then, the access point decides whether

to transmit an update to the remote monitor. Here an update can

mean sending the entire set of received measurements to the remote

monitor for further processing or it could mean sending the aggre-

gated sample after fusing the data locally. The access point’s action

is denoted by 𝑢𝑡 ∈ U ≜ {0, 1}, where 𝑢𝑡 = 1 means transmission,

and 𝑢𝑡 = 0 denotes forfeiting the transmission for time slot 𝑡 .

We assume erasure channels. Specifically, the erasure probability

of a transmission from the sensor𝑚 to the access point is 𝑞𝑚 , for

𝑚 ∈ {1, 2, · · · , 𝑀}, and the erasure probability of the transmission

from the access point to the receiver is 𝑝 .

2.1 Age of Information
Age of information (AoI), or simply the age, reflects the timeliness

of the information at the remote monitor/receiver. It is defined as

the time elapsed since the generation of the most recently received

⋮

𝑞!

𝑞"

𝑞#$!

𝑞#

𝑝

Access
Point

Remote 
Monitor/Receiver

Sensors

Error-prone
Channel

1

𝑀 − 1

𝑀

2

Figure 1: System Model

update sample at the receiver. LetΔ𝑡 denote the age at the beginning
of the time slot 𝑡 . Let 𝑈 (𝑡) denote the generation time of the last

successfully received status update at time 𝑡 . Then, Δ𝑡 is given by

Δ𝑡 ≜ 𝑡 −𝑈 (𝑡), which can be iteratively computed by

Δ𝑡+1 =

{
1 if transmission is successful,

1 + Δ𝑡 otherwise.
(1)

In this work, we assume Δ1 = 1 for initialization.

2.2 Distortion requirement and energy
constraints

Since transmissions from sensors to the access point are not re-

liable, we use the random variable Λ𝑡 ∈ {0, 1, · · · , 𝑀} to denote

the number of received measurements from 𝑀 sensors at time

slot 𝑡 . After fusing Λ𝑡 measurements to an aggregated sample, the

corresponding distortion is a monotonically decreasing
1
function

𝐹
dist

(Λ𝑡 ) ofΛ𝑡 . To guarantee the quality of each update, we suspend

access-point transmission whenever

𝐹
dist

(Λ𝑡 ) > 𝐹
thre

(Δ𝑡 ), (2)

i.e., we prohibit the access point from transmitting a low-quality

(high-distortion) sample since it is essentially a waste of resources.

We allow the threshold 𝐹
thre

to depend on the age at the receiver.

While (2) has a clear physical meaning, we can simplify distortion
requirement to: we always choose 𝑢𝑡 = 0, if

Λ𝑡 < 𝐷 (Δ𝑡 ) ≜ 𝐹−1
dist

(𝐹
thre

(Δ𝑡 )) . (3)

The 𝐷 (·) function is the concatenation of 𝐹−1
dist

() and 𝐹
thre

(), and
we call it the distortion function that maps the age to the number

of received measurements below which the access point will al-

ways discard the measurements (𝑢𝑡 = 0) due to the lack of fidelity

(distortion being too high).

We assume that 𝐷 (·) is an increasing function of the age on

[1,∞) (since the smallest age is 1). Since Λ𝑡 in condition (3) is an

integer between 0 and 𝑀 , without loss of generality, we assume

𝐷 (·) is a piecewise constant function satisfying:

𝐷 (Δ) = ℎ𝑙 , if Δ ∈ [𝛿𝑙 , 𝛿𝑙+1), ∀𝑙 ∈ [1, 𝐿] . (4)

Namely, if Δ falls into the interval [𝛿𝑙 , 𝛿𝑙+1), then 𝐷 (Δ) = ℎ𝑙 . Here

we assume 𝛿1 = 1, 𝛿𝐿+1 = ∞ and 1 ≤ ℎ𝑙 < ℎ𝑙+1 ≤ 𝑀 for all 𝑙 < 𝐿,

since if ℎ𝐿 > 𝑀 , the transmission will never be made after the age

exceeds 𝛿𝐿 (condition (3) will always hold then). Fig. 2 provides an

example of the distortion function, where 𝐿 = 3 and𝑀 = 8.

1
In this work, the terms decreasing and non-increasing are considered interchangeable.
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Figure 2: Example of distortion function
The access point consumes energy for each transmission. We

assume that each transmission consumes the same energy which is

normalized as one unit energy, a setting similar to [25]. To avoid

excessive energy consumption, we employ a long-term average

energy consumption constraint for the access point, which will

be formalized later in (6). Note that in the system, sensors take

measurements periodically, and their energy consumption is fixed

and thus not included in our optimization problem.

2.3 Optimization Problem
Our objective is to design a transmission control policy 𝜋 that

minimizes the following long-term average age

𝐴(𝜋) ≜ lim

𝑇→∞
1

𝑇
E𝜋

[ 𝑇∑︁
𝑡=1

Δ𝑡
]
, (5)

while the long-term average energy consumption 𝐸 (𝜋) must not

exceed 𝐸max ∈ (0, 1], i.e.

𝐸 (𝜋) ≜ lim

𝑇→∞
1

𝑇
E𝜋

[ 𝑇∑︁
𝑡=1

𝑢𝑡
]
≤ 𝐸max, (6)

and the distortion requirement in (3) is satisfied for all 𝑡 , i.e.

Λ𝑡 ≥ 𝑢𝑡𝐷 (Δ𝑡 ), ∀𝑡 ≥ 1, (7)

where E𝜋 denotes expectation under policy 𝜋 .

3 CONSTRAINED MDP FORMULATION AND
LAGRANGIAN RELAXATION

3.1 Constrained MDP Formulation
The optimization problem can be formulated as a constrained MDP.

States: The system state consists of the age and the number of

received measurements at time 𝑡 , i.e., s𝑡 = (Δ𝑡 ,Λ𝑡 ). Clearly, the
state space, denoted by S ≜ {(Δ,Λ) : Δ ∈ N+,Λ ∈ {0, 1, · · · , 𝑀}}
is countably infinite.

Actions: Action set isU = {0, 1} as defined in Section 2. Here

we directly embed the distortion requirement in (7) in the setting

by assigning a heterogeneous action set for each s𝑡 . That is, define
𝐴s𝑡 ≜ {𝑢𝑡 ∈ U : Λ𝑡 ≥ 𝑢𝑡𝐷 (Δ𝑡 )} as the admissible action set in

state s𝑡 satisfying the distortion requirement (7). For example, with

the distortion requirement in Fig. 2, we have 𝐴(5,5) = {0, 1} while
𝐴(51,5) = {0}.

