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Abstract—The ubiquitous usage of communication networks in
modern sensing and control applications has kindled new inter-
ests on the timing coordination between sensors and controllers,
i.e., how to use the “waiting time” to improve the system perfor-
mance. Contrary to the common belief that a zero-wait policy is
optimal, Sun et al. showed that a controller can strictly improve
the data freshness, the so-called Age-of-Information (AoI), by
postponing transmission in order to lengthen the duration of
staying in a good state. The optimal waiting policy for the sensor

side was later characterized in the context of remote estimation.
Instead of focusing on the sensor and controller sides separately,
this work develops the jointly optimal sensor/controller waiting
policy in a Wiener-process system. This work generalizes the
above two important results in the sense that not only do we
consider joint sensor/controller designs (as opposed to sensor-
only or controller-only schemes), but we also assume random
delay in both the forward and feedback directions (as opposed
to random delay in only one direction). In addition to provable
optimality, extensive simulation is used to verify the performance
of the proposed scheme.

Index Terms—Age-of-information, remote estimation, optimal
sampling, stochastic control, data freshness, information update
system, infinite-horizon Markov decision process.

I. INTRODUCTION

The omnipresence of portable devices has led to increasing

focus on systems with multiple sensors and controllers inter-

connected by communication networks. Many new research

directions have been initiated, including healthcare, energy

management systems, cloud data infrastructure (see [1]–[3]).

In this work, we study the question: How to optimally coordi-

nate the sensor and the controller when there is random delay

in both the forward and backward directions? We begin by

observing there are two distinct ways of timing-based system

optimization: data-freshness control and state-based sampling.

Data-freshness control: In this approach, the controller

is the one that actively maintains the data-freshness of the

system. For example, we consider the case where the goal is

to lower the risk of heart attacks of the patients. One way is for

the hospital (controller) to make sure that the blood pressure

(BP) or the heart rate (HR) records of the patients are as

fresh as possible. To this end, the hospital should intermittently

This work was supported in parts by NSF under Grant CCF-1422997, Grant
CCF-1618475, Grant CCF-1816013, and Grant CCF-2008527.

Part of this work was presented in 2020 IEEE International Conference on
Computer Communications (INFOCOM).

The authors are with the School of Electrical and Computer Engi-
neering, Purdue University, West Lafayette, IN 47907 USA (e-mail: cht-
sai@purdue.edu; chihw@purdue.edu).

request the patients (sensors) to measure their latest BP or HR

and send in the reports. In practice, any sensor-to-controller

measurement packet inevitably experiences some delay and is

thus always “stale” to some degree. The controller (hospital)

must decide how to optimize its request schedule in order to

optimize the data-freshness of its records.

One breakthrough of the data-freshness control is the in-

troduction of a new metric, Age-of-Information (AoI) [4], the

corresponding minimization algorithms [5], and its numerous

follow-up results [6]–[8]. For instance, a “generate-at-will”

model was studied in [9], which has the potential of consid-

erable energy savings.

In general, AoI minimization behaves differently from

throughput maximization. For example, the zero-wait policy

[10] was throughput optimal but can be strictly suboptimal in

terms of the average AoI [11]. In [11] Sun et al. characterized

the optimal “waiting time” policy at the controller side that can

provably minimize the average AoI, i.e., the optimal policy

when a hospital (controller) should request its patient (sensor)

to submit his/her BP/HR report.

State-based sampling: Unlike the data-freshness control, in

this line of research, it is the sensor that actively optimizes the

overall system.1 Continue from the aforementioned hospital-

patient example. The state-based sampling approach is for the

patient (sensor) to measure his/her own BP/HR continuously

and report the value when and only when it shows elevated

risk. Once the hospital (controller) receives the report, some

treatment (action) is prescribed to bring the BP/HR back to

normal. The patient will stay inactive afterwards and only send

in new reports if his/her BP/HR starts to exhibit new concerns.

The focus of this direction is thus to design schemes

that detect the changes in signal/measurement values and

1The best way to determine whether a scheme is controller-based or sensor-

based is to examine in which physical location the decision is made, since
their distinct locations naturally lead to asymmetric access to the underlying

random states and timing information. Also see our discussion in Sec. II.
However, such a definition does not apply to many existing results. The reason
is that with the assumption of instantaneous ACK feedback, one node has
complete and instantaneous access to the information available at the other
node, which breaks the information asymmetry and thus blends the roles
of sensors and controllers. The second way of classification is thus to see
whether the algorithm has instantaneous access to the (random) value of the
measurement and whether it explicitly uses the measurement to decide when to
transmit. If so, it is a senor-side algorithm, e.g., the remote estimation scheme
in [12]. Otherwise, it is a controller-side algorithm. Under this methodology,
the AoI minimization scheme in [11] is classified as controller-based even
though it is actually executed by the sensor. That is, one can envision “the
controller” being a separate computer program within the physical sensor that
tells the sensor when to transmit without using the actual measurement data.
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opportunistically send the updates when the need arises. This

direction is often termed the (state-based) sampling schemes

for remote estimation. An early work [13] showed that a

threshold policy can lower the estimation error. Later it was

shown that the threshold policy is optimal for a variety of

settings, including cellular networks [14], noisy channels [15]

and multi-dimensional Wiener processes in [16]. In [12], Sun

et al. generalized the setting of [16] by adding a queue with

random service time between the sampler and estimator, and

showed that the optimal waiting time at the sensor side again

takes the form of a threshold policy. Further discussion of the

threshold policy will be provided in Sec. IV.

The main motivation of this work is two-fold. Firstly,

as shown in two important studies [11], [12], either con-

troller (hospital) or sensor (patient) alone can significantly

improve the system performance. One thus cannot help but

wonder how much improvement one may experience with a

jointly optimal sensor/controller policy. Secondly, since we

are interested in remote systems with non-collocated sensors

and controllers, there is likely to be random delay for both

the sensor-to-controller and the controller-to-sensor directions

[17]. Nonetheless, existing results [11] and [12] and all the

aforementioned works assume random delay in one direction,

plus idealized zero-delay acknowledgment (ACK) for the other

direction. It is thus of paramount interest to study new optimal

schemes under a more realistic 2-way delay model. Our key

contributions are summarized as follows.

(i) We propose a new framework that unifies the controller-

side AoI minimization problem [11] and the sensor-side re-

mote estimation problem [12].

(ii) Our framework allows for arbitrary random 2-way delay

distributions, does not rely on idealized instantaneous ACK,

and thus would be more suitable for practical applications

where random delay is present in both directions.

(iii) We derive the jointly optimal sensor/controller policy

under the proposed new setting. The double relaxation in this

work from a single-node policy to a joint policy and from 1-

way delay to 2-way delay represents a significant advancement

over the state of the art. Note that the existing works that

focus on a single-node design [11], [12] only need to optimize

a single decision. In contrast, in a two-node setting, the

sensor-side optimal policy must take into account the optimal

controller-side decision, which results in two concatenated

(and dependent) dynamic programming operations that are

jointly formulated and solved in this work for the first time in

the literature.

(iv) The new unified framework includes many existing

results as special cases, and we have used it to derive a

new, optimal remote estimation scheme with 2-way delay, a

strict generalization of [12]. (The optimal 2-way-delay AoI

minimization results can be found in [18].)

The rest of the paper is organized as follows. In Sec. II, our

detailed system model and problem formulation are presented.

Our main results are outlined in Secs. III and IV. Sec. V

uses the proposed framework to solve the remote estimation

problem with random two-way delay. Numerical results are

reported in Sec. VI. We conclude our work in Sec. VII. A

subset of critical proofs will be provided in the appendix and

the complete proofs can be found in the technical report [19].

II. MODEL AND FORMULATION

A. System Model

Sensor Controller

Forward Channel 

with Delay Y

Backward Channel

with Delay V

Fig. 1: A sensor/controller system with 2-way delay.

Our system model is best depicted in Fig. 1, which consists

of a sensor, a controller, a forward sensor-to-controller channel

and a backward controller-to-sensor channel. It is worth noting

that we use the terms of sensor and controller in their broadest

sense. The sensor node is not limited to a physical sensor

that measures the location/temperature of the environment.

Instead, it can be any data-generating node, e.g., a database

server, a video-streaming source, etc. Also, the controller is not

restricted to a node directly commanding an actuator. Instead,

it can be any decision making component, e.g., computation

of the inferred status of the remote database, or the video

processing applications that render the actual video.

Each of the two channels incurs random transmission de-

lay. With two-way delay in the communication loop, the

information at the sensor and the controller is inherently

delayed. Specifically, the waiting policy of the sensor (resp.

controller) does not have instantaneous access to the status

of the underlying network and has to wait for the delayed

response from the controller (resp. sensor). This two-way delay

model and the resulting asymmetrically delayed information

access where neither the sensor nor the controller has the

instantaneous timing information is the most distinguishing

feature of this work. For comparison, most existing works [6]–

[8], [11], [12] assume one node has instantaneous network-

wide control information, which may not hold in practice

where random delay is universally present.

We now explain our system model. We denote the system

state as S(t), for which we shift/relabel the values so that the

origin S(t) = 0 is the most desired system state. The value of

S(t) may drift away from zero as time proceeds. We assume

the evolution of S(t) is related to a Wiener process W (t) [20],

a widely used (though idealized) model of the system state.2

The detailed system evolution is defined as follows, and the

corresponding illustration is provided in Fig. 2a.

Time sequences: The system consists of four discrete-time

real-valued random processes Xi, Yi, Ui, and Vi for all i. Xi

is the i-th waiting time at the sensor; Yi is the random delay

for the i-th use of the sensor-to-controller channel; Ui is the

i-th waiting time at the controller; Vi is the random delay for

the i-th use of the controller-to-sensor channel.

