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Abstract—Streaming codes eliminate the queueing delay and
are an appealing candidate for low latency communications.
This work studies the tradeoff between error probability pe and
decoding deadline ∆ of infinite-memory random linear streaming
codes (RLSCs) over i.i.d. symbol erasure channels (SECs). The
contributions include (i) Proving pe(∆) ∼ ρ∆−1.5

e
−η∆. The

asymptotic power term ∆−1.5 of RLSCs is a strict improvement
over the ∆−0.5 term of random linear block codes; (ii) Deriving
a pair of upper and lower bounds on the asymptotic constant ρ,
which are tight (i.e., identical) for one specific class of SECs;
(iii) For any c > 1 and any decoding deadline ∆, the c-optimal
memory length α

∗

c(∆) is defined as the minimal memory length
α needed for the resulting pe to be within a factor of c of the
best possible p

∗

e under any α, an important piece of information
for practical implementation. This work studies and derives new
properties of α∗

c(∆) based on the newly developed asymptotics.

I. INTRODUCTION

Low latency communication aims to minimize the end-to-

end (e2e) delay, and is a key enabler for various applications

ranging from autonomous vehicles to remote healthcare. One

promising approach of e2e delay reduction is the stream-

ing codes [1]–[6], which take a string of message symbols

sequentially as input and output a string of coded symbols

instantaneously with zero queueing delay (no waiting).

Our previous work [7], [8] considered random linear stream-

ing codes (RLSCs) over i.i.d. symbol erasure channels (SECs)

with a sufficiently large finite field size for each symbol. We

studied the error probability pe in the finite memory length α
and finite decoding deadline ∆ regime, and derived a closed-

form expression of pe(∆, α) for any given coding rate R.

Contrary to the finite length results [7], [8], two asymptotic

results (with some parameters being asymptotically large) have

been developed. Specifically, [9] assumed fixed rate R and

infinite deadline ∆ = ∞, and characterized the detailed

asymptotics of pe versus α when α → ∞. Additionally,

[10] assumed fixed pe but infinite memory α = ∞, and

characterized the tradeoff between R and ∆, the so-called

second-order achievability regime [11].

Related to our previous asymptotic results [9], [10], in this

work we assume fixed R and infinite memory α = ∞, and

study the tradeoff between pe and ∆ when ∆ is sufficiently

large. That is, assuming the complexity (memory) is not a
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concern, we characterize the detailed asymptotics of pe(∆)
when ∆ → ∞, arguably one of the most important coding-

theoretic subjects that depicts the limiting behavior of the

codes, which was first studied by Fano in 1961 [12] and

further improved in the following half of century [13]–[16].

Specifically, we focus on the tradeoff between pe and delay x,

where x is the blocklength n if under a block code setting or x
is the decoding deadline ∆ if under a streaming code setting.

Our goal is to derive the detailed asymptotics of pe(x) (also

see the discussion in [17]):

pe(x) = ρxβe−ηx + o(xβe−ηx) (1)

of which ρ, β and η are called asymptotic constant, asymptotic

power, and asymptotic decay rate, respectively.

In a block code setting [12]–[16], the aim is usually to

characterize the η value, which is commonly referred to as the

error exponent. We refer any analysis that explicitly finds the

ρ and β values (not just the η value) as a detailed asymptotic

result since ρ and β play a critical role for small-to-moderate

delay x, thus more “detailed”.

With our focus exclusively on the detailed asymptotics of

RLSCs over i.i.d. SECs with sufficiently large finite field size,

we make the following contributions:

(i) Under the setting α = ∞, we prove that

pe(∆) = ρ∆−1.5e−η∆ + o(∆−1.5e−η∆) (2)

where the η value is identical to the random coding error expo-

nent of block codes [11], [18]. The implication is that RLSCs

improve the asymptotic power ∆−1.5 when compared to the

n−0.5 term of random linear block codes with blocklength n
[18], also see our discussion of Lemma 3 and Theorem 1.