Transition Probability: Given the current state s𝑡 = (Δ𝑡 ,Λ𝑡 )
and action 𝑢𝑡 at time slot 𝑡 , the transition probability to the state

s𝑡+1 = (Δ𝑡+1,Λ𝑡+1) at the next time slot 𝑡 + 1, which is denoted by

𝑃s𝑡 s𝑡+1 (𝑢𝑡 ), is defined as

𝑃s𝑡 s𝑡+1 (𝑢𝑡 ) ≜ P(s𝑡+1 |s𝑡 , 𝑢𝑡 ) = P(Δ𝑡+1 |Δ𝑡 , 𝑢𝑡 )𝑃Λ (Λ𝑡+1), (8)

where

P(Δ𝑡+1 |Δ𝑡 , 𝑢𝑡 ) =


𝑝 if 𝑢𝑡 = 1,Δ𝑡+1 = 1 + Δ𝑡 ,

1 − 𝑝 if 𝑢𝑡 = 1,Δ𝑡+1 = 1,

1 if 𝑢𝑡 = 0,Δ𝑡+1 = 1 + Δ𝑡 ,

0 otherwise,

(9)

and 𝑃Λ (Λ𝑡+1) ≜ P(Λ=Λ𝑡+1).
Costs: Given a state s𝑡 = (Δ𝑡 ,Λ𝑡 ) and an action choice 𝑢𝑡 at

time slot 𝑡 , the cost of one slot is the age at the beginning of this

slot, i.e., we have

𝐶Δ (s𝑡 , 𝑢𝑡 ) = Δ𝑡 . (10)

Moreover, the energy consumption of one slot is

𝐶𝐸 (s𝑡 , 𝑢𝑡 ) = 𝑢𝑡 . (11)

Let Π denote the set of feasible policies that satisfy the distortion
requirement, i.e., 𝑢𝑡 ∈ 𝐴s𝑡 , ∀𝑡 . Then, our control problem can be

reformulated as a constrained Average-age MDP:

Problem 1 (Average-age MDP):

𝐴★ ≜ min

𝜋∈Π
𝐴(𝜋) = lim sup

𝑇→∞

1

𝑇
E𝜋

[ 𝑇∑︁
𝑡=1

𝐶Δ (s𝑡 , 𝑢𝑡 )
]

(12)

s.t. 𝐸 (𝜋) = lim sup

𝑇→∞

1

𝑇
E𝜋

[ 𝑇∑︁
𝑡=1

𝐶𝐸 (s𝑡 , 𝑢𝑡 )
]
≤ 𝐸max,

where 𝐴★
is the optimal average age.

3.2 Lagrange Relaxation of the Constrained
MDP

We now solve (12). Given Lagrange multiplier 𝛽 , the instantaneous

Lagrangian cost at time slot 𝑡 is defined by

𝐶 (s𝑡 , 𝑢𝑡 ; 𝛽) ≜ 𝐶Δ (s𝑡 , 𝑢𝑡 ) + 𝛽𝐶𝐸 (s𝑡 , 𝑢𝑡 ). (13)

Then, the long-term average Lagrangian cost under policy 𝜋 is

𝐿(𝜋 ; 𝛽) = lim

𝑇→∞
1

𝑇
E𝜋

[ 𝑇∑︁
𝑡=1

𝐶 (s𝑡 , 𝑢𝑡 ; 𝛽)
]
. (14)

We then solve the following average age-plus-cost MDP:

Problem 2 (Average age-plus-cost MDP):

𝐿★(𝛽) ≜min

𝜋∈Π
𝐿(𝜋 ; 𝛽), (15)

where 𝐿★(𝛽) is the optimal average Lagrangian cost with regard to

𝛽 .

Theorem 3.1. There exists a stationary randomized policy that
solves the average-age MDP (12). This policy can be expressed as
a mixture of two stationary deterministic policies 𝜋𝛽★,1 and 𝜋𝛽★,2,
where 𝜋𝛽★,1 and 𝜋𝛽★,2 differ in at most a single state s, and are both
optimal policies for the average age-plus-cost MDP (15) given 𝛽★.
The mixture policy 𝜋𝛽★ uses 𝜋𝛽★,1 with probability 𝜇 and 𝜋𝛽★,2 with
probability 1 − 𝜇 in state 𝑠 ; it uses either policy (since they coincide)
in other states, where 𝜇 ∈ [0, 1]

Proof Sketch: Please see Appendix A. □
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4 SOLVING THE AVERAGE AGE-PLUS-COST
MDP

In this section, we investigate optimal policies that solve (15) and

characterize its unique structure. We also give a more detailed

analysis for the special case when the distortion function 𝐷 (·) is
constant (previously we assume 𝐷 (·) is increasing).

4.1 Structure of the optimal policies
In this part, we first study the structure of the optimal policies, and

then obtain the average cost function with regard to a threshold.

Theorem 4.1. For any fixed 𝛽 , there exists an optimal age threshold
Δ★
𝛽
such that the following policy

𝑢★(Δ,Λ; 𝛽) =
{
1 if Δ ≥ Δ★

𝛽
and Λ ≥ 𝐷 (Δ),

0 otherwise,
(16)

achieves the minimum average Lagrangian cost in (15).

Proof. Please see Section 4.3. □

By Theorem 4.1, the optimal policies for (15) are of threshold-

type in the age. That is, if Λ𝑡 <𝐷 (Δ𝑡 ), then the access point is

prohibited to transmit due to the distortion criterion in (3). If Λ𝑡 ≥
𝐷 (Δ𝑡 ) at time 𝑡 , the optimal policy would transmit if and only if

the age Δ𝑡 exceeds Δ
★
𝛽
.

In Theorem 4.2 below, we express the average Lagrangian cost

as a function of any given threshold.

Recall that 𝛿𝑙 is the leftmost point of the 𝑙-th interval in the

distortion requirement function 𝐷 (·), see Fig. 2 and Sec. 2.2. Given

any 𝑘 ∈ N+, define
𝑙𝑘 ≜ min{𝑙 ≤ 𝐿 + 1 : 𝛿𝑙 > 𝑘}. (17)

Broadly speaking, 𝑙𝑘 is the inverse of 𝛿𝑙 . The special definition in

(17) is because the given 𝐷 (·) function (see Fig. 2) may have a jump.