The values of {Xi} to {Vi} can be used to derive another

time sequence {Ti} as follows: T1 , 0 and Ti+1 , Ti +
Xi + Yi + Ui + Vi for all i. We call the interval [Ti, Ti+1)
as the i-th round, which consists of the i-th waiting time of

2Some applications of the Wiener process model include unmanned aerial
vehicles (UAVs) and mobile networks [21], [22].
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Fig. 2: Illustration of system evolution for different problem formulations.

the sensor, the delay of the i-th use of the forward channel,

the i-th waiting time of the controller, and the delay of the

i-th use of the backward channel. Clearly, the value Ti is the

beginning of the i-th round.

We now describe the system behavior in the i-th round.

Reset-to-Qi at the sensor: At time Ti, the sensor has

received the message from the controller in the previous

(i − 1)-th round. It is very convenient to view the message

as a reset command. We assume that upon receiving the reset

command, the system state at time Ti will be reset to a random

value Qi, which is the (random) initial value of the i-th round.

For example, with thermal noise it may be impossible to set

the state value to be exactly 0 with infinite precision. The

value Qi thus models the residual randomness after reset, if

any. We assume {Qi} is i.i.d. with E{Qi} = 0.

Remark 1: Again the term reset is used in the broadest sense.

For example, in terms of data freshness control, reset could

simply mean that the system state is changed from “stale”

back to “fresh”, not necessarily referring to a physical reset

operation.

After reset-to-Qi, the system state will evolve according to

a Wiener process W (t), until it is once again reset to Qi+1 at

time Ti+1. The state value in the i-th round, denoted by Si(t),
is thus described by

Si(t) = W (t)−W (Ti) +Qi, for t ∈ [Ti, Ti+1). (1)

We sometimes drop the subscript i and simply use S(t).
Waiting time at the sensor: The sensor has the ability of

waiting for an arbitrary amount of time Xi ≥ 0, also see

[9], [11]. The random variable Xi is a stopping time with

respect to the filtration generated by {S(τ) : τ ≤ t} and the

past acknowledgment packets. That is, the sensor observes the

evolution of the system state and causally decides when to stop

waiting and start transmission.

Upon transmission, the sensor sends (Ti, Xi,Mi) to the

controller, where (Ti, Xi), defined in the previous paragraphs,

serves as the time stamp(s) while Mi is the additional mes-

sage/payload generated based on the past system states.

Random delay in the forward direction: The tuple

(Ti, Xi,Mi) sent by the sensor at time Ti + Xi will arrive

at the controller at time Ti +Xi + Yi. The transmission delay

Yi is i.i.d. and is independent from the rest of the system.

Waiting time at the controller: Since the message is time-

stamped (containing (Ti, Xi)), the controller can infer the

value of the forward transmission delay Yi by subtracting

Ti+Xi from the actual arrival time Ti+Xi+Yi. The waiting

time Ui ≥ 0 at the controller is then a function of all the

previous messages and timing information {(Tj , Xj , Yj ,Mj) :
j ≤ i}.

Random delay in the backward direction: At time Ti+Xi+
Yi + Ui, the controller sends a reset signal, which will reach

the sensor at time Ti+1 , Ti+Xi+Yi+Ui+Vi. The (i+1)-
th round then begins, and we go back to reset-to-Qi+1 at the

sensor. Again, we assume the backward delay Vi is i.i.d. and

is independent from the rest of the system.

Technical assumptions: Similar to [11], [12], we assume (i)

the statistics of {Qi}, {Yi}, and {Vi} are known to both the

sensor and the controller and 0 < E{Yi} + E{Vi} < ∞, and

Var{Qi}+Var{Yi}+Var{Vi} < ∞; and (ii) the waiting times

Xi and Ui must satisfy E{Xi} + E{Ui} < ∞. Any scheme

with the waiting time E{Xi} = ∞ or E{Ui} = ∞ is deemed

uninteresting because of its impact of infinitely delaying the

next transmission in the average sense.

Remark 2: The non-negativity Xi ≥ 0 (resp. Ui ≥ 0)

prohibits the sensor (resp. controller) from transmission before

receiving the reset command (resp. message packet) from the

controller (resp. sensor). This complies with the spirit of the

stop-and-wait AQR mechanisms where the transmitter sends

a new packet after receiving the ACK. In practice, ARQ is

commonly used in wireless systems, e.g., IEEE 802.11e [23].

It is possible to design an even better scheme that transmits

anticipatively before receiving any ACK, which, however, is

beyond the scope of this work.

B. The Objective

For any given scheme {Xi} and {Ui}, we define the cost-

aware L2 norm (CAL2N) in the i-th round as

E

{

∫ Ti+1

Ti

|Si(t)|2 dt
}

+ c0 (2)

where Si(t) is defined in (1) and we use its L2 norm to

characterize how far it has drifted away from 0. The constant

c0 ≥ 0 is the cost of reset in the end of the round. The value of
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c0 is chosen by the system designer and can be set to c0 = 0
if desired.

Our goal is to minimize the long-term average CAL2N

defined as follows.

β∗
CAL2N ,

min
{Xi,Mi,Ui}

lim sup
n→∞

n
∑

i=1

(

E

{

∫ Ti+1

Ti

|Si(t)|2 dt
}

+ c0

)

n
∑

i=1

(

E {Ti+1 − Ti}+ c1

)

(3)

where the non-negative constant c1 ≥ 0 in the denominator

serves as a knob that determines whether we are biased

towards a duration-based or round-based averaging. When

c1 = 0, the denominator is the total duration and (3) be-

comes the time-averaged CAL2N. For sufficiently large c1,

the denominator is approximately c1n and (3) is proportional

to the CAL2N averaged over n rounds, with each round having

equal weight regardless how long/short it is. The value of c1 is

chosen by the system designer and can be set to 0 if desired.

To simplify (3), we notice that the optimization problem is

a Markov decision problem with i.i.d.3 Qi, Yi and Vi. As a

result, it is sufficient to first find the optimal policy for the

single-round optimization problem, assuming both the sensor

and controller have access to some common randomness.4

We can then apply the optimal single-round solution to every

round. Following this reasoning, the equivalent single-round

optimization problem becomes

β∗
CAL2N = min

(X,M,U)

E

{

∫ X+Y+U+V

0

|S(t)|2 dt
}

+ c0

E {X + Y + U + V }+ c1
(4)

subject to X is a stopping time w.r.t. the filtration generated

by {S(τ), τ ≤ t}; (5)

Payload M is generated together with X; (6)

U is a function of (M,X, Y ); (7)

E{X}+ E{U} < ∞ (8)

where (5) to (8) follow from our discussion in Sec. II-A, and

we drop the subscript i for notational simplicity.

If we are restricted to the dummy message M = 0, then the

decision is made based on the age of the message (rather than

the content itself). It is then similar to the AoI minimization

problem (see Sec. II-C). On the other hand, if M 6= 0, then

the content of the message could help decision making. In

this case it is similar to the remote estimation problem (see

Sec. II-D).

C. AoI Minimization Setting with Random Two-way Delay

Our setting can be viewed as a strict generalization of the

AoI minimization problem [11] with random two-way delay

3More precise requirements are: (i) {Yi} and {Vi} are i.i.d. and indepen-
dent from the rest of the system; (ii) For any i, Qi is independent of the
waiting times {Xj , Uj : j < i} in the previous rounds.

4The common randomness enables us to convert the temporal average over
many rounds to the probabilistic average over a single round.

described as follows. In the AoI minimization problem, the

source sends packets to the destination through a queue that

is not collocated with the source. We use TA
i to denote the time

instant at which the queue becomes empty for the i-th time. At

time TA
i , a notification packet will be sent from the queue (or

equivalently from the destination) back to the source, which

takes Y A
i time to arrive. After receiving the notification, the

source imposes a waiting time UA
i ≥ 0 and after that injects a

new packet to the queue, which takes V A
i time to be serviced.

Once it is serviced, the queue becomes empty again (the (i+
1)-th time). We thus have TA

i+1 = TA
i + Y A

i +UA
i + V A

i and

the process starts over. If we assume instantaneous feedback

(Y A
i = 0 with probability 1), the above problem formulation

is identical to the basic system model of [11].

Suppose each packet is time-stamped and the AoI is defined

as the current time minus the time stamp of the latest received

packet [4]. Then the AoI grows linearly over time and is

intermittently reset to V A
i at time TA

i+1 = TA
i +Y A

i +UA
i +V A

i

since the time stamp of the latest arrival packet is TA
i +Y A

i +
UA
i . See [11] for more details and see Fig. 2b for illustration.

The goal is to minimize the long-term average AoI, which is

shown in [11] to be equivalent to solving the following single-

round optimization problem:

β∗
A , min

UA

i

E

{

∫ V A

i−1+Y A

i
+UA

i
+V A

i

V A

i−1

tdt

}

E
{

Y A
i + UA

i + V A
i

} . (9)

We now show that (9) is a special case of our setting defined

in Secs. II-A and II-B. Note that the optimal UA
i for the one-

way delay setting has been solved in [11]. For the two-way

delay setting (9), we have

Lemma 1: The optimal UA
i for the AoI minimization

problem (9) can be found by solving the optimal U∗
i in (4)

of our setting while (i) assuming c0 = c1 = 0, (ii) hardwiring

Xi = Mi = 0, i.e., forgoing the possibility of designing better

Xi and Mi, (iii) setting the delays to be Yi = Y A
i , Vi = V A

i ,

and (iv) choosing Qi = W (Ti)−W (Ti − Vi−1).
Proof: Define the filtration until time Ti + Yi as Fi ,

{(Tj , Yj), : j ≤ i}. We then have for any t ∈ [Ti, Ti+1),

E
{

|Si(t)|2
∣

∣Fi

}

= E
{

|W (t)−W (Ti − Vi−1)|2
∣

∣Fi

}

(10)

= t− (Ti − Vi−1) (11)

where (10) follows from (1) and our choice of Qi in (iv); and

(11) follows from the strong Markov property of the Wiener

process. We can then rewrite the numerator of (4) as

E

{

∫ Ti+Yi+Ui+Vi

Ti

E
{

|Si(t)|2
∣

∣Fi

}

dt

}

(12)

= E

{

∫ Ti+Yi+Ui+Vi

Ti

(Vi−1 + t− Ti)dt

}

(13)

= E

{

∫ Vi−1+Yi+Ui+Vi

Vi−1

tdt

}

(14)

where (12) follows from Wald’s lemma and the three facts (i)

Yi is deterministic once conditioning on Fi; (ii) In Sec. II-A,

the waiting time Ui at the controller is defined as a function
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of {(Tj , Xj , Yj ,Mj) : j ≤ i}. Since we set Xi = Mi = 0, it

is clear that Ui is also deterministic once conditioning on Fi;

and (iii) Vi is independent of Fi and |Si(t)|2. Eq. (13) follows

from (11); and (14) follows from the change of variables.