(ii) We derive a pair of lower and upper bounds on the

ρ value. Our bounds are tight (i.e., identical) for one class

of SECs. For SECs outside the specified class, we derive a

good approximation of ρ as well. (In this work, we say an

approximation is tight if it provably matches the true curve

when x → ∞. We say an approximation is good if it is

numerically close to the true curve when x is large.)

(iii) For any fixed R, any ∆ and any c > 1, we define the

c-optimal memory length α∗
c(∆) by

α∗

c(∆) = inf
{
α : pe(∆, α) ≤ c · inf

α
pe(∆, α)

}
. (3)

E.g., say c = 1.1, α∗
1.1(∆) is the memory length needed to

be within 10% of the best achievable p∗e = infα pe(∆, α), an



important piece of information dictating how much memory

is needed when designing a practical streaming code with

performance close to p∗e . Under some mild assumptions, this

work uses the new asymptotics (2) and shows that

α∗

c(∆) ≈ a1∆+ a2 ln(∆) + a3 ln(1/(c− 1)) +O(1) (4)

where a1 to a3 are constants that do not depend on c and ∆.

In addition to establishing that α∗
c(∆) grows approximately

linearly with respect to ∆ (the statement will be made more

precise in Section IV), we have derived a good approximation

of α∗
c(∆) for small ∆.

II. PROBLEM FORMULATION AND EXISTING RESULTS

The boldface lower/upper letters denote column vec-

tors/matrices, respectively, e.g., s(t) denotes a column vector

indexed by t. We use sba to represent the cumulative col-

umn vector sba ≜
[
s⊤(a), s⊤(a+ 1), . . . , s⊤(b)

]⊤
. We define

(·)
+
≜ max(0, ·) as the projection operator.

A. The Model of Random Linear Streaming Codes

Consider a point-to-point communication system. In ev-

ery time slot t ≥ 1, K message symbols s(t) =
[s1(t), s2(t), . . . , sK(t)]

⊤
arrive at the encoder, where each

sk(t) is drawn independently and uniformly randomly from

GF(2q). Using the αK symbols in the previous α slots

{s(τ) : τ ∈ [t − α, t)} plus the current s(t) as input,

where α is called the memory length, the encoder outputs N
coded symbols by a linear encoder with the encoding matrix

uniformly randomly generated from GF(2q)N×(α+1)K .

The N coded symbols then pass through a symbol erasure

channel (SEC), during which a random subset will be erased

and the rest of them, denoted by Ct ⊆ {1, 2, · · · , N}, will

arrive at the destination perfectly. Define Ct ∈ [0, N ] as the

(random) number of successfully received symbols, which is

assumed to be i.i.d. over time. We further denote the Ct

received symbols at time t by y(t) = [y1(t), . . . , yCt
(t)]

⊤
.

We can thus write

y(t) = Hts
t
max(t−α,1) (5)

where Ht is the (random) receiver matrix that corresponds to

the realization of the SEC. By properly shifting and stacking

s(t), y(t) and Ht, the system till time t can be expressed as:

yt
1 = H(t)st1. (6)

See Fig. 1 for illustration. There is a diagonal band of non-

zero entries in H(t), the values of which correspond to the

randomly drawn encoding matrix.

For any fixed K < E{Ct}, we define the error probability

pe,q(∆, α) under decoding deadline ∆, memory length α and

finite field size GF(2q) by

pe,q(∆, α) ≜ lim
T→∞

1

T

T∑

t=1

Pr
(
s(t) ̸= fML,t

(
yt+∆
1 ,H(t+∆)

))

where fML,t(y
t+∆
1 ,H(t+∆)) is the ML decoder of s(t) based

on the observation yt+∆
1 by the deadline t + ∆. We assume

y(1)

=

s(1)
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Fig. 1. The matrix-based illustration of the system model.

the ML decoder also knows the receiver matrix H(t+∆), the

most common setting used in erasure coding literature [1], [3],

[11], [19], [20].