Since, per our definition 𝛿𝐿+1 = ∞, we always have 𝑙𝑘 ≤ 𝐿 + 1. We

then have the following results.

Theorem 4.2. We use policy 𝜋𝑘 to denote the policy described in
(16) but with an arbitrarily given threshold 𝑘 ∈ N+. The long-term
average Lagrangian cost of 𝜋𝑘 is expressed as:

�̄� (𝜋𝑘 ; 𝛽 )

=
0.5𝑘2 − 0.5𝑘 + (1 − 𝐵𝑙𝑘 −1 )−1𝑘 + 1{𝑙𝑘 ≤𝐿} 𝐽𝑙𝑘 (𝐵𝑙𝑘 −1 )

𝛿𝑙𝑘
−𝑘 +𝑂𝑙𝑘

𝑘 − 1 + (1 − 𝐵𝑙𝑘 −1 )−1 + 1{𝑙𝑘 ≤𝐿}𝐼𝑙𝑘 (𝐵𝑙𝑘 −1 )
𝛿𝑙𝑘

−𝑘 , (18)

for which the expressions of the deterministic sequences {𝐵𝑙 }𝐿𝑙=1,
{𝐽𝑙 }𝐿𝑙=2, {𝐼𝑙 }

𝐿
𝑙=2

, and {𝑂𝑙 }𝐿+1𝑙=2
are given in Table 2.

Proof Sketch: With the aid of the state transition diagram under the

policy 𝜋𝑘 , we obtain steady state probability of each state, which

enables us to obtain the average cost 𝐿(𝜋𝑘 ; 𝛽). □
Even though the closed-form expression of 𝐿(𝜋𝑘 ; 𝛽) greatly sim-

plifies the problem, finding the optimal threshold Δ★
𝛽
through nu-

merical search is still quite challenging since (i) the expression of

(18) versus the threshold 𝑘 may exhibit complicated behavior (e.g.,

we have found some scenarios where (18) is neither convex nor con-

cave) and (ii) the domain of 𝑘 is unbounded. Later in Theorem 4.3,

we prove that in a restricted sub-domain 𝑘 ≥ 𝛿𝐿 , we can analytically

find the best 𝑘UB. Therefore, to search for the optimal Δ★
𝛽
, we only

need to exhaustively evaluate 𝐿(𝜋𝑘 ; 𝛽) for all 𝑘 ∈ {1, 2, · · · , 𝛿𝐿 − 1},
compare their values to 𝐿(𝜋𝑘UB ; 𝛽) in Theorems 4.2 and 4.3, and

then find the globally minimum 𝑘★.

Theorem 4.3. Among the sub-domain 𝑘 ≥ 𝛿𝐿 , the 𝑘 that leads to
the smallest 𝐿(𝜋𝑘 ; 𝛽) is given by

𝑘UB ≜ argmin

𝑘≥𝛿𝐿
𝐿(𝜋𝑘 ; 𝛽) = max{𝛿𝐿, 𝑦}, (19)

where

𝑦=

⌈
− 1 + 𝐵𝐿

2(1 − 𝐵𝐿 )
+
(

𝐵2

𝐿

(1 − 𝐵𝐿 )2
+ 𝐵𝐿+2𝛽𝐹 (ℎ𝐿 )

1 − 𝐵𝐿
+ 1

4

)
0.5⌉

. (20)

Proof Sketch: To find the 𝑘 that minimizes 𝐿(𝜋𝑘 ; 𝛽) among the sub-

domain 𝑘 ≥ 𝛿𝐿 , we show that 𝐿(𝜋𝑘 ; 𝛽) either increases, or first
decreases and then increases with 𝑘 on the sub-domain. □

4.2 Special Case - Constant Distortion
Our results in Theorems 3.1 to 4.3 hold for any increasing distor-

tion requirement function 𝐷 (·). We now consider a special case

of constant 𝐷 (Δ) = ℎ ≤ 𝑀 , ∀Δ (equivalently when 𝐿 = 1), ar-

guably the most important scenario in practice since it says that the

access-point only forwards the aggregated sample when its quality

(distortion) meets a constant threshold.

Corollary 4.4. Given 𝛽 and constant distortion function 𝐷 (Δ) =
ℎ, the optimal scheduler of problem (15) is analytically described as
follows:

𝑢★cons (Δ,Λ; 𝛽) =
{
1 if Δ ≥ Δ★

𝛽,cons and Λ ≥ ℎ,

0 otherwise,
(21)

where the optimal threshold Δ★
𝛽,cons is given by

Δ★
𝛽,cons=max

{
1,

⌈
− 1 + 𝑅

2(1−𝑅) +

√︄
𝑅2

(1−𝑅)2 +
𝑅+2𝛽𝑊
1−𝑅 + 1

4

⌉}
, (22)

where𝑊 =
∑𝑀

𝑗=ℎ
𝑃Λ ( 𝑗) and 𝑅 = 1 − (1 − 𝑝)𝑊 .

Remark: By Corollary 4.4, the optimal threshold Δ★
𝛽,cons

de-

pends on the Lagrangian multiplier 𝛽 , distortion requirement ℎ, the

distribution of the random number of received measurements Λ
and channel unreliability 𝑝 . By simple algebraic simplification of

(22), it is easy to show that when 𝛽 = 0, which corresponds to the

case without energy constraint, we have Δ★
𝛽,cons

= 1. In addition,

Δ★
𝛽,cons

is non-decreasing with 𝛽 . This is because the increase of 𝛽

implies higher weights of the energy cost. To save energy cost, the

threshold should be increased to reduce the transmission frequency.

To provide more insights on the special case with constant dis-

tortion, we investigate how the measurements arrival probability

𝑊 = P(Λ ≥ ℎ) and the access-point-to-receiver erasure probability

𝑝 affect the optimal threshold Δ★
𝛽,cons

in Theorem 4.5.