This proves that our objective function (4) collapses to (9)

once we set c0, c1, Yi, Vi, Xi, Mi, Ui and Qi properly.

The high-level intuition is that the controller cannot directly

observe the system state and has to make its decisions based

on the expected cost E{|S(t)|2}, which has a linear growth

rate with respect to the elapsed time (AoI) after the last

reset. The CAL2N minimization problem thus includes the

AoI minimization [11] as a special case.

D. Remote Estimation Setting with Random Two-way Delay

Next, we show that our setting is also a strict generalization

of the remote estimation problem [12] with random two-

way delay. The setting of [12] considers a system in which

a sampler sends packets to an estimator through a queue

that is not collocated with the sampler. Whenever the queue

becomes empty, the queue sends a notification packet back to

the sampler. We use TR
i to denote the time instant at which the

i-th notification packet has arrived at the sampler. After time

TR
i , the sampler continuously monitors an external random

process W (TR
i +t), which is assumed to be a Wiener process.

After some waiting time XR
i ≥ 0, which is a stopping time

of W (TR
i + t), the sampler injects the latest observed value

W (TR
i + XR

i ) to the queue, which takes Y R
i time to be

serviced. Once it is serviced, the queue becomes empty and

the estimator receives the latest observation. Then a new noti-

fication packet is sent back to the sampler, which experiences

some random delay V R
i . Once the sampler receives the new

(i+ 1)-th notification after delay V R
i , the process starts over.

It is clear that we have TR
i+1 = TR

i +XR
i + Y R

i + V R
i in this

system model.

We now describe the estimation error of this remote es-

timation system. Specifically, at time t = TR
i + XR

i + Y R
i

the estimator receives the latest observed value W (TR
i +

XR
i ) and uses it as an estimate of the external process

Ŵ (t) = W (TR
i + XR

i ) until the arrival of the next update

packet at time t = TR
i+1 + XR

i+1 + Y R
i+1. As a result, the

estimation error W (t) − Ŵ (t) jumps to a new (smaller)

initial value W (TR
i + XR

i + Y R
i ) − W (TR

i + XR
i ) at time

t = TR
i + XR

i + Y R
i . See Fig. 2c for illustration. Otherwise

it evolves as a Wiener process until the arrival of the next

observation W (TR
i+1+XR

i+1) at time t = TR
i+1+XR

i+1+Y R
i+1.

If we again use the single-round problem formulation, the

optimization problem becomes:

β∗
MMSE

, min
XR

i

E

{

∫ TR

i
+XR

i
+Y R

i
+V R

i

TR

i

(

W (t)− Ŵ (t)
)2

dt

}

E
{

XR
i + Y R

i + V R
i

} . (15)

Since Ŵ (t) = W (TR
i−1 + XR

i−1) if t ∈ [TR
i−1 + XR

i−1 +
Y R
i−1, T

R
i +XR

i + Y R
i ], we can rewrite the numerator of (15)

as

E

{

∫ TR

i
+XR

i
+Y R

i

TR

i

(

W (t)−W (TR
i−1 +XR

i−1)
)2

dt

}

+ E

{

∫ V R

i

0

(W (Y R
i + t)−W (0))2dt

}

(16)

where (16) uses the strong Markov property of the Wiener

process and the assumption that (Y R
i , V R

i ) is independent

from the Wiener process.

We notice that the latter half of (16) can be further simplified

as follows. Given V R
i = v and Y R

i = y, we have

E

{

∫ V R

i

0

(W (Y R
i + t)−W (0))2dt

∣

∣

∣
V R
i = v, Y R

i = y

}

=

∫ v

0

E

{

(W (y + t)−W (0))
2
}

dt (17)

=

∫ v

0

(y + t)dt = yv +
v2

2
(18)

where (17) follows from the fact that V R
i and Y R

i are

independent from the rest of the system; and (18) follows from

the strong Markov property of the Wiener process.

By further taking the expectation of (18) over the i.i.d. V R
i

and Y R
i , the numerator of (15) can be rewritten as

E

{

∫ TR

i
+XR

i
+Y R

i

TR

i

(

W (t)−W (TR
i−1 +XR

i−1)
)2

dt

}

+ E{Y R
i }E{V R

i }+ E{(V R
i )2}
2

. (19)

We now show that the above remote estimation problem

(15) is a special case of our setting in Secs. II-A and II-B.

Note that the optimal XR
i for the one-way delay setting has

been solved in [12]. For the two-way delay setting (15), we

have

Lemma 2: The optimal XR
i for the remote estimation

problem (15) can be found by solving the optimal X∗
i in (4) of

our setting while (i) hardwiring Mi = Ui = Vi = 0, i.e., short-

circuiting the controller and the backward delay and using a

dummy message Mi = 0, (ii) setting the forward delay to

be Yi = Y A
i , (iii) choosing c0 = E{Y R

i }E{V R
i }+ E{(V R

i
)2}

2 ,

c1 = E{V R
i }, and (iv) Qi = W (Ti)−W (Ti−1 +Xi−1).

Proof: Note that by (1) and the choices of Ui = Vi = 0,

we can rewrite the numerator of (4) as

E

{

∫ Ti+Xi+Yi

Ti

(W (t)−W (Ti) +Qi)
2
dt

}

+ c0. (20)

Then by the special choices of c0 and Qi in (iii) and (iv),

it is straightforward to verify that the numerator of (4) (i.e.,

(20)) is identical to the numerator of (15) (i.e., (16)). It is also

straightforward to verify that the denominators of (15) and (4)

are identical. Our objective function (4) thus collapses to the

one for remote estimation with two-way delay (15) once we

set c0, c1, Yi, Vi, Xi, Mi, Ui and Qi properly. The high-level

intuition is that having direct observation of the system state

S(t), the sensor naturally has the same role as the sampler in

the context of remote estimation of a Wiener process [12].
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Remark 3: [12] considered remote estimation with one-way

delay, which is a special case of the one in this subsection by

further setting controller-to-sensor delay V R
i = 0 (and hence

c0 = c1 = 0).

Remark 4: In some sense, the two important papers [11],

[12] form a perfect pair. The former AoI minimization work

focuses on the controller action (assuming Xi = Yi = 0)

without using the state information, while the latter remote-

estimation work studies the sensor action (assuming Ui =
Vi = 0) that directly observes the state S(t). A main con-

tribution of this work is to unify these two results and study

the optimal sensor/controller scheme that jointly optimizes Xi

and Ui.

III. MAIN RESULTS — THE OPTIMAL POLICIES

In this section, we will present three policies: (i) the

jointly optimal policy (X∗,M∗, U∗), (ii) the optimal No-

Wait-At-Sensor (NWAS) policy which imposes Xi = 0 and

optimizes the rest of the system, and (iii) the optimal No-

Wait-At-Controller (NWAC) policy which imposes Ui = 0
and optimizes the rest. Policies (ii) and (iii) are meant for

scenarios in which either the sensor or the controller is forced

to adopt a suboptimal zero-wait policy due to other system-

level considerations.

A. An Auxiliary Minimization Problem

Given the distributions of the i.i.d. {Yi}, {Vi}, {Qi} and

any constant values c0, c1 ≥ 0, for any β ∈ (−∞,∞) we

define p(β) as the optimal value of the following minimization

problem:

p(β) , inf
(X,M,U)

E

{

∫ X+Y+U+V

0

|S(t)|2 dt
}

+ c0

− β (E {X + Y + U + V }+ c1) (21)

subject to (5) to (8)

where we drop the subscript i for simplicity. We then have

Proposition 1: (i) The function p(β) is concave, continuous,

and strictly decreasing, (ii) there exists a unique β∗ ∈ [0, βmax]
such that p(β∗) = 0, where

βmax ,
E {Y }E {V }+ 1

2E
{

Y 2 + V 2
}

+ c0

E {Y + V }+ c1

+
E{Q2} · E{Y + V }
E{Y + V }+ c1

(22)

(iii) the unique solution β∗ is identical to the β∗
CAL2N defined

in (4), and (iv) The (X,M,U) scheme that attains p(β∗) also

achieves the β∗
CAL2N in (4).

Proof: See Appendix A of the technical report [19].

By Proposition 1, the optimization problem (4) can be

solved using the following steps: For any given β, we first

find the optimal (X,M,U) that minimizes (21) and the corre-

sponding p(β) value. We then find the optimal β∗ = β∗
CAL2N

by a bisection search over [0, βmax]. In the sequel, we discuss

how to find the optimal (X,M,U) solution of p(β) in (21)

for any given β.

B. Optimal Waiting Time at the Controller

Define M i = (Ti, Xi,Mi). The following proposition holds

for any arbitrary message scheme {Mi}.

Proposition 2: Given any arbitrary payload {Mi} and any

β > 0, the optimal waiting time U∗
i|M at the controller that

minimizes (21) is as follows.

