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Coded Caching with Full Heterogeneity: Exact
Capacity of The Two-User/Two-File Case

Chih-Hua Chang, Borja Peleato, and Chih-Chun Wang

Abstract—The most commonly used setting in the coded
caching literature consists of the following four elements: (i)
homogeneous file sizes, (ii) homogeneous cache sizes, (iii) user-
independent homogeneous file popularity (i.e., all users share the
same file preference), and (iv) worst-case rate analysis. While
recent results have relaxed some of these assumptions, deeper un-
derstanding of the full heterogeneity setting is still much needed
since traditional caching schemes place little assumptions on
file/cache sizes and almost always allow each user to have his/her
own file preference through individualized file request prediction.
Taking a microscopic approach, this paper characterizes the exact
capacity of the smallest 2-user/2-file (N = K = 2) problem but
under the most general setting that simultaneously allows for (i)
heterogeneous files sizes, (ii) heterogeneous cache sizes, (iii) user-
dependent file popularity, and (iv) average-rate analysis. Solving
completely the case of N = K = 2 could shed further insights on
the performance and complexity of optimal coded caching with
full heterogeneity for arbitrary N and K.

Index Terms—Coded caching, average rate, non-uniform de-
mands, heterogeneous file size, heterogeneous cache size.

I. INTRODUCTION

NOWADAYS high-definition video streaming motivates
the demand for high-throughput internet traffic with

small delay. One way to contain the peak load within the
underlying communication channel capacity is to use caching
to re-distribute some of the peak traffic to off-peak hours
by prefetching (some of) the content in advance. The design
tasks of a caching scheme consist of two parts: how to
place the content during off-peak hours and how to satisfy
the requests by delivering the additional packets during peak
hours. Caching is especially attractive under the model of
broadcast channels for which a single packet transmission
could simultaneously benefit/reach multiple destinations.

Content caching has been studied in various settings [2],
such as exploiting the opportunities of user population, file
correlation, and time correlation. These traditional techniques
usually divide each file into multiple (uncoded) pieces,
prefetch some of them, and transmit the rest when needed.
Recently, coded caching was proposed [3], which reduces
delivery time by substituting the uncoded pieces with a coded
version and taking advantage of multicasting capabilities. The
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results show that coded caching can shorten the worst-case
delivery time by a factor of ( 1

1+KM/FN ) when compared
to the traditional uncoded caching schemes, where N is
the number of files, K is the number of users, M is the
individual cache size and F is the individual file size. While
the capacity of the general coded caching problem remains
an open problem, the optimal coded caching scheme (exact
capacity) has been characterized for some special cases [3]–
[7] and order-optimal capacity characterization has been found
for several more general scenarios [3], [8]–[15].

Most existing results are based on the settings of (i)
homogeneous file sizes, (ii) homogeneous cache sizes, (iii)
user-independent homogeneous file popularity, and (iv) worst-
case analysis. These settings are not 100% compatible with
the traditional uncoded caching solutions. Specifically, the
basic design principle of traditional uncoded schemes is to
first predict the likelihood of the next file request for each
individual user separately (i.e., user-dependent heterogeneous
file popularity), and then let each user store the most likely
file(s) until his/her cache is full (which is naturally applicable
to heterogeneous file and cache sizes). The rationale behind
this simple design is that such a probability-based greedy
solution would reduce the average rate during delivery, even
though there is no information-theoretic optimality guarantee.

Because of the aforementioned differences between their
settings, a coded scheme designed for the homogeneous,
worst-case setting could have significantly worse average-
rate performance in practice when compared to a traditional
scheme, especially for the scenarios in which the individual-
ized file request prediction is very effective and the file and
cache sizes are highly heterogeneous. In principle, since coded
caching is a strict generalization of any uncoded solution, an
optimal coded caching solution should outperform its non-
coded counterpart under any setting. This potential loss of
performance1 is mainly due to the mismatch between practical
scenarios and the homogeneous and worst case settings for
which existing coded caching schemes are optimized.

Motivated by this observation, this work studies the exact
capacity region and the corresponding optimal coded caching
schemes under (i) heterogeneous file sizes, (ii) heterogeneous
cache sizes, (iii) user-dependent heterogeneous file popularity,
and (iv) average-rate analysis. Such results could allow the
system designers to accurately assess the performance gain of
coded caching (the ultimate capacity minus the achievable rate
of traditional uncoded schemes) in a practical heterogeneous

1In practice, there are other issues that need to be addressed, e.g., syn-
chronization [16]. Our statement disregards the implementation overhead and
focuses exclusively on the theoretic performance under heterogeneous settings.
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setting. While the problem remains open for general N and
K values, we characterize the exact capacity for N = K = 2.
The results can shed further insights for general N and K.

A. Comparison to Existing Results

Several existing works relaxed parts of the above condi-
tions (i) to (iv). Table I provides a non-comprehensive list
of several related results. For example, the authors in [3]
assume homogeneous file and cache size and, under those
conditions, characterize the exact worst-case capacity when
N = K = 2 and propose a scheme that achieves order-optimal
worst-case rate for arbitrary N and K. [12] provides a new
information-theoretic lower bound and a corresponding order-
optimal scheme of average rate with homogeneous file size,
homogeneous cache size, and user-independent popularity.