Theorem 4.5. Given 𝛽 > 0 and 𝐷 (Δ) = ℎ, we have the following
properties:

(i) If 𝛽 > 1

𝑊
, the optimal threshold Δ★

𝛽,cons is increasing with re-

spect to (w.r.t.) 𝑝 ; if 𝛽 < 1

𝑊
, the optimal threshold Δ★

𝛽,cons is decreasing
w.r.t. 𝑝 ;
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Table 2: Notations

𝐹 (𝑟 ) = ∑𝑀
𝑗=𝑟 𝑃Λ ( 𝑗 ), ∀ 0 ≤ 𝑟 ≤ 𝑀

𝐵𝑙 = 1 − (1 − 𝑝 )𝐹 (ℎ𝑙 ), ∀ 1 ≤ 𝑙 ≤ 𝐿

𝑤 (𝑖, 𝑗 ) = 1{𝑖< 𝑗 }
∏𝑗−1

𝑣=𝑖
(𝐵𝑣 )𝛿𝑣+1−𝛿𝑣 + 1{𝑖≥ 𝑗 }

𝐽𝑙 = − 1

(1−𝐵𝑙−1 )2
− 𝛿𝑙 −1+𝛽𝐹 (ℎ𝑙−1 )

1−𝐵𝑙−1

+∑𝐿
𝑗=𝑙

𝑤 (𝑙, 𝑗 )
(
1−1{ 𝑗<𝐿} (𝐵𝑗 )

𝛿𝑗+1−𝛿𝑗 (
1+(𝛿𝑗+1−1+𝛽𝐹 (ℎ𝑗 ) ) (1−𝐵𝑗 )

)
(1−𝐵𝑗 )2

+ 𝛿𝑗 −1+𝛽𝐹 (ℎ𝑗 )
1−𝐵𝑗

)
, ∀ 2 ≤ 𝑙 ≤ 𝐿

𝐼𝑙 = − 1

1−𝐵𝑙−1
+ ∑𝐿

𝑗=𝑙

1−1{ 𝑗<𝐿} (𝐵𝑗 )
𝛿𝑗+1−𝛿𝑗

1−𝐵𝑗
𝑤 (𝑙, 𝑗 ), ∀ 2 ≤ 𝑙 ≤ 𝐿

𝑂𝑙 =
1

(1−𝐵𝑙−1 )2
+ −1+𝛽𝐹 (ℎ𝑙−1 )

1−𝐵𝑙−1
, ∀ 2 ≤ 𝑙 ≤ 𝐿 + 1

(ii) In fact, we can further strengthen the second half of (i) by the
following: If 𝛽 < 1

𝑊
, the optimal threshold Δ★

𝛽,cons = 1;

(iii) The optimal threshold Δ★
𝛽,cons is increasing w.r.t.𝑊 .

Proof Sketch: Please see Appendix B. □

Remark Note
1

𝑊
is the expected duration until the next time (slot)

that the access point can receive enough measurements to meet the
distortion requirement. Roughly speaking, if the access point does

not send an aggregated update at this time, it will have to wait
1

𝑊
time slots before the next time it receives enough measurements to

meet the distortion requirement. Therefore,
1

𝑊
can be viewed as

the cost of suspension. Also recall that the Lagrangian multiplier 𝛽

can be viewed as the energy price of one transmission. Jointly, the

intuition of the theorem can be explained as follows:

• In the case 𝛽 > 1

𝑊
, the energy cost precedes the suspension

cost. Then, as 𝑝 increases (channel worsens), it is better to

reduce the transmission frequency in order to save energy

while sacrificing slightly the age performance. As a result, the

optimal threshold increases as stated in (i) of Theorem 4.5.

On the other hand, if 𝛽 < 1

𝑊
, then the suspension cost

dominates. The optimal threshold will decrease to ensure

that we transmit more frequently to maintain a small average

age (at the cost of increased energy consumption).

• If 𝑝 = 0 (erasure probability is zero), we only need to consider

the cost of sending one aggregated update. If we also have

𝛽 < 1

𝑊
, it means that the age cost outweighs the energy

cost, which implies the optimal threshold is 1. Together with

the second half of (i), we will have (ii).

• The intuition of (iii) is as follows. For any given 𝛽 ,𝑊 , the

optimal threshold Δ★
𝛽,cons

would balance the marginal age
cost and the marginal energy cost in (15) so that any per-

turbation of the threshold in either the positive or negative

direction will decrease the performance. Consider a slightly

larger𝑊 ′ >𝑊 . Since
1

𝑊
is the expected duration between

two consecutive slots when the distortion requirement is

met, the duration under𝑊 ′
would be slightly smaller. Note

that using the new𝑊 ′
would increase the marginal energy

cost (since we send more frequently) but decrease the mar-

ginal age cost (since we send more frequently). As a result, to

re-balance the two marginal costs, the optimal policy would

further increase Δ★
𝛽,cons

under the new𝑊 ′
.

4.3 Proof of Theorem 4.1
Amethod to study average costMDPs is to relate them to discounted

cost MDPs. In this section, we (i) define discounted cost MDPs;

(ii) obtain optimal policies for the discounted cost MDPs; and (iii)

extend the results to average cost MDPs.

Given discount factor 𝛼 ∈ (0, 1) and an initial state s, the total
expected discounted Lagrangian cost under a policy 𝜋 ∈ Π is

𝐿𝛼s (𝜋 ; 𝛽) = lim sup

𝑇→∞
E𝜋

[ 𝑇∑︁
𝑡=1

𝛼𝑡−1𝐶 (s𝑡 , 𝑢𝑡 ; 𝛽) |s
]
, (23)

Then, the optimization problem of minimizing the total expected

discounted Lagrangian cost can be cast as

Problem 3 (Discounted cost MDP):

𝑉𝛼 (s) ≜ min

𝜋∈Π
𝐿𝛼s (𝜋 ; 𝛽), (24)

where 𝑉𝛼 (s) denotes the optimal total expected 𝛼-discounted La-

grangian cost (for convenience, we omit 𝛽 in 𝑉𝛼 (s)).
We now introduce the optimality equation of 𝑉𝛼 (s).