U∗
i|M =

max
(

β −
(

Yi + E

{

(Si(Ti +Xi))
2 ∣
∣M

(i)
}

+ E {Vi}
)

, 0
)

(23)

where M
(i)

,
{

M j : j ≤ i
}

. That is, the optimal controller

is a water-filling policy that calculates the difference between

β and
(

Yi + E{(Si(Ti +Xi))
2 ∣
∣M

(i)}+ E {Vi}
)

. See Ap-

pendix B of the technical report [19] for the proof.

Corollary 1: If the dummy message Mi = 0 is used, then

for any given β > 0, the optimal waiting time U∗
i|M=0 at the

controller that minimizes (21) becomes

U∗
i|M=0 = max

(

β −
(

Yi +
(

E{Q2
i }+Xi

)

+ E {Vi}
)

, 0
)

.

(24)

A high-level interpretation of (24) is as follows. If the dummy

message Mi = 0 is used, the controller can only estimate the

system state E{(Si(Ti +Xi))
2 ∣
∣M

(i)} by the timing informa-

tion (Xi, Yi) and the knowledge that Si(t) is reset to Qi at

time t = Ti. Eq. (24) then follows from (1), (23) and the

properties of the Wiener process Si(t). See Appendix O of

the technical report [19] for a detailed proof.

From (24), two levels of randomness are observed: (i) Xi

could be optimally/suboptimally chosen; (ii) Even when Xi is

optimally chosen, different random realizations of Yi may still

lead to different waiting time U∗
i|M=0.

C. Optimal Message Sent by the Sensor

Proposition 3: The optimal message that minimizes (21)

is M∗
i = Si(Ti + Xi), the latest state value at the time of

transmission Ti +Xi.

This result follows directly from the fact that the system

state is a strong Markov process and thus the latest system

state consists of all the information the controller can possibly

need. We omit the proof due to the space limit. Combining

Propositions 2 and 3, we immediately have

Corollary 2: With the optimal message M∗
i in Proposition 3,

the optimal waiting time at the controller becomes

U∗
i , U∗

i|M∗

= max
(

β −
(

Yi + (Si(Ti +Xi))
2
+ E {Vi}

)

, 0
)

. (25)

D. Optimal Waiting Time at the Sensor

The design of the sensor waiting time X has to take into

account the sent message M and the controller waiting time

U . In the sequel we exclusively assume M∗
i in Proposition 3

is used. Two different controller schemes U = U∗
i and U = 0

are considered. When U∗
i is used, we denote the corresponding
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optimal sensor scheme by X∗
i , i.e., the tuple (X∗

i ,M
∗
i , U

∗
i )

represents the jointly optimal sensor/controller policy. When

U = 0 is used, we denote the corresponding optimal sensor

scheme by X∗
i|ZW

, which represents the best-possible X if

the controller employs a zero-wait (ZW) policy. The tuple

(X∗
i|ZW

,M∗
i , Ui = 0) is thus what we previously referred to

as the optimal No-Wait-At-Controller (NWAC) policy. Note

that the optimal No-Wait-At-Sensor (NWAS) policy is the

combination of (Xi = 0,M∗
i , U

∗
i ), which has been fully

described in Proposition 3 and Corollary 2 and is thus not

the focus of this subsection.

We first describe how to find jointly optimal X∗
i , and later

present how the procedure of finding X∗
i can be modified to

find X∗
i|ZW

. For any s ∈ (−∞,∞), define two functions gβ(s)
and hβ(s) by

gβ(s) , as,4 · s4 + as,2 · s2 + as,0 + a0 (26)

hβ(s) , gβ(s)− (βs2 − 1

6
s4) (27)

where

as,4 , −P
(

s2 + Y ≤ β − E {V }
)

2
(28)

as,2 , E {Y + V }
+ E

{

✶{s2+Y≤β−E{V }} · (β − E {V } − Y )
}

(29)

as,0 , −
E

{

✶{s2+Y≤β−E{V }} · (β − E {V } − Y )
2
}

2
(30)

a0 , −β (E{Y + V }+ c1) + E {Y }E{V }

+
1

2
E
{

Y 2 + V 2
}

+ c0 (31)

and ✶{·} is the indicator function. Note that gβ(s) and hβ(s)
are generally not fourth-order polynomials since the coeffi-

cients as,4, as,2, and as,0 also depend on s.

Lemma 3: For any β ≥ 0 and any distributions of Y and V ,

which can be discrete, continuous, or hybrid, both functions

gβ(s) and hβ(s) are even and continuous. Furthermore, hβ(s)
is lower bounded by a shifted 4-th order polynomial of s, i.e.,

hβ(s) ≥ 1
12s

4 + (a0 − 3β2) for all s ∈ (−∞,∞).
For any two functions f1 and f2, we say f1 ≺ f2 if f1(s) ≤

f2(s), ∀s ∈ (−∞,∞). The convex hull (also called the lower

convex envelope) of the function hβ(s) is defined as

Cnvx
(

hβ(s)
)

, sup{f(s) : f is convex, f ≺ hβ}. (32)

Corollary 3: For any β ≥ 0, the lower convex envelope

Cnvx
(

hβ(s)
)

is finite for all s ∈ (−∞,∞).
Corollary 3 follows directly from Lemma 3. The proofs of

Lemma 3 and Corollary 3 are relegated to Appendix D of the

technical report [19].

We now describe the optimal sensor waiting time X∗
i .

Proposition 4: For any given β, the optimal X∗
i that

minimizes (21) is the hitting time:

X∗
i = inf{t ≥ 0 : Si(Ti + t) ∈ Stx,β} (33)

where the set Stx,β , called the transmission set, is the collection

of all state values s satisfying

Cnvx (hβ(s)) = hβ(s) (34)

i.e., the set of s whose corresponding values of the convex

hull function are equal to those of the original function hβ(s).

Proof: This is the most involved proof of this work and

we provide a detailed sketch of the proof in Appendix A. In

Appendix A, we also discuss the general ideas of the proof

of Proposition 2. See Appendix E of the technical report [19]

for complete proof of Proposition 4.

Fig. 3a illustrates a (piecewise) even function hβ(s), which

contains 5 pieces with the corresponding second-order deriva-

tives being +−+−+ if we scan the s values from −∞ to ∞.

Fig. 3a also plots the convex hull function Cnvx (hβ(s)). One

can see that in this example, Cnvx (hβ(s)) = hβ(s) iff |s| ≥ γ

for some threshold γ. As a result, Stx,β = {s : |s| ≥ γ}. The

optimal X∗
i is thus the first time when |Si(Ti + t)| hits γ.

(a)

-4 -2 0 2 4

-15

-10

-5

0

h (s)

Cvnx(h (s))

r

l

-r

-l

(b)

Fig. 3: Examples of hβ(s) and Cnvx(hβ(s)).

Another example of hβ(s) is plotted in Fig. 3b, for which

Cnvx (hβ(s)) = hβ(s) iff s belongs to neither of the two

(symmetric) intervals (−r,−l) and (l, r). In this example, the

sensor transmits if either |S(Ti + t)| ≥ r or |S(Ti + t)| ≤ l.

Proposition 4 describes the X∗
i in the jointly optimal

sensor/controller scheme. In the following we elaborate how

we derive X∗
i|ZW

for the optimal NWAC policy.

Define a new gNWAC,β(s) by

gNWAC,β(s) ,E {Y + V } s2 + E{Y }E{V }+ 1

2
E
{

Y 2 + V 2
}

− β (E{Y + V }+ c1) + c0. (35)

Note that the gNWAC,β(s) is a second-order polynomial of s

since its coefficients do not depend on s.

By substituting gβ(s) = gNWAC,β(s) in (26) and repeating

the steps listed (27), (32), and Proposition 4, we can find

the optimal waiting time X∗
i|ZW

of the best NWAC policy.

Specifically, for any given β ∈ (−∞,∞), define

hNWAC,β(s) , gNWAC,β(s)− (βs2 − 1

6
s4). (36)

Since gNWAC,β(s) has a nice form of being a second-order

polynomial, by simple calculus one can verify that

Cnvx(hNWAC,β(s)) =

{

hNWAC,β(s) if s2 ≥ γNWAC

hNWAC,β(
√
γNWAC) if s2 < γNWAC

(37)

where γNWAC , max(3 · (β − E{Y + V }) , 0) (38)

is a constant threshold.
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Proposition 5: Using the definition of γNWAC in (38), the

optimal waiting time X∗
i|ZW

is the hitting time:

X∗
i|ZW = inf{t ≥ 0 : |Si(Ti + t)|2 ≥ γNWAC}. (39)

Proof: See Appendix H of the technical report [19] .

Intuitively, the difference between X∗
i and X∗

i|ZW
is due

to different schemes used at the controller, and the sensor

thus has to react differently. Propositions 4 and 5 prove that

the effects of different controller schemes can be summarized

either as the function gβ(s) in (26) or gNWAC,β(s) in (35). The

actual optimization mechanisms at the sensor remain the same

and are described by the steps of finding hβ(s) and the convex

hull Cnvx
(

hβ(s)
)

, and comparing hβ(s) and Cnvx
(

hβ(s)
)

to

decide the corresponding transmission set Stx,β .

E. Finding the Optimal β∗

All the previous discussions assume an arbitrarily given β.

We now describe how to find β∗. We first discuss the case for

the jointly optimal policy, and then describe the cases for the

optimal NWAC and NWAS policies.