As can be seen in Table I, finding the exact capacity of
coded caching remains a difficult task. Most existing exact
capacity results [3]–[5], [17] are based on small K (i.e.,
K = 2 or K = 3) and focus on the worst-case rate rather
than a general probabilistic average-rate model. One of the
most general heterogeneous setting results is [18], which uses
linear programming results to search for better achievable rates
without deriving any converse bounds, and is not focused on
the general user-dependent file popularity setting. By focusing
on the average-rate setting with heterogeneous file and cache
sizes as well as user-dependent file popularity, our N = K = 2
results represent the first step toward fully characterizing the
capacity of coded caching with full heterogeneity.

II. PROBLEM FORMULATION

We consider the simplest non-trivial coded caching system
with N = 2 files and K = 2 users. A central server has
access to two files W1 and W2 of file sizes F1 and F2 bits,
respectively. We sometimes write F1 and F2 as some non-
integer values, e.g., F1 = 1.5 and F2 = 1

3 . One way to
interpret this real-valued file-size expression is to assume F1

and F2 are sufficiently large so that we can express F1 and F2

by their normalized values instead. The cache content of user k
is denoted by Zk and is of size Mk bits for k ∈ {1, 2}. Without
loss of generality, we assume real-valued Mk ∈ [0, F1 + F2]
for all k.

The operation of the system contains two phases, the
placement phase and the delivery phase. In the placement
phase, user k populates its cache by

Zk = φk(W1,W2), ∀k ∈ {1, 2}, (1)

where φk is the caching function of user k. In the delivery
phase, the two users send a demand request ~d , (d1, d2) ∈
{1, 2}2 to the server, i.e., user k demands file Wdk

. The
probability mass function of the demand request ~d is de-
noted by p~d, which satisfies

∑
~d∈{1,2}2 p~d = 1. We assume

{p~d : ~d ∈ {1, 2}2} is known to the server.
One popular choice of p~d is to assume that the demands of

user-1 and user-2 are statistically independent, i.e., p(d1,d2) =

p
[1]
d1
p
[2]
d2

where p
[k]
d is the marginal probability that user-k

requests file Wd. In this work, we allow for arbitrary p~d that
can be statistically independent or not.

After receiving ~d, the server broadcasts an encoded signal

X~d = ψ(~d,W1,W2) (2)

of R~d bits with encoding function ψ through an error-free
broadcast channel. Each user k then uses its cache content Zk

and the received signal X~d to decode his/her desired file

Ŵdk
= µk(~d,X~d, Zk), ∀k ∈ {1, 2}, (3)

where µk is the decoding function of user k. Herein we assume
that each user k knows the network-wide request pattern ~d,
which can be easily achieved by piggybacking the 2-bit vector
~d to the encoded symbol X~d.

Definition 1. A coded caching scheme for N = K = 2 is
specified completely by its five functions {φ1, φ2, ψ, µ1, µ2}.
The scheme is zero-error feasible if Ŵdk

= Wdk
for all ~d ∈

{1, 2}2, all k ∈ {1, 2}, and all Wk ∈ {0, 1}Fk .

Definition 2. The worst-case rate of a zero-error coded
caching scheme is

R∗ = max
~d∈{1,2}2

R~d. (4)

The worst-case capacity is the infimum of the worst-case rates
of all zero-error schemes.

Definition 3. The average rate of a zero-error coded caching
scheme is

R̄ =
∑

~d∈{1,2}2

p~dR~d. (5)

The average-rate capacity is the infimum of the average rates
of all zero-error schemes.

For simplicity, we slightly abuse the above notation and
directly use R∗ and R̄ to denote the worst-case and the
average-rate capacities, respectively, even though their original
definitions in (4) and (5) are for the achievable rates instead.

III. MAIN RESULTS

To solve the worst-case and the average-rate capacities R∗

and R̄, we first define the following strictly more general
concept.

Definition 4. The per-request capacity region (PRCR) is the
closure of the rate vectors ~R = (R(1,1), R(1,2), R(2,1), R(2,2))
of all zero-error coded caching schemes.

The PRCR is the most fundamental performance limit of
coded caching since it captures the optimal trade-off needed
to simultaneously satisfy different request patterns.

In Section III-A we describe 7 basic coded caching
schemes for the 2-file/2-user setting (N = K = 2). Sec-
tion III-B then provides the basic lower bounds of the 4-
dimensional coded caching rate (R(1,1), R(1,2), R(2,1), R(2,2)).
Finally, Section III-C shows that the 7 basic schemes can
achieve the 4-dimensional rate lower bounds. The end result
is thus a complete characterization of the PRCR for arbi-
trary (F1, F2,M1,M2) values. The exact characterization of
PRCR will naturally lead to new closed form expressions for
the capacities R∗ and R̄ under any arbitrary file popularity
distribution p~d. Further discussion on how to use the new
PRCR characterization to derive the average-rate capacity R̄
is provided at the end of Section III-C.
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TABLE I
COMPARISONS OF EXISTING RESULTS

Worst-case rate Average rate
Homo. file sizes and Arbitrary K and N , order-optimal rate [3], [8], [10] Arbitrary K and N , order-optimal rate [10]–[13], [19], [20]

homo. cache sizes K = 2 and arbitrary N , exact capacity [3], [4] Arbitrary K and N , achievable rate only [21]–[23]
K = 3 and N = 2, exact capacity [4] Arbitrary K and N = 2, uncoded placement, exact capacity [24]

Homo. file sizes and K = 2 and arbitrary N , exact capacity [5] Arbitrary K and N , achievable rate only [18]
heter. cache sizes Arbitrary K and N , achievable rate only [25] K = 2 and N = 3, exact capacity [6]

Heter. file sizes and Arbitrary K and N , order-optimal rate [26]–[28] Arbitrary K and N , achievable rate only [18]
homo. cache sizes

Heter. file sizes and N = K = 2, exact capacity [17] Arbitrary K and N , achievable rate only [18]
heter. cache sizes N = K = 2, exact capacity [This work]

A. Basic Zero-Error Coded Caching Schemes

We first describe 7 coded caching schemes for the 2-file/2-
user setting (N = K = 2), which later serve as the basis for all
our achievability proofs when characterizing the 4-dimensional
PRCR. Consider user 1 and 2 of cache memory size m1 and
m2 with two files w1 and w2 of sizes f1 and f2, respectively.
The 7 basic schemes of parameters (f1, f2,m1,m2) are listed
in Table II and can be described as follows.