Focusing exclusively on a sufficiently large finite field

GF(2q), this work studies the following three quantities:

pe(∆, α) ≜ lim
q→∞

pe,q(∆, α) (7)

pe(∆) ≜ pe(∆,∞) ≜ lim
α→∞

pe(∆, α) (8)

pe(∞, α) ≜ lim
∆→∞

pe(∆, α). (9)

B. Existing Results on RLSCs

Define a one-side bounded random walk Id(t) ≥ 0 by

Definition 1: Set Id(0) ≜ 0 and iteratively compute

Id(t) ≜ (Xt + Id(t− 1))
+

(10)

where Xt ≜ K − Ct.

Intuitively, Xt is the degree of uncertainty/freedom added

to the system at time t, a balance between K new message

symbols and Ct received coded symbols. The Id(t) is called

the information debt at time t of the infinite memory setting

[7]–[10], [21], [22].

Definition 2: Since Id(0) = 0, define the recurrence time of

state-0 by

tR0 ≜ inf{τ : τ > 0, Id(τ) = 0}. (11)

The following existing result converts the problem of finding

pe(∆) to the analysis of the random walk Id(t), which will

be the foundation of our asymptotic analysis.

Lemma 1: [8, Section IV].

pe(∆) =
E

{
(tR0 − (∆ + 1))

+
}

E{tR0}
. (12)

We conclude this section by introducing several definitions.

Recall that Ct has support [0, N ]. The support of Xt = K−Ct

is thus [−N +K,K].
Definition 3: Define xdw,max ≜ N − K and xup,max ≜

K. That is, xdw,max (resp. xup,max) denotes the maximum

downward (resp. upward) step size that the random walk Id(t)
can make per time slot t.



Definition 4: Define X+
t = max(0, Xt) and define two

Laurent series Φ(z) and Φ+(z) as follows:

Φ(z) ≜ E
{
zXt
}

and Φ+(z) ≜ E

{
zX

+
t

}
. (13)

The exact expressions of Φ(z) and Φ+(z) are determined

by the probability mass function (PMF) of Xt = K −Ct. We

use Φ′(z), Φ′′(z), Φ′
+(z) and Φ′′

+(z) to denote their first and

second order derivatives. Finally, we define

z0 ≜ argmin
z>0

Φ(z). (14)

III. MAIN RESULT #1: DETAILED ASYMPTOTICS

For any positive integer a > 0, we define

Ta→0 ≜ inf{t ≥ 1 :

t∑

i=1

Xi ≤ −a}. (15)

Intuitively, Ta→0 describes the hitting time for the state

Id(τ) = a to go back to Id(τ
′) = 0. We then have

Lemma 2: For any arbitrary positive integer a > 0, we have

a

xdw,max
·
1

t
· Pr

(
t∑

i=1

Xi = −a

)

≤ Pr(Ta→0 = t) (16)

≤ a ·

xdw,max−1∑

δ=0

1

t
· Pr

(
t∑

i=1

Xi = −(a+ δ)

)
. (17)

Some remarks are in order. Firstly, if xdw,max = 1, then the

lower and upper bounding values are identical. Lemma 2 thus

characterizes the exact value of Pr(Ta→0 = t) regardless of the

xup,max value. The reason that the bounds are loose in general

is that if xdw,max ≥ 2, the random walk may sometimes

overshoot state-0 before the value of Id(τ) being shifted

back to 0 by the (·)+ operator in (10). This phenomenon

significantly complicates the analysis.

Secondly, if we further impose xup,max = xdw,max = 1,

then Lemma 2 is a well-known result of the reflection prin-

ciple of Bernoulli random walks [23]. Allowing for arbitrary

xup,max and xdw,max, Lemma 2 can be viewed as a general-

ization of the reflection principle, also see the related results

on the ballot theorem and the Catalan number [24], [25].

Lemma 3: For any fixed a > 0 when t → ∞,

Pr

(
t∑

i=1

Xi = −a

)

= za−1
0

√
Φ(z0)

2πΦ′′(z0)
t−0.5(Φ(z0))

t
+ o(t−0.5(Φ(z0))

t) (18)

where z0 is defined in (14).