Proposition 1 shows that the optimal β∗ for the jointly

optimal scheme (X∗
i ,M

∗
i , U

∗
i ) is the unique root of p(β) = 0

defined in (21). We now describe how to find p(β). Recall

that Qi describes the random state value in the beginning of

the i-th round (right after reset). We then have

Proposition 6: For any β ≥ 0, define φ(β, s) as

φ(β, s) , Cnvx (hβ(s)) + (βs2 − 1

6
s4) (40)

where hβ(s) was first defined in (26) to (31). The optimal

p(β) in (21) can be computed by

p(β) = EQ{φ(β,Q)} (41)

i.e., we first assume the s value in φ(β, s) is randomly dis-

tributed with distribution Q and then evaluate p(β) by finding

the expectation in (41). See Appendix E of the technical report

[19] for the proof.

Proposition 7: For any β ≥ 0, define φNWAC(β, s) and

pNWAC(β) as

φNWAC(β, s) , Cnvx(hNWAC,β(s)) + (βs2 − 1

6
s4) (42)

pNWAC(β) , EQ{φNWAC(β,Q)} (43)

where hNWAC,β(s) was first defined in (35) and (36). The opti-

mal β∗ for the optimal NWAC scheme (i.e., (X∗
i|ZW

,M∗
i , Ui =

0)) is the unique root of pNWAC(β) = 0. See Appendix H of

the technical report [19] for the proof.

Proposition 8: For any β ≥ 0, define φNWAS(β, s) and

pNWAS(β) as

φNWAS(β, s) , gβ (s) (44)

pNWAS(β) , EQ{φNWAS(β,Q)} (45)

where gβ was first defined in (26). The optimal β∗ for the

optimal NWAS scheme (i.e., (Xi = 0,M∗
i , U

∗
i )) is the unique

root of pNWAS(β) = 0. See Appendix I of the technical report

[19] for the proof.

Comparing Propositions 6 and 8, we notice that both

propositions are very similar in the sense that they first find

a function φ(β, s) and then evaluate the corresponding p(β)
by taking the expectation over Q. The differences are that the

φ(β, s) in Proposition 6 is obtained by applying a sequence of

convex-hull-based operations to gβ(s) in (26), (27), (32), and

(40), whereas Proposition 8 directly sets φNWAS(β, s) = gβ(s).
The intuition is that in the NWAS policy, the sensor always

chooses Xi = 0 without any optimization/minimization.

Therefore the initial function gβ(s), which is the objective

function based on the optimal controller waiting time U∗
i ,

will be directly used as the φNWAS(β, s). This essentially skips

the intermediate optimization/minimization steps in (26), (27),

(32), and (40) that compute φ(β, s) in (40) from gβ(s), which

captures the effects of using optimal X∗
i . Once we swap (40)

with (44), the steps of (41) and (45) are identical.

We also compare Propositions 6 and 7. Since gβ(s) rep-

resents the effect of the optimal controller waiting time U∗
i ,

when shifting from optimal U∗
i to zero Ui = 0 in NWAC, the

only change is to replace gβ(s) in (26) by the gNWAC,β(s) in

(35). The remaining steps, i.e., {(27), (40), (41)} versus {(36),

(42), (43)}, are identical.

F. Complexity of Finding the Jointly Optimal Scheme

We first summarize the detailed steps of finding the jointly

optimal sensor/controller policy and the corresponding β∗.

Step 1: For any β, compute the functions gβ(s), hβ(s), and

φ(β, s) by (26), (27), and (40), and then compute the value of

p(β) by (41).

Step 2: Repeatedly use Step 1 and the bisection search over

β ∈ [0, βmax] to find the unique β∗ satisfying p(β∗) = 0.

Step 3: Substitute β = β∗ in Secs. III-B and III-D to derive

the respective optimal policies for the controller and the sensor.

We note that the bisection steps, i.e., Steps 2 and 3,

also appear in [11], [12] and thus do not incur additional

complexity. For some special delay distributions Yi and Vi

and the reset distribution Qi, e.g., exponential, it is possible

to derive closed-form expressions of gβ(·), hβ(·), φ(β, ·), and

p(β) by calculus. For arbitrary Yi, Vi, and Qi distributions,

we can compute gβ(·) and hβ(·) by quantizing the continuous

s values into discrete points. Then we can use existing

linear-time algorithms, e.g., [24], to compute the convex hull

Cnvx(hβ(s)). The expectation step in (41) can subsequently

be computed in linear time as well. Overall, the complexity of

our algorithm is identical to [11], [12]; that is, are all linear-

time in terms of the number of quantization points.

IV. FURTHER EXAMINATION OF THE OPTIMAL POLICY

In this section, we prove some properties of the jointly

optimal sensor/controller scheme (X∗
i ,M

∗
i , U

∗
i ).

Lemma 4: Stx,β∗ is symmetric over s = 0, i.e., for any

s ∈ (−∞,∞), s ∈ Stx,β∗ if and only if (−s) ∈ Stx,β∗ .

Proof: This lemma follows directly from Lemma 3 and

the definition of Stx,β in Proposition 4.

Define Sc
tx,β∗ , (−∞,∞)\Stx,β∗ as the complement of

Stx,β∗ . We then have the following self-explanatory lemma.
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Lemma 5: Sc
tx,β∗ must be a collection of disjoint open

intervals (li, ri), namely,

Sc
tx,β∗ =

µ
⋃

i=1

(li, ri) (46)

where µ is the total number of disjoint open intervals, and

{(li, ri) : i} satisfies −∞ < li < ri < ∞ for all i ∈ [1, µ].
Lemmas 4 and 5 imply that if µ = 1, then Stx,β∗ = {s :

|s| ≥ γ} for some γ > 0, which is termed the threshold policy

in [12]. Similarly, if µ = 0, then Stx,β∗ = (−∞,∞) and the

optimal policy is a zero-wait policy. In the sequel, we examine

the value of µ, calculated by (46), for various scenarios.

A. Deterministic Forward Transmission Delay Yi = y0

Proposition 9: If there exists a constant y0 such that P(Yi =
y0) = 1, then we always have µ ≤ 1 and P(U∗

i = 0) = 1.

Proof: See Appendix J of the technical report [19].

In other words, with deterministic forward transmission

delay Yi, the optimal sensor policy is either a zero-wait policy

(µ = 0) or a threshold policy (µ = 1), and the optimal

controller strategy is always a zero-wait policy regardless of

the distribution of backward delay Vi.

B. Exponential Forward Transmission Delay Yi

Proposition 10: If Yi ∼ Exp(λY ) is exponentially dis-

tributed with service rate λY > 0, then we always have µ ≤ 2.

Proof: See Appendix K of the technical report [19].

If we choose Y ∼ Exp(λY ) with λY = 0.2, V ∼ Exp(λV )
with λV = 6, c0 = 20, c1 = 0, and Q ∼ N (0, σ2) with

σ = 0.125, then we can numerically compute β∗ = 7.236
using the 3 steps in Sec. III-E. The resulting Stx,β∗ = {s :
|s| ≤ 0.012 or 0.082 ≤ |s|} indeed has µ = 2. The upper

bound µ ≤ 2 in Proposition 10 is thus tight.

We call the µ = 2 policy an interval policy. The reason is

that with µ = 2 the transmission set Stx,β∗ is of the form

Stx,β∗ = {s : |s| ≤ l or r ≤ |s|} (47)

for a pair of 0 < l < r < ∞. That is, the optimal sensor

scheme should transmit when the system state is either too

large |s| ≥ r or too small |s| ≤ l. At the first glance, this strat-

egy seems counterintuitive due to the following reason: Our

goal is to minimize the average value of |Si(t)|2. Therefore,

large |s| is considered to be “bad” and small |s| is considered

to be “good”. An intuitive strategy inspired by [11] and [12] is

to hold off transmission (i.e., to wait) when the state is good

(when |s| is small) in order to prolong the duration of staying

in a good state. Our results show that under the setting of joint

sensor/controller coordination, the sensor sometimes should

transmit when the state becomes too good (when |s| ≤ l).

One explanation of this surprising phenomenon is as fol-

lows. The goal of CAL2N minimization in (4) is for the

sensor and the controller to jointly design their strategies

and one thus has to decide how to split the waiting time

between the sensor and the controller. A deeper look shows

that each of them has its unique advantages and disadvantages.

In particular, the sensor is able to observe the full system

state Si(t) continuously and use it to make its decision Xi.

The controller cannot observe Si(t) directly, but instead it

can directly observe the realization of the random sensor-to-

controller delay Yi, a valuable piece of information known

exclusively to the controller. Therefore, when the system

state is very good, |s| being small, there is a bigger chance

that the controller will see a good expected system state5

Yi+s2+E{Vi} in (23). As a result, the sensor should transmit

so that the controller, which has the additional observation

of Yi, can make a better informed decision U∗
i to further

extend the duration of staying in a good system state. One

of the contributions of this work is to uncover this unexpected

sensor/controller coordination that is critical to achieving the

optimal performance.

The above discussion also explains the intuition of Propo-

sition 9. With deterministic Yi, the controller has a strictly

inferior set of information since the observed Yi is a constant.

Hence, all the waiting time should be allocated to the sensor,

i.e., P(U∗
i = 0) = 1, and the sensor transmits if and only if

the system state is bad (either a zero-wait or a threshold policy

|s| ≥ γ), which corresponds to µ ≤ 1.

C. A Special Case of µ = 6

The coordination between the sensor and the controller can

sometimes be very subtle and beyond the high-level intuition

discussed previously. Consider the following example.

Example 1: Consider the distribution of Y being











P(Y = 6) = 0.35, P(Y = 45) = 0.06,

P(Y = 51) = 0.08, P(Y = 53) = 0.08,

P(Y = 54) = 0.23, P(Y = 90) = 0.2,

(48)

P(V = 20) = 1, c0 = 45, c1 = 0, and the initial random

variable Q ∼ N (0, σ2) with σ = 6.6. We can numerically

compute β∗ = 80.049 using the 3 steps in Sec. III-E, and the

resulting Stx,β∗ is

Stx,β∗ = {s : |s| ≤ 1.803 or 3.100 ≤ |s| ≤ 3.795

or 3.858 ≤ |s| ≤ 6.767 or 7.305 ≤ |s|} (49)

which has µ = 6.