Proposition 4.6. (a) The optimal total expected 𝛼-discounted
Lagrangian cost, given by𝑉𝛼 (Δ,Λ), satisfies the optimality equation
as follows:

𝑉𝛼 (Δ,Λ) = min

𝑢∈𝐴(Δ,Λ)
𝑄𝛼 (Δ,Λ;𝑢) , (25)

where

𝑄𝛼 (Δ,Λ; 0)=Δ+𝛼E𝑉𝛼 (
Δ + 1,Λ′)

; (26)

𝑄𝛼 (Δ,Λ; 1)=Δ+𝛽+𝛼
(
𝑝E𝑉𝛼 (

Δ+1,Λ′)+(1−𝑝)E𝑉𝛼 (
1,Λ′) ) . (27)

(b) A stationary deterministic policy determined by the right-hand-
side of (25) solves problem (24).
(c) Let 𝑉𝛼

𝑛 (s) be the cost-to-go function such that 𝑉𝛼
0
(s) = 0, for all

s ∈ S and for 𝑛 ≥ 0,

𝑉𝛼
𝑛+1 (Δ,Λ) = min

𝑢∈𝐴 (Δ,Λ)
𝑄𝛼
𝑛+1 (Δ,Λ;𝑢), (28)

where

𝑄𝛼
𝑛+1 (Δ,Λ; 0)=Δ+𝛼E𝑉

𝛼
𝑛

(
Δ + 1,Λ′)

; (29)

𝑄𝛼
𝑛+1 (Δ,Λ; 1)=Δ+𝛽+𝛼

(
𝑝E𝑉𝛼

𝑛

(
Δ+1,Λ′)+(1−𝑝)E𝑉𝛼

𝑛

(
1,Λ′) ) . (30)

Then, we have 𝑉𝛼
𝑛 (s) → 𝑉𝛼 (s) as 𝑛 → ∞, ∀s, 𝛼 .

Proof Sketch: By [26], it suffices to show that there exists a stationary

deterministic policy 𝑓 ∈ Π such that ∀𝛼, s, we have 𝐿𝛼s (𝑓 ; 𝛽)<∞. A

policy that chooses 𝑢 = 0 at every time slot satisfies this. □
Using the induction method in (c) of Proposition 4.6, we first

show some properties of 𝑉𝛼 (s) in Lemma 4.7.
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Lemma 4.7. Given 𝛼 , the value function 𝑉𝛼 (s) has properties:
(i) The value function 𝑉𝛼 (s) is increasing w.r.t. Δ.
(ii) The value function 𝑉𝛼 (s) is decreasing w.r.t. Λ.

Proof Sketch: By Proposition 4.6, 𝑉𝛼
𝑛 (s)→𝑉𝛼 (s) as 𝑛 → ∞. Thus,

we show that𝑉𝛼
𝑛 (s) has (i) and (ii) for 𝑛 ∈ N. Obviously,𝑉𝛼

0
(s) has

properties (i) and (ii) since 𝑉𝛼
0
(s) = 0. Then, we show that given

𝑉𝛼
𝑛 (s) has the properties (i) and (ii), 𝑉𝛼

𝑛+1 (s) has these properties,
∀𝑛 ≥ 0. □

Using the properties in Lemma 4.7, we further show that the

optimal policies that solve discounted cost MDPs in (24) are of

threshold-type in Lemma 4.8.

Lemma 4.8. Given 𝛽, 𝛼 , the optimal policy that solves the dis-
counted cost MDP (24) is of threshold-type in the age. Specifically,
there exists a threshold Δ★

𝛼,𝛽
such that it is optimal to transmit only

when the age exceeds the threshold and the distortion requirement is
met, i.e., Δ ≥ Δ★

𝛼,𝛽
and Λ ≥ 𝐷 (Δ).

Proof. Please see Appendix C. □

By [26], under certain conditions (A proof of these conditions

verification is provided in Appendix D), the optimal policy for

problem (15) can be viewed as a limit of a sequence of the optimal

policies for the 𝛼-discounted cost problems in (24) as 𝛼 → 1. Thus,

there exist stationary deterministic policies that solve problem (15),

and the optimal policies are in the form (16).

5 LOW-COMPLEXITY ALGORITHM FOR
AVERAGE-AGE MDP

In this section, we design a low-complexity algorithm for the average-

age MDP. In particular, we first design a low-complexity algorithm

to obtain the optimal policy for the average age-plus-cost MDP (15)

given 𝛽 , and then provide a way to determine optimal Lagrangian

multiplier 𝛽 .

5.1 Optimal policy for average age-plus-cost
MDP (15)

In Theorem 4.1, we show that the optimal policy for (15) is of a

threshold-type in the form of (16). In order to obtain the optimal

policy for (15), it remains to obtain optimal threshold Δ★
𝛽
. Using

Theorems 4.2 and 4.3, we can find Δ★
𝛽
by the following Algorithm 1.

Remark: Relative value iteration (RVI) is a classical way to

solve the average cost MDP. However, RVI requires updating value

functions of all states in each iteration. Since the state space is

infinite in this problem, the state space would have to be truncated

before applying RVI, which could introduce a significant error from

the optimal solution. Compared with RVI, the advantage of the

proposed algorithm 1 is as follows:

(i) In Algorithm 1, we avoid dealing with infinite space. Instead,

we compare average costs of threshold-type policies with finite
different thresholds.

(ii) In terms of complexity, each iteration of RVI takes 𝑂 (𝑀𝑋 ),
where 𝑋 is the bound for the age and should be larger than 𝛿𝐿
to reduce offset from the optimal solution. However, Algorithm

1 takes 𝑂 (𝛿𝐿 + 𝑀) to find the optimal threshold /policy for (15),

which has less complexity than even two iterations of RVI.

Algorithm 1: Optimal Threshold Calculator

1 Input: {𝛿 𝑗 }𝐿𝑗=1 , {ℎ 𝑗 }𝐿𝑗=1 , 𝑙 = 2, 𝑘★ = ∞, �̄�★ = ∞, ;

2 for 𝑘 = 1 to 𝛿𝐿 do
3 if 𝑘 = 𝛿𝐿 then
4 Calculate 𝑘UB using (19) and �̄� (𝜋𝑘

UB
; 𝛽 ) using (18);

5 if �̄� (𝜋𝑘UB ; 𝛽 ) < �̄�★ then
6 �̄�★ = �̄� (𝜋𝑘

UB
; 𝛽 ) 𝑘★ = 𝑘UB ;

7 end
8 else
9 if 𝑘 = 𝛿𝑙−1 then
10 Calculate 𝐵𝑙−1 ,𝑂𝑙 , 𝐼𝑙 and 𝐽𝑙 using Table 2;

11 𝑙 = 𝑙 + 1;

12 end
13 Calculate �̄� (𝜋𝑘 ; 𝛽 ) using (18);

14 if �̄� (𝜋𝑘 ; 𝛽 ) < �̄�★ then
15 �̄�★ = �̄� (𝜋𝑘 ; 𝛽 ) 𝑘★ = 𝑘 ;

16 end
17 end
18 end
19 Output: 𝑘★, �̄�★;

5.2 Lagrangian multiplier estimate
In Theorem 3.1, we have shown that the optimal policy for the

average-age MDP (12) is a mixture of two stationary deterministic

policies 𝜋𝛽★,1 and 𝜋𝛽★,2, each of which is optimal for the average

age-plus-cost MDP (15).