1) Mix.Emp: Consider two files of equal size f1 = f2 =
f , and two users of memory sizes m1 = f and m2 = 0.
In the placement phase, user 1 caches w1 ⊕ w2 and user 2
caches none. In the delivery phase, the transmitted signals for
the demands are X(1,1) = w1, X(1,2) = w2, X(2,1) = w1,
and X(2,2) = w2. One can easily verify that for any ~d, the
transmitted symbol X~d satisfies the demands of both users.
Since X~d is of size f for all ~d, the corresponding achievable
rate vector is (R(1,1), R(1,2), R(2,1), R(2,2)) = (f, f, f, f). The
first row of Table II summarizes the achievable rate vector and
the condition f = f1 = f2 = m1, m2 = 0 for this scheme to
be zero-error feasible. Since user 1 stores an XORed packet
and user 2 stores none, we call this scheme Mix.Emp.

2) Emp.Mix: The scheme is user-symmetric to Mix.Emp by
swapping the roles of users 1 and 2. Since this time user 1
stores none and user 2 stores an XORed packet, we call this
scheme Emp.Mix.

3) Ha.Fi: Consider two files of equal size f1 = f2 = f ,
and two users of equal memory size m1 = m2 = f .
We divide the file w1 = (u1, u2) into two subfiles of size
(f/2, f/2) and divide the file w2 = (v1, v2) into two subfiles
of size (f/2, f/2). In the placement phase, user 1 caches
(u1, v1) and user 2 caches (u2, v2). In the delivery phase, the
transmitted signals for the demands are X(1,1) = u1 ⊕ u2,
X(1,2) = u2 ⊕ v1, X(2,1) = u1 ⊕ v2, and X(2,2) = v1 ⊕ v2.
Since X~d is of size f/2 for all ~d, the achievable rates are
(R(1,1), R(1,2), R(2,1), R(2,2)) = (f/2, f/2, f/2, f/2). Since
each user stores half of file k for all k, we call this scheme
Ha.Fi.

4) 1.1.Cov: In this scheme both users cache as much as
possible from file 1. Consider two users of cache memory size
max(m1,m2) ≤ f1 and arbitrary f2. If m1 ≥ m2, we divide
w1 = (u1, u2, u3) into three subfiles of file size (m2,m1 −
m2, f1−m1). In the placement phase, user 1 caches (u1, u2)
and user 2 caches u1. In the delivery phase, the transmitted
signals for the different demands ~d are X(1,1) = (u2, u3),
X(1,2) = (u3, w2), X(2,1) = (u2, u3, w2), and X(2,2) = w2.

One can easily verify that both users can decode their desired
files under any demand ~d. By quantifying the size of X~d for
all ~d, the achievable rates are (R(1,1), R(1,2), R(2,1), R(2,2)) =
(f1 −m2, f1 + f2 −m1, f1 + f2 −m2, f2).

If m1 < m2, we can implement the same scheme by
swapping the roles of users 1 and 2. By taking into account
both scenarios (m1 ≥ m2 and m1 < m2), we can write the
achievable rate vector in the following more general form:

(R(1,1), R(1,2), R(2,1), R(2,2)) = (f1 −min(m1,m2),

f1 + f2 −m1, f1 + f2 −m2, f2). (6)

Since the strategy of both users is “to cover as much file 1 as
possible”, we call this scheme 1.1.Cov.

5) 1.2.Cov: In this scheme user 1 caches file 1 and user 2
caches file 2. Consider two users of memory size m1 ≤ f1
and m2 ≤ f2. If m1 ≥ m2, we divide w1 = (u1, u2, u3)
into three subfiles of size (m2,m1−m2, f1−m1) and divide
w2 = (v1, v2) into two subfiles of file size (m2, f2 −m2). In
the placement phase, user 1 caches (u1, u2) and user 2 caches
v1. In the delivery phase, the transmitted signals for the dif-
ferent demands are X(1,1) = w1, X(1,2) = (u3, v2), X(2,1) =
(u1 ⊕ v1, u2, u3, v2), and X(2,2) = w2, which results in the
achievable rate vector being (R(1,1), R(1,2), R(2,1), R(2,2)) =
(f1, f1 + f2 −m1 −m2, f1 + f2 −m2, f2).

If m1 < m2, a symmetric scheme can be implemented by
dividing w1 into two subfiles of size (m1, f1 −m1) and w2

into three subfiles of size (m1,m2−m1, f2−m2). By taking
into account both scenarios (m1 ≥ m2 and m1 < m2), we can
write the achievable rate vector in the following more general
form:

(R(1,1), R(1,2), R(2,1), R(2,2)) = (f1,

f1 + f2 −m1 −m2, f1 + f2 −min(m1,m2), f2). (7)

Since the strategy of user 1 is “to cover as much file 1 as
possible” and the strategy of user 2 is “to cover as much file
2 as possible”, we call this scheme 1.2.Cov.