The reason of having a highly fractured transmission set

Stx,β∗ is due to the delicate probabilistic balance between the

benefits of observing Si(t) at the sensor and observing Yi at

the controller.

V. SOLVING TWO-WAY REMOTE ESTIMATION PROBLEM

In this section, we derive6 the optimal Wiener-process

remote estimation scheme with random delay Y R
i and V R

i

in the forward and feedback directions, a generalization of the

results in [12].

In particular, by Lemma 2 we can find the optimal remote

estimation solution by finding the best NWAC scheme X∗
i|ZW

(under the constraint Ui = 0) in Propositions 5 and 7.

5Since the optimal M∗

i = Si(Ti + Xi) is used, the term E{(Si(Ti +

Xi))
2|M

(i)
} = (Si(Ti +Xi))

2 = s2 is directly related to the value of |s|.
6One can use similar techniques to solve AoI minimization problem with

random two-way delay. Due to space limits, we refer the readers to [18] for
the final results.
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Specifically, plugging the parameter values in Lemma 2 into

(35), we have

gNWAC,β(s) , E
{

Y R
}

s2 +
1

2
E
{

(Y R)2
}

− β
(

E{Y R}+ E{V R}
)

+ E{Y R}E{V R}+ E{(V R)2}
2

.

By Proposition 5, the optimal transmission policy X∗
i|ZW

for

the sensor is to transmit whenever s2 ≥ γ∗
NWAC, where

γ∗
NWAC = max(3

(

β∗
NWAC − E{Y R}

)

, 0) (50)

and the β∗
NWAC used in (50) can be computed by finding the

root of the pNWAC(β) defined in Proposition 7.

In the following, we show the above description of how to

compute the optimal threshold γ∗
NWAC can be further simplified

to the following equivalent form.

Lemma 6: The γ∗
NWAC defined in (50) and Proposition 7 can

also be computed by finding the root of

E
{

max(γ2, (W (Y R))4)
}

+ 3E{(V R)2}
2γ

= E
{

max
(

γ, (W (Y R))2
)}

+ E{V R}. (51)

See Appendix L of the technical report [19] for the proof.

Corollary 4: If we further limit ourselves to the 1-way delay

setting, i.e., V R
i = 0, then the optimal X∗

i|ZW
policy described

in (50) and Lemma 6 reproduces the optimal 1-way-delay

remote-estimation scheme in [12, Theorem 1].

Proof: By specializing (51) in Lemma 6 with the one-way

delay setting V R
i = 0, the optimal remote estimation scheme

in (50) has the corresponding γ∗
NWAC value being a root of

E
{

max(γ2, (W (Y R))4)
}

2γ
= E

{

max(γ, (W (Y R))2)
}

(52)

which is identical to the Eq. (15) in [12]. Hence, the optimal

scheme in (50) and Lemma 6 reproduces [12, Theorem 1].

VI. SIMULATION RESULTS

We compare the performance of our jointly optimal sen-

sor/controller policy and five other important alternatives.

(i) Zero-wait (ZW) (Xi = 0, Ui = 0) [10]: The zero-wait

policy is commonly known as the work-conserving policy [10].

(ii) Optimal No-Wait-At-Sensor (NWAS) policy (Xi =
0,M∗

i , U
∗
i ): See the discussion in Secs. III-B and III-C.

(iii) Optimal No-Wait-At-Controller (NWAC) policy

(X∗
i|ZW

,M∗
i , Ui = 0): See Sec. III-D.

(iv) AoI-minimization scheme (AoI-min) [11]: It is related

to the NWAS (Xi = 0) scheme. The differences are (i) It

does not take into account the reset cost c0 and the per-

round cost c1, see (3); (ii) It falsely assumes the forward

delay Yi = 0 even though the actual Yi could be non-

zero; (iii) It employs the suboptimal message Mi = 0
instead of the optimal M∗

i = Si(Ti + Xi); (iv) It assumes

Qi = W (Ti) − W (Ti − Vi−1) regardless of the actual Qi;

and (v) It hardwires Xi = 0 and optimizes the Ui under

the suboptimal assumptions (i)–(iv). We are interested in

measuring the performance loss (compared to the optimal

NWAS scheme) due to these suboptimal decisions.

(v) Remote-estimation scheme (RE) [12]: As discussed in

Sec. II-D, it is an instance of NWAC schemes. The differences

between the RE and the optimal NWAC schemes are (i) RE

does not take into account the reset cost c0 and the per-round

cost c1 in (3); and (ii) RE falsely assumes the backward delay

Vi = 0 even though the actual Vi could be non-zero; and (iii)

RE assumes Qi = W (Ti)−W (Ti−1 +Xi−1) irrespective of

the actual Qi.

We report the results for exponential forward and backward

delays, while similar behaviors can be observed for log-normal

delays. The initial value Qi is assumed to be Gaussian with

zero mean and variance σ2. The results are presented in Fig. 4.

In Fig. 4a we notice that the larger the σ value, the wider the

range of the initial value Qi, which models the case of less

accurate reset/control. Hence, the CAL2N of all 5 schemes

increases as σ goes up.

A more interesting comparison is to calculate the ratio of

the CAL2N of any scheme over that of our scheme, i.e., the

normalized CAL2N plotted in Fig. 4b. Indeed, the normalized

CAL2N of any scheme is always ≥ 100% since our scheme

is provably optimal.

In Fig. 4b we also observe that when the reset is accurate

(small σ), the performance of the optimal NWAS is identical

to that given by the optimal solution, which implies the

jointly optimal scheme will allocate all its waiting time to the

controller and perform zero-wait at the sensor. On the other

hand, when the reset is loose (large σ), the jointly optimal

scheme will allocate all its waiting time to the sensor and

perform zero-wait at the controller, i.e., the optimal NWAC

becomes globally optimal for large σ. In either case, our

algorithm optimally splits the waiting time between the sensor

and the controller and always attains the best performance.

As shown in Figs. 4c and 4e, we fix σ = 4 and vary

the delay distribution parameters λY and λV , respectively.

In both figures, similar trends can be observed: When either

λY or λV increases (namely, when the expected delay is

shorter), the CAL2N of any scheme goes down. Interestingly,

the performance of the optimal NWAC is as good as the

jointly optimal solution in both cases. It appears that in these

scenarios, the reset quality σ value, see Figs. 4a and 4b, has

stronger impact on whether NWAC is jointly optimal or not

than the delay distributions of Y and V .

In Figs. 4g and 4i, we consider different values of c0 and c1.

As can be seen, the optimal split of the waiting time between

the sensor and the controller is heavily dependent on the value

of reset cost c0, see Figs. 4g and 4h, but much less on the per-

round cost c1, see Figs. 4i and 4j. Overall, from Figs. 4a to 4j

one can see that each of the five alternatives excels in some

scenarios but performs poorly in the others, while our scheme

always achieves the optimal performance.

We are particularly interested in the relative performance

of the existing 1-way-delay-based AoI-min and RE schemes

when there is 2-way delay in the system. Because existing

results do not take into account 2-way delay, as expected,

the AoI-min scheme (resp. RE scheme) is always worse than

the optimal NWAS scheme (resp. NWAC scheme) and is

much worse than the jointly optimal solution. Furthermore,

considering only 1-way delay (i.e., the AoI-min and RE
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schemes) and ignoring the delay in the other direction can

be quite detrimental. In many cases they perform worse than

the naive zero-wait solution. See RE vs. ZW in Fig. 4b and

AoI-min vs. ZW in Fig. 4f. In particular, RE is significantly

worse the ZW in Fig. 4b, while the difference between AoI-

min and ZW in Fig. 4f is much smaller.
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Fig. 4: Long-term average CAL2N for various settings. Those

on the left are on absolute scale and those on the right are

normalized with respect to the CAL2N of the optimal policy.

VII. CONCLUSION

We have proposed a new Wiener-process-based frame-

work and characterized the corresponding jointly optimal

sensor/controller policy, which unifies AoI minimization and

remote estimation, two recent important results that have

spawned substantial interests in the literature. The considera-

tion of the two-way delay model and joint sensor-&-controller

design have successfully addressed the asymmetrically delayed

information access of the practical systems and represents a

significant improvement over the existing results based on

idealized zero-delay acknowledgment feedback.

APPENDIX A

PROOF OF PROPOSITION 4

We present sketches of the proof of Proposition 4, which

consist of the following components: Component 1: The joint

time and space quantization and the corresponding dynamic

programming (DP) problem after quantization; If we call the

new DP problem as quantized-DP, Component 2 describes

how the controller-side policy affects the initialization of the

sensor-side quantized-DP solver; Using Components 1 and 2,

one can numerically solve the quantized-DP problem assuming

a finite-horizon J < ∞ setting. However, the brute-force DP

iterations often obscure the physical meaning/interpretation of

the optimal decision rules and do not provide any closed-form

solution. To uncover further results, Component 3 focuses on

solving quantized-DP analytically through careful convergence

analysis when J → ∞. Finally, Component 4 discusses

how (i) the initialization, (ii) the closed-form optimal decision

rule, and (iii) the closed-form optimal objective values can be

seamlessly converted back to the corresponding parts in the

original continuous time/space problem.

A. Component 1: Joint time and space quantization

Our optimization has a continuous time domain and a

continuous state-space domain and the goal is to solve

f [2](s) = min
X

E

{

∫ X+Y+U∗+V

0

|S(t)|2 dt
∣

∣

∣

∣

S(0) = s

}

+ c0

− β

(

E

{

X + Y + U∗ + V

∣

∣

∣

∣

S(0) = s

}

+ c1

)

. (53)

We now describe how to quantize the above continuous

problem to its discrete version.