Lemma 3 is proved by Laplace’s method of asymptotic

expansion, see similar results in [18]. It is worth noting that

we have a t−0.5 term in (18). Since the left-hand side of (18)

is highly related to the error probability of a MDS block code

with blocklength n = t, the pe of a random linear block code

over i.i.d. SECs has an asymptotic power term n−0.5.

If we rewrite the numerator of (12) by

E

{
(tR0 − (∆ + 1))

+
}

=

∞∑

t=1

K∑

a=1

t · Pr(Id(1) = a) · Pr(Ta→0 = t+∆), (19)

the resulting expression shows that the value of pe(∆)
using RLSCs in (12) is directly related to the hitting

time event {Ta→0 = t}, rather than the block-based event{∑t
i=1 Xi = −a

}
. Combining Lemmas 1 to 3, we have

Proposition 1: Define

ϱub ≜
xdw,max · z

xdw,max−1
0 Φ′

+(z0)

(1− Φ(z0))
2

(Φ(z0))
1.5

√
2πΦ′′(z0)

, (20)

ϱlb ≜
1

xdw,max

Φ′
+(z0)

(1− Φ(z0))
2

(Φ(z0))
1.5

√
2πΦ′′(z0)

(21)

and η ≜ − ln(Φ(z0)). (22)

For any ϵ > 0, there exists ∆◦ such that

(1− ϵ)ϱlb ≤
E

{
(tR0 − (∆ + 1))

+
}

∆−1.5e−η∆
≤ (1 + ϵ)ϱub (23)

for all ∆ ≥ ∆◦.

Finally, we can quantify the denominator E{tR0} of (12)

by standard hitting analysis, and we have

Theorem 1: For RLSCs with infinite memory α = ∞,

pe(∆) = ρ∆−1.5e−η∆ + o(∆−1.5e−η∆) (24)

where η is first defined in (22) and ρ is of bounded value.

Remark 1: The η value in (22) is identical to the random

coding error exponent of block codes [11], [18]. Therefore,

RLSCs neither improve nor degrade the error exponent when

compared to its block-code counterpart.

Remark 2: The improvement of the asymptotic power from

n−0.5 of block codes to ∆−1.5 of RLSCs in (24) is a

direct result of the 1
t

term in Lemma 2 that relates the two

probabilities Pr(
∑t

i=1 Xi = −a) and Pr(Ta→0 = t).
Remark 3: Theorem 1 shows that the pe of RLSCs decreases

faster than the pe of random block codes by a linear order

of the delay (∆ or n). Therefore, RLSCs not only eliminate

the queueing delay completely but also strictly enhance the

error protection when compared to random block codes in the

asymptotic regime.

In the sequel, we study the asymptotic constant ρ in (24).

Theorem 2: If N = K + 1, then we have

ρ =
(z0)

−2
Φ(z0)

1.5
· |Φ′(1)|

(1− Φ(z0))
2
√
2πΦ′′(z0)

. (25)

Theorem 2 is proved by noticing that Lemma 2 and Propo-

sition 1 are tight when xdw,max = 1 = N−K. If N > K+1,

then we derive a pair of upper and lower bounds instead.

Theorem 3: Define

ρub ≜ ϱub(E{tR0})
−1

and ρlb ≜ ϱlb(E{tR0})
−1

(26)



where the value of E{tR0} can be found by the results in [9].

For arbitrary N and K values, we always have

0 < ρlb ≤ ρ ≤ ρub. (27)

In addition to rigorous upper/lower bounds, we have derived

a closed-form approximation of ρ for the case of N ≥ K+1:

ρ̃ =
Φ′

+(z0)Φ(z0)
1.5

· |Φ′(1)|

(1− Φ(z0))
2
√
2πΦ′′(z0)

(
Φ′

+(1)− Φ′(1)
) (28)

which is found by extrapolating the derivation of ρ from the

special case of N = K+1 to the general case of N ≥ K+1.