6) 2.1.Cov: The scheme is user-symmetric to 1.2.Cov by
swapping the roles of users 1 and 2. Since the strategy of user
1 is “to cover as much file 2 as possible” and the strategy of
user 2 is “to cover as much file 1 as possible”, we call this
scheme 2.1.Cov.

7) 2.2.Cov: The scheme is file-symmetric to 1.1.Cov by
swapping the roles of files 1 and 2. Since the strategy of user
1 is “to cover as much file 2 as possible” and so is user 2’s
strategy, we call this scheme 2.2.Cov.
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TABLE II
BASIC CODED CACHING SCHEMES FOR TWO FILES OF SIZE (f1, f2) AND TWO USERS OF MEMORY (m1,m2). IT IS POSSIBLE TO HAVE f1 ≥ f2 , OR

f1 < f2 AND m1 ≥ m2 , OR m1 < m2 .

Scheme Feasibility Condition Achievable Rate Vector (R(1,1), R(1,2), R(2,1), R(2,2)) Intuition
Mix.Emp f = f1 = f2 = m1; m2 = 0 (f, f, f, f) Premixing at d1
Emp.Mix f = f1 = f2 = m2; m1 = 0 (f, f, f, f) Premixing at d2

Ha.Fi f = f1 = f2 = m1 = m2 (f/2, f/2, f/2, f/2) Splitting files in halves
1.1.Cov max(m1,m2) ≤ f1 (f1 −min(m1,m2), f1 + f2 −m1, f1 + f2 −m2, f2) Covering ~d = (1, 1)

1.2.Cov m1 ≤ f1, m2 ≤ f2 (f1, f1 + f2 −m1 −m2, f1 + f2 −min(m1,m2), f2) Covering ~d = (1, 2)

2.1.Cov m1 ≤ f2, m2 ≤ f1 (f1, f1 + f2 −min(m1,m2), f1 + f2 −m1 −m2, f2) Covering ~d = (2, 1)

2.2.Cov max(m1,m2) ≤ f2 (f1, f1 + f2 −m2, f1 + f2 −m1, f2 −min(m1,m2)) Covering ~d = (2, 2)

It is worth noting that none of the 7 basic schemes can be
achieved by space-sharing the rest of 6 schemes and they thus
will serve as the basis of our achievability proofs [29].

B. Lower Bounds of the PRCR

We derive the following lower bounds for arbitrary file and
cache sizes (F1, F2,M1,M2).

Instance 0: Nonnegative rates:

R~d ≥ 0, ∀~d ∈ {1, 2}2.

By varying ~d, there are a total of 4 inequalities in Instance 0.

R(1,1) ≥ 0 (O-1)
R(2,1) ≥ 0 (O-3)

R(1,2) ≥ 0 (O-2)
R(2,2) ≥ 0 (O-4)

Instance 1: For any i, j ∈ {1, 2}, there are two inequalities:

R(i,j) +M1 ≥H(X(i,j), Z1) = H(X(i,j), Z1,Wi) ≥ Fi,

R(i,j) +M2 ≥H(X(i,j), Z2) = H(X(i,j), Z2,Wj) ≥ Fj .

By varying i, j, there are a total of 8 inequalities in Instance
1.

R(1,1) +M1 ≥ F1 (I-1)
R(1,2) +M1 ≥ F1 (I-3)
R(2,1) +M1 ≥ F2 (I-5)
R(2,2) +M1 ≥ F2 (I-7)

R(1,1) +M2 ≥ F1 (I-2)
R(1,2) +M2 ≥ F2 (I-4)
R(2,1) +M2 ≥ F1 (I-6)
R(2,2) +M2 ≥ F2 (I-8)

Instance 2: For any (i, j) = (1, 2) or (2, 1),

R(i,j) +M1 +M2 ≥ H(X(i,j), Z1, Z2) ≥ F1 + F2.

By varying (i, j), there are a total of 2 inequalities in Instance
2.

R(1,2) +M1 +M2 ≥ F1 + F2 (II-1)
R(2,1) +M1 +M2 ≥ F1 + F2. (II-2)

Instance 3: For any i, j ∈ {1, 2}, there are two inequalities:

R(i,1)+R(j,2) +M2 ≥ H(X(i,1), X(j,2), Z2) ≥ F1 + F2,

R(1,i)+R(2,j) +M1 ≥ H(X(1,i), X(2,j), Z1) ≥ F1 + F2.

By varying i, j, there are a total of 8 inequalities in Instance
3.

R(1,1) +R(1,2) +M2 ≥F1 + F2, (III-1)
R(1,1) +R(2,1) +M1 ≥F1 + F2, (III-2)
R(1,1) +R(2,2) +M1 ≥F1 + F2, (III-3)
R(1,1) +R(2,2) +M2 ≥F1 + F2, (III-4)
R(1,2) +R(2,1) +M1 ≥F1 + F2, (III-5)
R(1,2) +R(2,1) +M2 ≥F1 + F2, (III-6)
R(1,2) +R(2,2) +M1 ≥F1 + F2, (III-7)
R(2,1) +R(2,2) +M2 ≥F1 + F2. (III-8)

Instance 4 uses a more refined technique2 and thus we
provide the detailed derivation.