Our idea is to construct two sequences 𝛽𝑛 and 𝛽′𝑛 such that they

satisfy 𝛽𝑛 ≤ 𝛽′𝑛 , 𝛽𝑛 ↑ 𝛽★ and 𝛽′𝑛 ↓ 𝛽★. By [27], in practice, we can

use optimal policies 𝜋★
𝛽− and 𝜋★

𝛽+
to approximate policies 𝜋𝛽★,1 and

𝜋𝛽★,2, where 𝛽− ≜ 𝛽𝑛 and 𝛽+ ≜ 𝛽′𝑛 for reasonably large 𝑛; and

𝜋★
𝛽− and 𝜋★

𝛽+
are optimal policies that solve (15) associated with 𝛽−

and 𝛽+, respectively. With 𝛽− and 𝛽+, the randomization factor 𝜇

is calculated by

𝜇 =

𝐸max − 𝐸 (𝜋★
𝛽+
)

𝐸 (𝜋★
𝛽− ) − 𝐸 (𝜋★

𝛽+
)
, (31)

where 𝐸 (𝜋) is the average energy cost under policy 𝜋 as defined

in (6). Then, the optimal policy for the average-age MDP chooses

𝜋★
𝛽− with probability 𝜇 and 𝜋★

𝛽+
with probability 1 − 𝜇 after each

successful delivery.

In Algorithm 2, we provide a way to obtain parameters 𝛽+, 𝛽−

and 𝜇, which determines the optimal policy for the average-age

MDP (12). In particular, we use the bisection method to obtain 𝛽−

and 𝛽+ that follows the methodology in [28]. In Algorithm 2, the

expression of the average energy cost with a threshold 𝑘 is

𝐸 (𝜋𝑘 ) =
{
𝐹 (ℎ𝑙𝑘 −1 )
1 − 𝐵𝑙𝑘 −1

+ 1{𝑙𝑘 ≤𝐿} (𝐵𝑙𝑘 −1 )
𝛿𝑙𝑘

−𝑘
(
−

𝐹 (ℎ𝑙𝑘 −1 )
1 − 𝐵𝑙𝑘 −1

+
𝐿∑︁

𝑗=𝑙𝑘

𝑤 (𝑙𝑘 , 𝑗 )𝐹 (ℎ 𝑗 )
1 − 1{ 𝑗<𝐿} (𝐵 𝑗 )𝛿 𝑗+1−𝛿 𝑗

1 − 𝐵 𝑗

)}
𝑧−1, (32)

where 𝑧 = 𝑘 − 1 + (1 − 𝐵𝑙𝑘−1)
−1 + 1{𝑙𝑘 ≤𝐿} 𝐼𝑙𝑘 (𝐵𝑙𝑘−1)

𝛿𝑙𝑘 −𝑘 and 𝑙𝑘
is defined previously in (17). The derivation of (32) is part of the

proof of Theorem 4.2.

6 SIMULATIONS
In this section, we numerically evaluate the performance of the

proposed algorithms.
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Algorithm 2: Low-complexity Optimal Transmission Scheduler Estimator

1 Input: 𝜖 > 0, 𝛽−
, 𝛽+ ;

2 while |𝛽+ − 𝛽− | > 𝜖 do
3 𝛽 = (𝛽+ + 𝛽− )/2;
4 For the new 𝛽 , obtain optimal threshold 𝑘★using Algorithm 1;

5 Calculate average energy cost using (32);

6 if 𝐸 (𝜋𝑘★ ) > 𝐸max then
7 𝛽− = 𝛽 ;

8 else
9 𝛽+ = 𝛽 ;

10 end
11 end
12 Compute 𝜇 using (31);

13 Output: 𝜇, 𝛽+ and 𝛽−
;
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Figure 3: Optimal threshold Δ★
𝛽,cons vs𝑊 given 𝑝 = 0.5
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Figure 4: Optimal threshold Δ★
𝛽,cons vs 𝑝 given 𝛽 = 10

6.1 Optimal threshold for problem (15)

To provide more insights, we investigate how the optimal threshold

varies with 𝛽 and error probabilities, respectively.

6.1.1 Constant distortion requirement. We first simulate the spe-

cial case. In the simulation, we set ℎ = 5, 𝑀 = 10 and 𝑞𝑚 = 𝑞,

∀𝑚. Fig. 3 studies the optimal threshold versus𝑊 given 𝑝 = 0.5

and 𝛽 ∈ {5, 10, 20}, where 𝑊 is changed by changing 𝑞. From

Fig. 3, we observe that the optimal threshold increases with𝑊 .

Fig. 4 studies the optimal threshold versus 𝑝 given 𝛽 = 10 and

𝑊 ∈ {0.03, 0.36, 0.83}. From Fig. 4, we observe that the optimal

threshold increases with 𝑝 for𝑊 = 0.36 or𝑊 = 0.83 (𝛽 > 1

𝑊
).

Moreover, for all cases in Figs. 3 and 4 that satisfy 𝛽 < 1

𝑊
, the opti-

mal threshold is one. These observations confirm our theoretical

results in Theorem 4.5.

6.1.2 Non-decreasing age-vs-distortion requirement. For general
non-decreasing distortion function, we set𝑀 = 8,𝐿 = 3, and𝑞𝑚 = 𝑞,

∀𝑚. The distortion function is given by 𝛿1 = 1, 𝛿2 = 25, 𝛿3 = 50 and

ℎ1 = 2, ℎ2 = 5, ℎ3 = 7. Also see Fig. 2.

Under the above mentioned parameter settings, we obtain the

optimal threshold for different 𝛽 ∈ {5, 25, 45}, and error probabili-

ties 𝑝 ∈ {0.1, 0.2, · · · 0.9} and 𝑞 ∈ {0.1, 0.2, · · · 0.9} using Algorithm

1. The results are summarized in Fig. 5. In each sub-figure of Fig.

5, we investigate the impact of 𝑝 and 𝑞 on the optimal threshold.