By the definitions in (25), (26), and (28), one can easily verify

the following corollary:

Corollary 1: If N = K + 1, then ρlb = ρub = ρ̃ = ρ.

A. Numerical Evaluation

Fig. 2 plots the curves governing pe(∆). We first assume

(N,K) = (3, 2) and the PMF of channel, Pi ≜ Pr(Ct = i),
listed in the caption of Fig. 2. The Exact pe(∆) is plotted

by the closed-form formulas in [8, Section IV]. We also plot

three types of asymptotic curves, from the coarsest e−η∆ to

the most detailed ρ∆−1.5e−η∆ with the ρ value described in

Theorem 2. As can be seen, the coarser asymptotics are far

away from pe(∆) while the provably tight asymptotics closely

matches the exact pe(∆) for small ∆ ∈ [50, 200]. Similar

observations can be made in all our numerical experiments

satisfying N = K + 1.

In Fig 3, we let (N,K) = (5, 2) and Ct be uniformly

distributed over [0, 5], i.e., Pr(Ct = i) = 1/6. We again plot

the Exact and three types of asymptotics, except that in Type

3, we use the approximation ρ̃ in (28) since N > K+1 in this

example. The results once again demonstrate strong prediction

power of the ρ̃∆−1.5e−η∆ even though there is no tightness

guarantee. We observe similar behavior for all (N,K) values

and channel distributions we have evaluated.

IV. MAIN RESULT #2: c-OPTIMAL MEMORY LENGTH

This section demonstrates how the strong prediction power

of the detailed asymptotics can be used to study the c-optimal

memory length defined in (3). To that end, we first assume

pe(∆, α) of finite ∆ and α can be approximated as follows.

pe(∆, α) ≈ p̃e(∆, α)

≜ pe(∆,∞) + pe(∞, α) = pe(∆) + pe(∞, α) (29)

Fig. 4 verifies the closeness of this approximation when

(N,K) = (5, 2) and Ct being binomial with parameters

(5, 0.45). We first plot pe(∞, α), which is the curve that

approaches 0 when α → ∞ since longer memory will lower

the error probability when delay ∆ = ∞ is not a concern.

We then plot two sets of curves, one for ∆ = 100 and one

for ∆ = 200. For ∆ = 100, we first plot pe(100,∞), which

is a flat line (constant) as it does not depend on α. We then

plot the approximation p̃e(100, α) in (29), the sum of two

curves pe(100,∞) and pe(∞, α). Finally, we plot the true

error probability pe(100, α) using [8].
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One can see that p̃e(100, α) closely approximates the true

pe(100, α), In addition to ∆ = 100, we also plot the set of

curves for ∆ = 200. As can be seen, the gap between p̃e(∆, α)
and pe(∆, α) becomes even smaller when ∆ increases from

100 to 200. The heuristic of our approximation formula (29)

is as follows. For fixed ∆, pe(∆, α) first decreases when

α increases since the newly added complexity (memory)

enhances error protection. However, after more and more

memory being added, we face diminishing return and pe(∆, α)
is later dominated by the flat line pe(∆,∞). This phenomenon

is captured by (29).

If the approximation (29) is reasonably tight, we will have

α∗

c(∆) ≈ min{α : p̃e(∆, α) ≤ c · inf
α

p̃e(∆, α)} (30)

= min{α : pe(∞, α) ≤ (c− 1)pe(∆)} (31)

where (31) holds because (i) by (29) and by the fact that

pe(∞, α) ↘ 0 when α → ∞, we have infα p̃e(∆, α) =
pe(∆); (ii) we replace p̃e(∆, α) by its definition (29) and

rearrange the inequality.