Instance 4: For any (i, j) = (1, 2), (2, 1), or (2, 2),

R(i,1) +R(1,j) +M1 +M2 (8)
≥ H(X(i,1)) +H(Z2) +H(X(1,j)) +H(Z1) (9)
≥ H(X(i,1), Z2) +H(X(1,j), Z1) (10)
≥ H(X(i,1), Z2,W1) +H(X(1,j), Z1,W1) (11)
≥ H(X(i,1), X(1,j), Z1, Z2,W1) +H(W1) (12)
≥ H(X(i,1), X(1,j), Z1, Z2,W1,W2) +H(W1) (13)
= H(W1,W2) +H(W1) = 2F1 + F2 (14)

where (10) follows from that the sum of marginal entropies
is no less than the joint entropy; (11) follows from that user
2 can decode W1 based on X(i,1) and Z2, and user 1 can
decode W1 based on X(1,j) and Z1; (12) follows from the
Shannon-type inequality; (13) follows from that we can decode
W2 from X(i,1), X(1,j), Z1, and Z2 since we choose (i, j) ∈
{(1, 2), (2, 1), (2, 2)} to begin with; and (14) follows from that
X’s and Z’s are functions of (W1,W2).

Symmetrically for any (i, j) = (1, 2), (2, 1), or (1, 1)

R(i,2) +R(2,j) +M1 +M2 ≥ F1 + 2F2.

2A more general version of the techniques can be found in [3], [4], [30],
[31].
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Varying (i, j), there are a total of 6 inequalities in Instance 4.

R(1,1) +R(1,2) +M1 +M2 ≥2F1 + F2, (IV-1)
R(1,1) +R(2,1) +M1 +M2 ≥2F1 + F2, (IV-2)
R(1,2) +R(2,1) +M1 +M2 ≥2F1 + F2, (IV-3)
R(1,2) +R(2,1) +M1 +M2 ≥F1 + 2F2, (IV-4)
R(1,2) +R(2,2) +M1 +M2 ≥F1 + 2F2, (IV-5)
R(2,1) +R(2,2) +M1 +M2 ≥F1 + 2F2. (IV-6)

Totally, there are 28 linear inequalities in Instances 0 to 4.

C. Coded Caching Capacity for N = K = 2

The derivation of the aforementioned lower bounds is
relatively straightforward, see [3], [4], [17], [30] for similar
derivations. A significantly more important contribution of this
work is to show that these lower bounds indeed characterize
the exact 4-dimensional PRCR.

Proposition 1. Consider arbitrary (F1, F2,M1,M2). For any
~R that satisfies the 28 lower bounds in Section III-B simulta-
neously, we can find a zero-error scheme attaining such ~R.

Proposition 1 leads to the following self-explanatory corol-
lary:

Corollary 1. Given arbitrary (F1, F2,M1,M2) values, the
average-rate capacity can be characterized by solving a linear
programming (LP) problem using the 28 lower bounds in
Section III-B.

Further discussion of Corollary 1 will be provided in the
remark after Proposition 3. Proposition 1 follows directly from
the following propositions.

Proposition 2. The 4-dimensional polytope formed by the
28 linear inequalities has either 2 or 4 or 6 distinct cor-
ner points. The actual number depends on the underlying
(F1, F2,M1,M2) values. An exhaustive list of all the corner
points under arbitrary (F1, F2,M1,M2) is provided jointly in
Fig. 1 and Table III.

Proposition 3. All 28 corner points listed in Fig. 1 and
Table III can be achieved by space-sharing the 7 basic schemes
described in Section III-A.

The proofs of Propositions 2 and 3 are relegated to Ap-
pendices A and B, respectively. In the proof of Proposition 3,
we explicitly find 28 constructions that achieve the 28 corner
points, respectively.

Remark: The statement in Proposition 1 has already cast the
coded caching capacity problem as an LP problem involving
4 variables (R(1,1), R(1,2), R(2,1), R(2,2)) and 28 inequalities,
which can be solved numerically. Nonetheless, the constructive
and explicit statements in Propositions 2 and 3 go one step
further. By exhaustively characterizing all corner points of
the lower bounds and then proving their achievability, one
can use Proposition 3 to devise the coded caching scheme
of any feasible ~R and the formulas in Proposition 2, i.e.,
the expressions listed in Table III, can be used to derive the
closed-form expression of the capacity without any numerical

solver. Compared to the implicit statement in Proposition 1,
Propositions 2 and 3 uncover new, cleaner results that shed
further insight to the problem at hand.

For example, since the average capacity R̄ is achieved
by the vector ~R in the PRCR that has the smallest linear
objective value

∑
p~dR~d and since the minimum of a linear

programming problem can only happen at the corner points,
we can easily use the corner points in Fig. 1 and Table III
to characterize the average-rate capacity with an arbitrary
popularity vector (p(1,1), p(1,2), p(2,1), p(2,2)). Namely, given
any (F1, F2,M1,M2), we first use Fig. 1 to find all the corner
points in the PRCR (at most 6 of them). Then for each corner
point, we plug in the closed-form expression in Table III to
the objective function

∑
p~dR~d. Repeat this process for each

corner point. Finally the smallest objective value must be
the average-rate capacity under the given (F1, F2,M1,M2)
and (p(1,1), p(1,2), p(2,1), p(2,2)). Two examples of this general
procedure are provided as follows.

Example 1. Suppose (F1, F2) = (1.5, 1) and the demands of
the users are statistically independent, with user 1 demanding
files 1 and 2 with probability 2/3 and 1/3, respectively, and
user 2 demanding files 1 and 2 with probability 2/5 and
3/5, respectively. The corresponding average-rate capacity for
arbitrary (M1,M2) is described in Fig. 2.