On one side, we observe that the optimal threshold decreases with

𝑞. This is consistent with the analysis result in the constant 𝐷 (·)
case in Sec. 4.2 even though we do not have any analytical proof

of this phenomenon. The intuition is that the increase of 𝑞 will

reduce the probability that the distortion requirement is satisfied.

This increases the demand for more transmission opportunities

to maintain low age, which reduces the optimal threshold. On the

other side, we observe that the optimal threshold either increases or

deceases or first increases and then decreases with 𝑝 (see 𝑞 = 0.6 in

Figs. 5a, 5b, and 5c). Whether the optimal threshold increases with

𝑝 depends on whether the age or the energy cost is the dominant

issue, also see our discussion right after Theorem 4.3. In particular,

when the dominant issue to deal with is the energy cost, the optimal

threshold increases with 𝑝 . This is because increasing 𝑝 implies

increasing energy consumption for a successful update. To save

energy, the optimal threshold is increased. When the dominant

issue to deal with is the age, the optimal threshold decreases with

𝑝 . This is because that the increase of 𝑝 implies that more trans-

mission attempts are needed for a successful delivery. To keep the

age low, the optimal threshold should be reduced to provide more

transmission opportunities.

Moreover, comparing Figs. 5a, 5b and 5c, we observe that the opti-

mal threshold increases with 𝛽 . This is because as 𝛽 increases, more

weights are placed on the energy cost, which requires increasing

the threshold to reduce the energy cost.

6.2 Comparison with greedy policy
Let 𝑒𝑡 denote the total energy consumption before the time slot 𝑡 .

Then, 𝑒𝑡 = 𝑒𝑡/(𝑡 − 1) denotes the average energy cost consumed be-

fore 𝑡 . In this part, we compare the Algorithm 2 with a greedy policy

which transmits whenever transmission is allowed (i.e., Λ ≥ 𝐷 (Δ))
and if the empirical energy cost is less than the energy budget (i.e.,

𝑒𝑡 < 𝐸max). The setting is same as in 2) of 6.1. When 𝐸max = 1,

zero-waiting policy is obviously optimal and thus is considered

uninteresting. In practical application like remote health, the trans-

mission is likely to be only a small fraction of the total time duration

because of the excessive energy consumption. This makes tight

energy constraint more interesting to study. In Fig. 6, we observe

that when 0.04 ≤ 𝐸max ≤ 0.2, the improvement of our policy is

quite significant, 30% to 70% reduction of cost.

7 CONCLUSION
In this paper, we investigate an age minimization problem with

constraints on the long-term average energy consumption and dis-

tortion of each update. The problem is formulated as a constrained

MDP. Through the Lagrangian multiplier technique, we connect

the problem to an average cost problem (15), and show that the

optimal policy is a mixture of two stationary deterministic policies

(Theorem 3.1), each of which is optimal for the average cost problem
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(a) 𝛽 = 5 (b) 𝛽 = 25 (c) 𝛽 = 45

Figure 5: The optimal threshold Δ★
𝛽
vs transmission error probabilities with different values of 𝛽
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Figure 6: Average age vs energy constraint 𝐸max using the
proposed policy (Algorithm 2) and greedy policy

and of a threshold-type (Theorem 4.1). Then, we obtain the average

cost under the threshold-type policy, which is a piecewise function

of threshold (Theorem 4.2), and we find the optimal threshold value

in the last interval (Theorem 4.3). With these, we avoid dealing

with infinite state space when using a classical solution RVI, and

develop low-complexity algorithms. In the special, but practically

very important case of constant distortion requirements, we obtain

a closed-form solution (Corollary 4.4). We show that the optimal

threshold increases with the probability that distortion requirement

is met, and the impact of transmission error probability 𝑝 on the

optimal threshold depends on whether it is age or energy being the

dominant issue (Theorem 4.5).
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A PROOF SKETCH OF THEOREM 3.1
Let 𝐺 ⊂ S be a nonempty set of states. Define R(s,𝐺) as a class
of policies such that P𝜋 (s𝑡 ∈ 𝐺 for some 𝑡 ≥ 1 : s0 = s) = 1 and

the expected time 𝜏s,𝐺 (𝜋) of the first passage from s to 𝐺 using 𝜋

is finite. Further, R★(s,𝐺) ⊂ R(s,𝐺) are policies that have finite
expected average age and energy of a first passage from s to 𝐺 . By

[28], it suffices to show the following conditions hold.

• A1: For all 𝑟 > 0, the set 𝐵(𝑟 ) = {s : ∃𝑢 s.t. 𝐶Δ (s, 𝑢) +
𝐶𝐸 (s, 𝑢) ≤ 𝑟 } is finite.

• A2: There exists a stationary deterministic policy 𝑔1 ∈ Π
which induces a Markov chain with properties: the state

space incurred by𝑔1 consists of a single (non-empty) positive

recurrent class X and a set Y of transient states such that

𝑔1 ∈ R★(s′,X), for s′ ∈ Y, Moreover, both the average age

and energy costs on X are finite.

• A3: Given any two states s1 ≠ s2, there exists a policy 𝑔2
such that 𝑔2 ∈ R★(s1, {s2})

• A4: If a stationary deterministic policy 𝑔3 has at least one

positive recurrent state then it has a single positive recur-

rent class X. Moreover, if initial state s0 ∉ X, then 𝑔3 ∈
R★(s0,X).

• A5: There exists a policy𝑔4 such that𝐴(𝑔4) < ∞ and 𝐸 (𝑔4) <
𝐸max.

For A1, given 𝑟 , the age Δ of state in 𝐵(𝑟 ) is upper bounded by 𝑟 .

Together with Δ ∈ N+ and Λ ∈ {0, 1, · · · , 𝑀}, 𝐵(𝑟 ) is finite. The
policy 𝑔1 that takes 𝑢 = 1 if Λ = 𝑀 and otherwise, 𝑢 = 0, satisfies

A2. Let 𝑔2 be a policy that uses 𝑔1 till entry to state (1, ·), and then

takes 𝑢=0 till the age equals that of s2, after which previous two

stages are repeated. The 𝑔2 meets A3. For A4, the only way for 𝑔3 to

generate at least one recurrent class is that successful transmission

occurs repeatedly under 𝑔3. Thus, any recurrent class must include

(1,Λ). Hence, there is only one recurrent class. Moreover, since 𝑔3
will take 𝑢 = 1 repeatedly, for s0 ∉ X, it takes finite time from s0
to (1,Λ). Hence, A4 holds. A policy that takes 𝑢 = 1 if 2⌈1/𝐸max⌉
divides Δ and Λ = 𝑀 , and otherwise, 𝑢 = 0, satisfies A5.