We first consider a discrete-time binary symmetric random

walk B(i) such that the initial point B(0) ∈ Z can be arbitrarily

chosen and B(i + 1) = B(i) + (1 − 2b(i)), i ≥ 0, where

{b(i) ∈ {0, 1} : i} are i.i.d. Bernoulli random variables with

p = 0.5.7 We can use the discrete-time B(i) to construct a

continuous-time process W δ(t) =
√
δ · B

(⌊

t
δ

⌋)

. It is well

known that W δ(t) converges to a Wiener process7 W (t) in

distribution when δ → 0 [20]. In the quantized setting, we thus

assume the system state S(t) evolves according to W δ(t).
For the time-domain quantization, we quantize the time-

domain variables with quantization step δ, namely defining

X =
⌊

X
δ

⌋

, Y =
⌊

Y
δ

⌋

, U =
⌊

U
δ

⌋

, V =
⌊

V
δ

⌋

, and β =
⌊

β
δ

⌋

as

the integer approximations of X , Y , U , V , β. For the state-

space quantization, we quantize the state-space values with

quantization step size
√
δ. Given S(0), we define the quantized

7In the literature [20], a random walk and a Wiener process typically starts
with B(0) = 0 and W (0) = 0. Here we relax this constraint to allow B(0)
and W (0) to be of any value, which is notationally convenient since we allow
for the Wiener process that is periodically “reset” to Qi.



12

state i =
⌊

S(0)√
δ

⌋

. Also, define c0 =
⌊

c0
δ2

⌋

, and c1 =
⌊

c1
δ

⌋

. See

the technical report [19] for details.

Using the above integer approximations, we consider the

finite-horizon (sensor-side) discrete optimization problem

F [2](i, J)

= min
X≤J

E







X+Y+U
∗

+V
∑

k=1

(

i2 + (B(k)− B(0))2
)

∣

∣

∣

∣

B(0) = i







− β

(

E

{

X + Y + U
∗
+ V

∣

∣

∣

∣

B(0) = i

}

+ c1

)

+ c0 (54)

where X ≤ J is the finite horizon constraint. The above can

then be mapped to the original continuous problem by

Lemma 7:

f [2](s) = lim
δ→0

lim
J→∞

δ2F [2]

(⌊

s√
δ

⌋

, J

)

. (55)

While the proof of this lemma is quite technical (see

Appendix M of the technical report [19] for details), the

intuition is straightforward. That is, letting J → ∞ enables

us to find the optimal solution of quantized-DP in a non-

constrained, infinite horizon setting. Then taking δ → 0
converts the quantized-DP problem back to the original con-

tinuous time/space optimization problem in (53), which is of

infinite horizon. The proof effectively contains two halves,

with a greater focus on establishing the former, i.e., proving

F [2](i,∞) = limJ→∞ F [2](i, J).
We solve F [2](i, J) by dynamic programming over finite

horizon [0, J ]. For convenience, we use the reverse time index

j during the iterative Bellman equation, where j = 0 (resp.

j = J) represents the last slot (resp. the first slot). Define

F [2](i, j) = min
X

E

{X+Y+U
∗

+V
∑

k=J−j+1

(

i2 + (B(k)− B(J − j))2
)

∣

∣

∣

∣

B(J − j) = i,

X ≥ (J − j)

}

− β
(

E

{

X − (J − j) + U
∗∣
∣

∣
B(J − j) = i,X ≥ (J − j)

})

− β
(

E
{

Y + V
}

+ c1
)

+ c0 (56)

=

{

F
[2]
Send

(i, j) if j = 0

min
(

F
[2]
Send

(i, j), F
[2]
Wait

(i, j)
)

if 1 ≤ j ≤ J.
(57)

It is self-explanatory to verify that the above definition of

(56) is consistent with (54) once we set j = J . Eq. (57) is the

boundary condition of the dynamic programming.

B. Component 2: Initialization of the sensor-side quantized-

DP solver

We now describe how the initialization of the above sensor-

side problem (i.e., solving for optimal X
∗
) is related to the

optimal controller-side quantized-DP (U
∗

in Proposition 2).

Details of the controller-side DP are provided in [19] and we

provide a summary of some properties of U
∗

here. Since we

use the optimal M∗
i = Si(Ti + Xi) in Proposition 3, the

optimal U∗ is a function8 of |Si(Ti + Xi)| and Yi. Hence,

if we define the controller-side quantized state value i1 by

i1 =

⌊ |S(Ti +Xi)|√
δ

⌋

(58)

and define y = ⌊Yi

δ
⌋, then we can also convert the controller-

side DP problem to its quantized version. Specifically,

F [1](i1, y, J) = min
U(i1,y)≤J

E







U+V
∑

k=1

(

(i1)
2 + y + (B(x+ y + k)− B(x+ y))

2
)







− β · E
{

U
}

(59)

where U is the quantized controller waiting time, and J is the

finite-horizon constraint on U ≤ J as well. See Appendix B

of the technical report [19] for detailed discussion.

We now describe how F [1] is used when solving the sensor-

side DP problem in (54) to (57). To that end, we first expand

the objective function of F
[2]
Send

in (57) as follows.

F
[2]
Send

(i, j)

= E

{

(J−j)+Y+U
∗

+V
∑

k=J−j+1

(

i2 + (B(k)− B(J − j))2
)

∣

∣

∣

∣

B(J − j) = i,X = J − j

}

− β

(

E

{

Y + U
∗
+ V

∣

∣

∣

∣

B(J − j) = i,X = J − j
}

+ c1

)

+ c0 (60)

which is obtained from (56) by hardwiring X = J − j. We

can also write F
[2]
Wait

(i, j) in (57) iteratively (since we use the

reverse time index, the DP backward iteration will be carried

out from j − 1 to j).

F
[2]
Wait

(i, j) = (i)2 − β +1

+ 0.5
(

F [2](i+ 1, j − 1) + F [2](i− 1, j − 1)
)

(61)

where (i)2 − β +1 is the immediate cost and the rest is the

expected future cost computed from the previous iteration.

Since we consider a symmetric binary random walk, the

probability that the discrete state i in next time slot increases

(or decreases) by 1 is 0.5.

To establish the connection between F
[2]
Send

and F [1], we

notice that F
[2]
Send

(i, j) = F
[2]
Send,part1(i, j) + F

[2]
Send,part2(i, j)

where

F
[2]
Send,part1(i, j) , E

{ (J−j)+Y
∑

k=J−j+1

(

i2 + (B(k)− B(J − j))2
)

}

− β

(

E

{

Y + V + c1

)

+ c0 (62)

8Here we use the symmetry between Si(·) > 0 versus Si(·) < 0.
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and F
[2]
Send,part2(i, j)

, E

{ (J−j)+Y+U
∗

+V
∑

k=J−j+Y+1

(

i2 + (B(k)− B(J − j))2
)

∣

∣

∣

∣

B(J − j) = i,X = J − j

}

− β

(

E

{

U
∗
∣

∣

∣

∣

B(J − j) = i,X = J − j
}

)

. (63)

That is, we split the summation in (60) into two pieces. The

conditioning event inside F
[2]
Send,part1(i, j) is dropped due to

the strong Markov property of B(k) and independence of the

delays Y and V from the rest of the system.

By further using the strong Markov property of B(k), the

term F
[2]
Send,part1(i, j) in (62) can be simplified to

F
[2]
Send,part1(i, j) =E

{

Y
}

(i)2 +
1

2
E
{

(Y )2
}

+
1

2
E{Y }

− β
(

E{Y + V }+ c1
)

+ c0. (64)

By comparing (59) and (63), we also have

F
[2]
Send,part2(i, j) = EY

{

F [1](i, Y , J)
}

. (65)

Namely, F
[2]
Send,part2(i, j), the (partial) cost of Send at the sensor

side, is the expectation of the controller-side cost F [1](i, Y , J)
averaged over different random realizations of the delay Y .

Putting everything together, the F
[2]
Send

(i, j) in (57) is related

to the controller-side DP problem F [1](i, Y , J) by

F
[2]
Send

(i, j) = E
{

Y
}

(i)2 +
1

2
E
{

(Y )2
}

+
1

2
E{Y }

− β
(

E{Y + V }+ c1
)

+ c0 + EY

{

F [1](i, Y , J)
}

(66)

which, together with (61), completes the sensor-side quantized

DP problem in (57). In the sequel we analyze the properties

of the corresponding optimal solution.

C. Component 3: Analytically solving the quantized-DP

We first note that F
[2]
Send

(i, j) in (66) does not depend on the

value of j. The intuition behind is that the cost of Send from

time J − j + 1 onward, see (60), only depends on the state

value i but not on the time stamp J − j. As a result, by the

boundary condition in (57), we have

F
[2]
Send

(i, j) = F
[2]
Send

(i, 0) = F [2](i, 0). (67)

By (57), (61) and (67), we have the following more compact

form of iteration that directly operates on F [2](i, j): ∀j ≥ 1,

F [2](i, j) = min
(

F [2](i, 0), i2 − β +1

+ 0.5(F [2](i+ 1, j − 1) + F [2](i− 1, j − 1))
)

. (68)

To analyze (68), we notice that the polynomial

A(i) , − i4

6
+ (β −5

6
)i2 (69)

satisfies the difference equation

A(i) = i2 − β +1 + 0.5(A(i+ 1) +A(i− 1)). (70)

If we define another function

H [2](i, j) , F [2](i, j)−A(i) (71)

then H [2](i, j) must satisfy the following iterative equation

H [2](i, j) = min
(

H [2](i, 0),

0.5
(

H [2](i+ 1, j − 1) +H [2](i− 1, j − 1)
))

(72)

due to (68) and (70). Namely, the new function H [2](i, j)
absorbs the i2 − β +1 term in (68). Hence the new H [2](i, j)
follows a homogeneous iterative equation in (72) while

the original F [2](i, j) follows a non-homogeneous iterative

equation in (68). Our approach is to first compute/evaluate

H [2](i, j) directly using the homogeneous iteration (72) and

then compute9 retrospectively F [2](i, j) = H [2](i, j) +A(i).
In the following, we analyze limJ→∞ H [2](i, J), i.e., the

limiting results of the iterative computation in (72). The proofs

for the following Lemmas 8 to 11 are provided in the technical

report [19]. We first notice that

Lemma 8: By iteratively applying (72), we have

H [2](i, j + 1) ≤ H [2](i, j) (73)

for any i and j ≥ 0.