As discussed in the introduction, the main motivation of
our study is to compare the optimal coded caching capacity
with the performance of the naı̈ve likelihood-based uncoded
caching solution. For this particular example, we thus compare
in Fig. 3 the optimal average-rate coded caching capacity with
the performance of (i) the naı̈ve likelihood-based uncoded
caching, and (ii) the coded caching scheme in [17] that is
optimized for the worst-case performance. As expected, the
optimal coded caching capacity is always the smallest of the
three. The largest rate reduction over the uncoded scheme is
at v13 for which the optimal coded caching scheme uses only
1/2

11/15 ' 68.2% of the bandwidth of the uncoded solution.
It is also worth noting that at the corner point v3, the worst-

case-optimal coded caching scheme3 actually performs worse
than the uncoded scheme (5% worse) while the optimal coded
scheme still exhibits 10% improvement over the uncoded
solution.

Example 2. Suppose (F1, F2) = (1.5, 1) and the
demands of the users are dependent with popularity
(p(1,1), p(1,2), p(2,1), p(2,2)) = ( 2

15 ,
8
15 ,

4
15 ,

1
15 ). Namely, user

1 requests files 1 and 2 with probabilities 2/3 and 1/3 and
user 2 requests files 1 and 2 with probability 2/5 and 3/5 but
their demands are no longer statistically independent. Instead,
the demands are negatively correlated with correlation coeffi-
cient −2

√
5/15. The corresponding average-rate capacity for

arbitrary (M1,M2) is described in Fig. 4.

3In general, the optimal scheme for the worst-case capacity may not be
unique. A more precise statement should thus be “one worst-case optimal
coded scheme actually performs ...”. It is worth mentioning that it is an open
problem how a system designer should choose from the set of optimal worst-
case coded scheme since currently there is little study about what is the set
of optimal worst-case coded schemes.
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(b) 2F2 > F1 ≥ F2

Fig. 1. Description of the regions of (M1,M2) and the corresponding corner points. The x-axis (resp. y-axis) is for the M1 (resp. M2) value. In this figure
we assume F1 ≥ F2 and only describe the cases when M1 ≥M2, thus the lower-half of the line M1 = M2. The cases of F1 < F2 and M1 < M2 can be
obtained by swapping the file and user indices, respectively. Two scenarios are considered: (a) F1 ≥ 2F2; (b) 2F2 > F1 ≥ F2. In both scenarios, there are 6
major regions described by solid lines, which are labeled as Cases 1 to 6. The 6 major regions are further partitioned into 11 sub-regions by three 45-degree
dotted lines. The numbers within each sub-region are the indices of the corner points of the 4-dimensional PRCR polytope when (M1,M2) falls into the
sub-region. For example, in both (a) and (b), the triangular subregion corresponding to “0 ≤M2 ≤M1 and M1 +M2 ≤ F2” are labeled by “1,2,3,4”. This
means that when “0 ≤M2 ≤M1 and M1 + M2 ≤ F2” holds, the 4 corner points are vertices 1, 2, 3, and 4 described in Table III.

TABLE III
THE EXPRESSIONS OF ALL 28 POSSIBLE CORNER POINTS.

Vertex Corresponding rate vector ~R = (R(1,1), R(1,2), R(2,1), R(2,2))
1 (F1 −M2, F1 + F2 −M1, F1 + F2 −M1, F2)
2 (F1, F1 + F2 −M1 −M2, F1 + F2 −M1 −M2, F2)
3 (F1, F1 + F2 −M1, F1 + F2 −M1, F2 −M2)

4 (F1 − M2
2

, F1 + F2 −M1 − M2
2

, F1 + F2 −M1 − M2
2

, F2 − M2
2

)
5 (F1, F1 + F2 −M1 −M2, F1, F2)
6 (F1, F1, F1 + F2 −M1 −M2, F2)
7 (F1 + 1

2
(F2 −M1 −M2), F1 + 1

2
(F2 −M1 −M2), F1 + 1

2
(F2 −M1 −M2), F2 + 1

2
(F2 −M1 −M2))

8 (F1 −M2, F1 + F2 −M1, F1 −M2, F2)
9 (F1, F1 + F2 −M1 −M2, F1, F2)
10 (F1, F1 + F2 −M1, F1, F2 −M2)

11 (F1 − M2
2

, F1 + F2 −M1 − M2
2

, F1 − M2
2

, F2 − M2
2

)
12 (F1 + F2 −M1, F1 + F2 −M1, F1 −M2, F2)
13 (F1 + 1

2
(F2 −M1 −M2), F1 + 1

2
(F2 −M1 −M2), F1 + 1

2
(F2 −M1 −M2), 1

2
(F2 + M1 −M2))

14 (F1 −M2, F2, F1 −M2, F2)
15 (F1, F2 −M2, F1, F2 −M2)
16 (F1, F2 −M2, F1, F1 + F2 −M1)
17 ( 1

2
(F1 + M1 −M2), F2 + 1

2
(F1 −M1 −M2), 1

2
(F1 + M1 −M2), F2 + 1

2
(F1 −M1 −M2))

18 (F1 −M2, F2, F1 + F2 −M1, F2)
19 (F1 + F2 −M1, F2, F1 −M2, F2)
20 (F1 + 1

2
(F2 −M1 −M2), 1

2
(F2 + M1 −M2), F1 + 1

2
(F2 −M1 −M2), 1

2
(F2 + M1 −M2))

21 (F1 + F2 −M2, F1 −M1, F1 + F2 −M2, F2)
22 (F1 + F2 −M2, F1 + F2 −M1, F1 + F2 −M2, 0)