B PROOF SKETCH OF THEOREM 4.5
We use G(𝑊, 𝑝) to denote the optimal threshold as a function of

𝑊 and 𝑝 . For (i), we show that
𝜕G(𝑊,𝑝 )

𝜕𝑝 > 0 when𝑊 > 1

𝛽
, and

𝜕G(𝑊,𝑝 )
𝜕𝑝 < 0 when𝑊 < 1

𝛽
. For (ii), we show that the maximum of⌈

− 1 + 𝑅

2(1−𝑅) +
(

𝑅2

(1−𝑅)2
+ 𝑅+2𝛽𝑊

1−𝑅 + 1

4

)
0.5

⌉
in (22) is not larger than 1. For (iii), we show that

𝜕G(𝑊,𝑝 )
𝜕𝑊

≥ 0.

C PROOF OF LEMMA 4.8
We first show that the optimal action is increasing function of the

age when distortion requirements are met. If 𝑢 = 1 is optimal for

(Δ,Λ), then we have

𝑄𝛼 (Δ + 1,Λ; 1) −𝑄𝛼 (Δ + 1,Λ; 0)
=𝛽+𝛼 (1−𝑝) (E𝑉𝛼 (1,Λ′)−E𝑉𝛼 (Δ + 2,Λ′)) (33)

≤𝛽+𝛼 (1−𝑝) (E𝑉𝛼 (1,Λ′)−E𝑉𝛼 (Δ + 1,Λ′)) (34)

≤0, (35)

where (34) holds by Lemma 4.7 and (35) holds by our assumption.

Next, we show that for Λ < 𝑀 and Λ ≥ 𝐷 (Δ), 𝑢★𝛼 (Δ,Λ; 𝛽) =

𝑢★𝛼 (Δ, 𝑀 ; 𝛽), where 𝑢★𝛼 (·; 𝛽) is optimal decision rule. Since for any

Λ ∈ {0, 1, · · · , 𝑀}, we have
𝑄𝛼 (Δ,Λ; 1) −𝑄𝛼 (Δ,Λ; 0)

=𝛽+𝛼 (1−𝑝) (E𝑉𝛼 (1,Λ′)−E𝑉𝛼 (Δ + 1,Λ′)), (36)

which does not depend on Λ. Hence, 𝑢★𝛼 (Δ,Λ; 𝛽)=𝑢★𝛼 (Δ, 𝑀 ; 𝛽).

D PROOF FOR VERIFICATION OF
CONDITIONS IN [26]

We need to verify the conditions listed below:

• A1: 𝑉𝛼 (s) defined in (24) is finite ∀s, 𝛼 .
• A2: ∃𝐼 ≥ 0 s.t. −𝐼 ≤ ℎ𝛼 (s) ≜ 𝑉𝛼 (s) −𝑉𝛼 (0), ∀s, 𝛼 .
• A3: ∃𝐹 (s) ≥ 0 s.t. ℎ𝛼 (s) ≤ 𝐹 (s), ∀s, 𝛼 . Moreover, for each s,
∃𝑢 (s) s.t. ∑s′∈S P(s′ |s, 𝑢 (s))𝐹 (s′) < ∞.

• A4:

∑
s′∈S P(s′ |s, 𝑢)𝐹 (s′) < ∞ ∀s, 𝑢.

In Proposition 4.6, we showed that a policy 𝑓 that chooses

𝑢 = 0 at every time slot satisfies 𝐿𝛼s (𝑓 ; 𝛽) <∞. By (24), we have

𝐿𝛼s (𝑓 ; 𝛽) ≥ 𝑉𝛼 (s), which implies A1. By Lemma 4.7, we have

𝑉𝛼 (Δ′,Λ) ≥ 𝑉𝛼 (Δ,Λ) for Δ′ ≥ Δ and 𝑉𝛼 (Δ,Λ) ≥ 𝑉𝛼 (Δ,Λ′) for
Λ′ ≥Λ. Hence, by setting 𝐼 =𝑉𝛼 (0)−𝑉𝛼 (1, 𝑀), where 0= (1, 𝑀) is
the reference state, we prove A2. Let 𝑔 be the policy that transmits

whenever the number of received measurements equals𝑀 . This en-

sures that any transmission satisfies distortion requirement. Under

policy 𝑔, states that occur after successful delivery are recurrent.

Actually, the probability that no transmission succeeds after 𝜏 slots

is (1 − 𝑃Λ (𝑀) (1 − 𝑝))𝜏 . State 0 follows a successful delivery and

is recurrent. Hence, under policy 𝑔 the expected cost of the first

passage from state s to 0, denoted by 𝑐s,0 (𝑔), is finite. Similar to

proof of Proposition 5 in [26], we have ℎ𝛼 (s) ≤ 𝑐s,0 (𝑔) < ∞. Hence,

by setting 𝐹 (0) = 0 and 𝐹 (s) = 𝑐s,0 (𝑔) for s ≠ 0, we prove A3.

After transition from s under any action, there will be at most two

possible states. Since for all s, 𝐹 (s) < ∞, the sum of at most two

𝐹 (·) is also finite. Hence, A4 holds.


	Abstract
	1 Introduction
	1.1 Problem and Applications
	1.2 Related Works
	1.3 Key Contributions

	2 System Model
	2.1 Age of Information
	2.2 Distortion requirement and energy constraints
	2.3 Optimization Problem

	3 Constrained MDP Formulation and Lagrangian Relaxation
	3.1 Constrained MDP Formulation
	3.2 Lagrange Relaxation of the Constrained MDP

	4 Solving the average age-plus-Cost MDP
	4.1 Structure of the optimal policies
	4.2 Special Case - Constant Distortion
	4.3 Proof of Theorem 4.1

	5 Low-complexity Algorithm for average-age MDP
	5.1 Optimal policy for average age-plus-cost MDP (15)
	5.2 Lagrangian multiplier estimate

	6 Simulations
	6.1 Optimal threshold for problem (15)
	6.2 Comparison with greedy policy

	7 Conclusion
	Acknowledgments
	References
	A Proof Sketch of Theorem 3.1
	B Proof sketch of Theorem 4.5
	C Proof of Lemma 4.8
	D Proof for verification of conditions in sennott1989average