Note that the min-based expression in (31) is still difficult

to solve. We thus further substitute pe(∆) by our good/tight

approximation ρ̃∆−1.5e−η∆ and substitute pe(∞, α) by the

following tight approximation first derived in [9]:

pe(∞, α) = (B1α+B2)e
−B3α + o(e−B3α) (32)

where (B1, B3) values are provided in [9] and B2 can be

derived by the methods of [9]. We then approximate (31) by

α∗

c(∆) ≈ α̃∗

c(∆) ≜

min
{
α : (B1α+B2)e

−B3α ≤ (c− 1)ρ̃∆−1.5e−η∆
}
. (33)

With ρ̃, η, B1, B2 and B3 all admitting closed-form expres-

sions, the value of our approximation α̃∗
c(∆) can be efficiently

computed by the Lambert W function [26], [27] supported in

commercial softwares.

We now analyze the behavior of α̃∗
c(∆).

Lemma 4: When ∆ → ∞,

α̃∗

c(∆) = ⌈a1∆+ a2 ln(∆) + a3 ln(1/(c− 1)) + a4 + o(1)⌉

where

a1 =
η

B3
, a2 =

2.5

B3
, a3 =

1

B3
and a4 = −

1

B3
ln

(
ρ

B1

B3

η

)
.

This implies that α̃∗
c(∆) grows almost linearly with respect

to ∆. We conjecture with high confidence that the true

α∗
c(∆) follows the same linear trend as well because (i) the

approximation p̃e(∆, α) in (29) is getting tighter when ∆ is

large, as seen in Fig. 4; and (ii) our detailed asymptotics (24)

and the pe(∞, α) asymptotics (32) are both provably tight

within a constant factor when ∆ and α are large.

We further quantify the a1 value by

Lemma 5: For any fixed (N,K), the value of a1 satisfies

a1 =
E{Ct} −K

4K
+ o(E{Ct} −K). (34)

when the gap-to-capacity E{Ct} −K is sufficiently small.
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Fig. 5. The c-optimal memory length w. (N,K) = (5, 2), Ct ∼ B(5, 0.45).

Lemma 5 implies that the growth rate a1 is small when we

operate close to the capacity, a surprising result since one may

expect that when E{Ct}−K is small, we need more complex

codes (larger α) to protect the data. The intuition is that strong

error protection can be achieved by either (i) collecting more

observations (longer delay ∆), or (ii) using more complex

codes (larger α). However, when E{Ct}−K is small, option

(i) becomes more beneficial/critical (in terms of reducing pe)

than option (ii). The ratio α̃∗
c(∆)/∆ thus decreases.

A. Numerical Evaluation

Fig. 5 compares the true α∗
c(∆) versus our approximation

α̃∗
c(∆). We assume c = 1.1, (N,K) = (5, 2) and Ct being bi-

nomial with parameters (5, 0.45). We numerically find α∗
c(∆)

using (3) and the pe(∆, α) formulas in [8]. The computation

of α∗
c(∆) involves exhaustive search plus matrix inversions

of sizes growing unboundedly with α, which is feasible only

for relatively small (∆, α). We plot α̃∗
c(∆) by solving (33).

Our α̃∗
c(∆), which is very easy to compute, closely matches

the true α∗
c(∆) with the maximum discrepancy being one. In

hundreds of data points we examined with different (N,K)
values and channel distributions (though unreported due to

space constraints), the gap is always ≤ 1 except for the

most challenging combinations of small (∆, α) and very small

(E{Ct}−K) for which the approximations (24), (29) and (32)

are still loose. In the example of Fig. 5, a1 = 0.03088, which

is close to the approximation (E{Ct} − K)/4K = 0.03125
in (34). That is, the memory length needed α̃∗

c(∆) will

eventually converge to ≈ 3.1% of the target deadline ∆.

This demonstrates the superior encoding efficiency of RLSCs

in the sense that when ∆ is large, we only need a sparse

encoding matrix (similar to H(t) in Fig. 1 but before random

row deletion due to erasures) with 97% entries being 0.

V. CONCLUSION

We have characterized the detailed asymptotics of the delay-

reliability tradeoff of infinite-memory random linear streaming

codes over symbol erasure channels and discussed several

important implications of the results.
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