23 (F1 + F2
2
−M2, F1 + F2

2
−M1, F1 + F2

2
−M2,

F2
2

)
24 (F1 + F2 −M2, 0, F1 + F2 −M2, F1 + F2 −M1)
25 ( 1

2
(F1 + F2 + M1)−M2,

1
2

(F1 + F2 −M1), 1
2

(F1 + F2 + M1)−M2,
1
2

(F1 + F2 −M1))
26 (0, F1 + F2 −M2, F1 + F2 −M1, F1 + F2 −M2)
27 (F1 + F2 −M1, F1 + F2 −M2, 0, F1 + F2 −M2)
28 ( 1

2
(F1 + F2 −M1), 1

2
(F1 + F2 + M1)−M2,

1
2

(F1 + F2 −M1), 1
2

(F1 + F2 + M1)−M2)
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Fig. 2. The average-rate capacity with (F1, F2) = (1.5, 1) and
(p(1,1), p(1,2), p(2,1), p(2,2)) = ( 4

15
, 2
5
, 2
15

, 1
5

). There are 12 facets and
14 corner points. Each corner point is labeled by a tuple (M1,M2, R̄),
where (M1,M2) give the location and the third coordinate specifies the
corresponding exact average-rate capacity R̄. The capacity is asymmetric with
respect to (M1,M2) due to the heterogeneous file popularity.
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Fig. 3. Comparison of the average-rate capacity with the average rate of naı̈ve
likelihood-based uncoded caching, and the coded caching scheme in [17] that
is optimized for the worst-case performance on some of the vertices in Fig. 2.

Comparing Example 1 and 2, one can see that even with the
same marginal distribution, the optimal coded caching scheme
can take into account the negative correlation, which results
in a different capacity region.

We also compare the average rates of the optimal coded
solution, the uncoded solution, and the worst-case-optimal
coded solution with the setting of Example 2 in Fig. 5. The
largest rate reduction over the uncoded scheme happens at
v12 for which the optimal coded caching scheme uses only
7
15/

11
15 ' 63.6% of the bandwidth of the uncoded solution.

The above examples consider user-dependent file popularity.
If we relax that constraint and consider only uniform file
popularity, we can derive a closed form capacity expression
for any arbitrary (F1, F2,M1,M2).

M
1

M
2

Fig. 4. The average-rate capacity with (F1, F2) = (1.5, 1) and
(p(1,1), p(1,2), p(2,1), p(2,2)) = ( 2
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). There are 10 facets and
13 corner points. Each corner point is labeled by a tuple (M1,M2, R̄),
where (M1,M2) give the location and the third coordinate specifies the
corresponding exact average-rate capacity R̄. The capacity is asymmetric with
respect to (M1,M2) due to the heterogeneous file popularity.
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Fig. 5. Comparison of the average-rate capacity with the average rate of naı̈ve
likelihood-based uncoded caching, and the coded caching scheme in [17] that
is optimized for the worst-case performance on some of the vertices in Fig. 4.

Corollary 2. For arbitrary (F1, F2) satisfying F1 ≥ F2 and
uniform file popularity (i.e., p~d = 0.25, ∀~d), the average-rate
capacity for arbitrary (M1,M2) is described in Fig. 6, which
contains exactly 5 facets.

The proof of Corollary 2 is relegated to Appendix C.
The exact PRCR characterization can also be used to

easily rederive the worst-case capacity R∗ with arbitrary
(F1, F2,M1,M2), previously found by examining the outer
bounds of entropic cones [17]. See Appendix D for details.

The closed form expressions of R̄ and R∗ as functions of
(F1, F2,M1,M2) and {p~d}, i.e., Corollary 2 and Corollary 3
in Appendix D, can be used to solve other design optimization
problems. For example, we can solve the 2-user/2-file memory
allocation problem [32] optimally by finding the (M∗1 ,M

∗
2 )
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Fig. 6. The average-rate capacity of uniform popularity, described for the
case of F1 ≥ F2.

that minimizes R̄ (or R∗) subject to the total memory con-
straint M1 + M2 ≤ Mtotal. That is, we evaluate the coded
caching capacity over the line (M1,M2) = (m,Mtotal − m)
for all m ∈ [0,Mtotal]. Then, the optimal allocation is simply
(M1,M2) = (m∗,Mtotal −m∗), where m∗ denotes the value
that leads to the smallest capacity rate.

IV. PER-REQUEST CAPACITY REGION FOR N > 2 AND
K > 2

The same methodology that we have used to characterize
the PRCR of coded caching systems with 2-user/2-file can be
applied to more general settings, i.e., N > 2 and K > 2 as
follows.

(i) Derive all the converse bounds of the NK-dimensional
PRCR.

(ii) Find all the vertices of the PRCR polytope formed
by the converse bounds for all {F1, . . . , FN} and
{M1, . . . ,MK} values.

(iii) Find the achievable schemes for each of the vertices on
the polytope. Such a process can be further simplified
if there is any symmetry/homogeneity that can be ex-
ploited in the process. Also the construction of basic
coded caching schemes can be used to characterize the
achievability region.

The generalization is straightforward, but obtaining tight
converse bounds for the PRCR may require complicated
derivations. Furthermore, the number of inequalities, vertices,
regions, and basic coded caching schemes in NK dimensions
increases exponentially with the number of files N and users
K.