Definition 1: A discrete function f(i) : Z 7→ R is said to

be d.convex if

f(i) ≤ 0.5 (f(i+ 1) + f(i− 1)) , ∀i ∈ Z. (74)

Lemma 9: There exists a d.convex function HLB(i) such

that

−∞ < HLB(i) ≤ H [2](i, j) for all i and j. (75)

By Lemmas 8 and 9, and the Monotone Conver-

gence Theorem, limJ→∞ H [2](i, J) exists. We now derive

limJ→∞ H [2](i, J). We notice that H [2](i, 0), the value of

H [2](i, j) with j set to zero, is a function of i. We then define

the discrete convex hull10 of the function H [2](i, 0) as

D.Cnvx(H [2](i, 0))

, sup{f(i) : f ≺ H [2](i, 0), f is d.convex}. (76)

By Lemma 9, D.Cnvx(H [2](i, 0)), which is a function of

i, always exists since the supremum is taken over a non-

empty set. Furthermore, D.Cnvx(H [2](i, 0)) is also d.convex

due to similar reasons that the (continuous) convex hull is

itself convex. We now present the following lemmas:

Lemma 10: For any arbitrarily given integer i, we have

lim
J→∞

H [2](i, J) ≤ D.Cnvx(H [2](i, 0)). (77)

Lemma 11: D.Cnvx(H [2](i, 0)) ≤ limJ→∞ H [2](i, J).
Lemmas 10 and 11 jointly imply

lim
J→∞

H [2](i, J) = D.Cnvx(H [2](i, 0)). (78)

Thus far, we have proven that the dynamic program-

ming iterations in (57), (61), and (66) can be solved by

(i) computing H [2](i, 0) , F [2](i, 0) − A(i) in (71), (ii)

finding the D.Cnvx(H [2](i, 0)), and (iii) using the equality

limJ→∞ F [2](i, J) = D.Cnvx(H [2](i, 0)) + A(i). The final

9This spirit is closely related to the free-boundary method, which, however,
directly solves the optimization problem that has a continuous time domain
and a continuous state-space domain. See, e.g., Eqs. (75) to (78) in [25].

10This convex hull definition is quite standard. Also see [26].



14

step of the proof is to convert the operations/steps of discrete-

time, discrete-space solutions back to the original continuous-

time, continuous-space solution.

D. Component 4: Converting back to the continuous

time/space problem

In (66) and (67), we established the expression of F [2](i, 0),
the boundary value of the sensor-side quantized finite-horizon

DP problem where the finite horizon is denoted by J . Obvi-

ously, different J will lead to different F [2](i, 0), see (67) and

the appearance of J in (66). We then have

Lemma 12: Denote the continuous-time continuous-space

state value as S(t) = s. We have

lim
δ→0

lim
J→∞

δ2F [2]

(⌊

s√
δ

⌋

, 0

)

= gβ(s) (79)

which is defined in (26). See the technical note [19] for the

proof.

Lemma 12 shows that gβ(s) corresponds to the starting

point (the last slot) of the dynamic programming solver.

In the following we will show that in the continuous-time

continuous-space domain, the iterative computation in (57),

(61), and (66) corresponds to the computation of hβ(s) and

the convex hull operations defined in Proposition 4.

By (69), one can easily see that limδ→0 δ
2A
(⌊

s√
δ

⌋)

=

− s4

6 + βs2. Combining this observation with (71) and (79),

we have

lim
δ→0

δ2H [2]

(⌊

s√
δ

⌋

, 0

)

= hβ(s) = gβ(s)− (βs2 − 1

6
s4).

Finally, by translating the discrete convex hull relationship in

(78) to its continuous convex hull counterpart, we have

Lemma 13:

lim
δ→0

lim
J→∞

δ2H [2](i, J) = Cnvx

(

gβ(s)−
(

βs2 − 1

6
s4
))

= Cnvx(hβ(s)). (80)

We now describe the optimal sensor policy. Define

H [2](i,∞) , limJ→∞ H [2](i, J). Note that by (72) and

comparing it to the original versions (57) and (68), the sensor

should send if H [2](i,∞) = H [2](i, 0) and should wait if

H [2](i,∞) = 0.5
(

H [2](i+ 1,∞) +H [2](i− 1,∞)
)

. (81)

By translating the above discrete-time decision back to its

continuous-time domain, the optimal sensor policy is to trans-

mit if and only if S(t) = s satisfying Cnvx(hβ(s)) = hβ(s).
The sketch of the proof of Proposition 4 is thus complete.

REFERENCES

[1] L. M. Huyett, E. Dassau, H. C. Zisser, and F. J. Doyle III, “Glucose
sensor dynamics and the artificial pancreas: The impact of lag on
sensor measurement and controller performance,” IEEE Control Systems

Magazine, vol. 38, no. 1, pp. 30–46, 2018.
[2] A. Javed, H. Larijani, A. Ahmadinia, R. Emmanuel, M. Mannion, and

D. Gibson, “Design and implementation of a cloud enabled random
neural network-based decentralized smart controller with intelligent
sensor nodes for HVAC,” IEEE Internet of Things Journal, vol. 4, no. 2,
pp. 393–403, 2016.

[3] T. Li, K. Keahey, K. Wang, D. Zhao, and I. Raicu, “A dynamically
scalable cloud data infrastructure for sensor networks,” in Proceedings

of the 6th Workshop on Scientific Cloud Computing. ACM, 2015, pp.
25–28.

[4] X. Song and J. W.-S. Liu, “Performance of multiversion concurrency
control algorithms in maintaining temporal consistency,” in Proceed-

ings., Fourteenth Annual International Computer Software and Applica-

tions Conference. IEEE, 1990, pp. 132–139.
[5] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should

one update?” in 2012 Proceedings IEEE INFOCOM. IEEE, 2012, pp.
2731–2735.

[6] C. Kam, S. Kompella, and A. Ephremides, “Age of information under
random updates,” in 2013 IEEE International Symposium on Information

Theory. IEEE, 2013, pp. 66–70.
[7] C. Kam, S. Kompella, G. D. Nguyen, and A. Ephremides, “Effect of

message transmission path diversity on status age,” IEEE Transactions

on Information Theory, vol. 62, no. 3, pp. 1360–1374, 2015.
[8] M. Costa, M. Codreanu, and A. Ephremides, “Age of information

with packet management,” in 2014 IEEE International Symposium on

Information Theory. IEEE, 2014, pp. 1583–1587.
[9] R. D. Yates, “Lazy is timely: Status updates by an energy harvesting

source,” in 2015 IEEE International Symposium on Information Theory

(ISIT). IEEE, 2015, pp. 3008–3012.
[10] L. Kleinrock, Queueing systems, volume 2: Computer applications.

Wiley-Interscience, 1976.
[11] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff,

“Update or wait: How to keep your data fresh,” IEEE Transactions on

Information Theory, vol. 63, no. 11, pp. 7492–7508, 2017.
[12] Y. Sun, Y. Polyanskiy, and E. Uysal, “Sampling of the Wiener process for

remote estimation over a channel with random delay,” IEEE Transactions

on Information Theory, vol. 66, no. 2, pp. 1118–1135, 2019.
[13] K. J. Astrom and B. M. Bernhardsson, “Comparison of Riemann and

Lebesgue sampling for first order stochastic systems,” in Proceedings

of the 41st IEEE Conference on Decision and Control, 2002., vol. 2.
IEEE, 2002, pp. 2011–2016.

[14] B. Hajek, K. Mitzel, and S. Yang, “Paging and registration in cellular
networks: Jointly optimal policies and an iterative algorithm,” in IEEE

INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE

Computer and Communications Societies (IEEE Cat. No. 03CH37428),
vol. 1. IEEE, 2003, pp. 524–532.

[15] X. Gao, E. Akyol, and T. Başar, “Optimal estimation with limited mea-
surements and noisy communication,” in 2015 54th IEEE Conference

on Decision and Control (CDC). IEEE, 2015, pp. 1775–1780.
[16] K. Nar and T. Başar, “Sampling multidimensional Wiener processes,”

in 53rd IEEE Conference on Decision and Control. IEEE, 2014, pp.
3426–3431.

[17] W. Masri, I. Al Ridhawi, N. Mostafa, and P. Pourghomi, “Minimizing
delay in IoT systems through collaborative fog-to-fog (F2F) commu-
nication,” in 2017 Ninth International Conference on Ubiquitous and

Future Networks (ICUFN). IEEE, 2017, pp. 1005–1010.
[18] C.-H. Tsai and C.-C. Wang, “Age-of-Information revisited: Two-way

delay and distribution-oblivious online algorithm,” in 2020 IEEE Inter-

national Symposium on Information Theory (ISIT). IEEE, June 2020,
accepted and to appear.

[19] ——, “Unifying AoI minimization and remote estimation —
Optimal sensor/controller coordination with random two-way delay,”
Purdue University, Tech. Rep., August 2020. [Online]. Available:
https://docs.lib.purdue.edu/ecetr/758/

[20] P. Mörters and Y. Peres, Brownian motion. Cambridge University Press,
2010.

[21] R. P. Anderson and D. Milutinović, “A stochastic approach to Dubins
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