Despite these complications, we can still characterize some
new PRCR for N > 2 and K > 2 by extending our 2-user/2-
file results. For instance, the four families of inequalities
(instances I through IV) described in Section III-B can be
easily generalized without further conditions on file size, cache
size, and file popularity: there would be NK inequalities in
Instance 0 (one for each possible request), N ·NK in instance

1, etc. Though unable to yield a complete characterization of
PRCR for N > 2 and K > 2, the four families of inequalities
are guaranteed to provide lower bounds for the PRCR with
any N ≥ 2 and K ≥ 2 values.

We now show three examples of how our 2-user/2-file
derivations can be extended to a scenario with three users and
three files (N = K = 3). Examples 3 and 4 share the same
file and cache sizes, but differ in the users’ file popularities;
Example 5 uses homogeneous file sizes and cache sizes. It is
shown that our inequalities suffice to find the new 3-user/3-file
PRCR results in all three cases.

Example 3. Consider a 3-user/3-file coded caching system
with three files with sizes (F1, F2, F3) = (1, 2, 3) and three
cache memory sizes (M1,M2,M3) = (1, 2, 3). Assume that
the file popularity is

p(1,2,3) = 1
2 p(2,1,3) = 1

8 p(3,1,2) = 1
32

p(1,3,2) = 1
4 p(2,3,1) = 1

16 p(3,2,1) = 1
32

and p~d = 0 otherwise. The minimum achievable average rate
(capacity) of this system is R̄ = 25

16 .

Example 4. Keeping the same cache and file sizes as in the
previous example, (M1,M2,M3) = (1, 2, 3), (F1, F2, F3) =
(1, 2, 3), we now invert the file popularity:

p(1,2,3) = 1
32 p(2,1,3) = 1

16 p(3,1,2) = 1
4

p(1,3,2) = 1
32 p(2,3,1) = 1

8 p(3,2,1) = 1
2

and p~d = 0 otherwise. The minimum achievable average rate
(capacity) of this system is R̄ = 5

2 .

Example 5. Now assume that all the files and caches have
the same size, i.e., (M1,M2,M3) = (1, 1, 1), (F1, F2, F3) =
(1, 1, 1), and the file popularity is

p(1,2,3) = p(2,1,3) = p(3,1,2) = p(1,3,2) = p(2,3,1) = p(3,2,1)=
1
6

and p~d = 0 otherwise. The minimum achievable average rate
(capacity) of this system is R̄ = 1.

The proofs of Examples 3, 4, and 5 are relegated to
Appendices E-A, E-B, and E-C, respectively. Unlike previous
proofs for general M and F , which required a complete
characterization of the vertices in the PRCR polytope and
an achievability scheme for each of them, these examples
seek to minimize the average rate for specific cache and file
sizes, therefore each example has a unique optimal vertex. For
the sake of simplicity4, the proofs in Appendix E will only
list the inequalities which are active at such vertex (labeled
with the corresponding Instance from Section III-B) and a
corresponding achievability scheme.

V. CONCLUSION

The per-request capacity region (PRCR) is the most funda-
mental performance metric in the information-theoretic studies
of coded caching. Given the PRCR of a coded caching
problem, we can find the optimal coded caching schemes for

4The PRCR polytope for the general (N,K) = (3, 3) case has 27
dimensions and Instances 0-4 would provide over 933 inequalities.
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any convex objective function. In this work, we have charac-
terized the exact PRCR of the 2-user/2-file setting with full
heterogeneity and used it to derive the average-rate capacity
with heterogeneous demand popularity, file sizes, and cache
sizes, and to re-derive the worst-case capacity previously found
in [17]. By explicitly charactering the capacity and finding the
capacity-achieving schemes, the results in this work allow the
system designer to accurately evaluate the gain that optimal
coded caching offers over naı̈ve uncoded solutions under any
general scenarios. The N = K = 2 results also represent the
first step toward fully characterizing the average-rate/worst-
case capacity of coded caching with full heterogeneity for
general N and K values. We provide examples to show that
the N = K = 2 results can be further generalized to derive
PRCR results for some useful scenarios of N = K = 3.

APPENDIX A
PROOF OF PROPOSITION 2

Section III-B shows that any achievable 4-dimensional rate
vector ~R = (R(1,1), R(1,2), R(2,1), R(2,2)) must satisfy the
28 inequalities for (O-1) to (IV-6), which can be succinctly
summarized into the following two groups.

Group A: Bounds of a single variable, which combine
Instances 0 to 2.

R(1,1) ≥ a1 , max(0, F1 −M1, F1 −M2) (A1)

R(1,2) ≥ a2 , max(0, F1 −M1, F2 −M2,

F1 + F2 −M1 −M2) (A2)

R(2,1) ≥ a3 , max(0, F2 −M1, F1 −M2,

F1 + F2 −M1 −M2) (A3)

R(2,2) ≥ a4 , max(0, F2 −M1, F2 −M2) (A4)

Group B: Bounds of two variables, which combine Instances
3 and 4.

R(1,1) +R(1,2) ≥ b1 , max(F1 + F2 −M2,

2F1 + F2 −M1 −M2) (B1)

R(1,1) +R(2,1) ≥ b2 , max(F1 + F2 −M1,

2F1 + F2 −M1 −M2) (B2)

R(1,1) +R(2,2) ≥ b3 , max(F1 + F2 −M1,

F1 + F2 −M2) (B3)

R(1,2) +R(2,1) ≥ b4 , max(F1 + F2 −M1, F1 + F2 −M2,

2F1 + F2 −M1 −M2, F1 + 2F2 −M1 −M2) (B4)

R(1,2) +R(2,2) ≥ b5 , max(F1 + F2 −M1,

F1 + 2F2 −M1 −M2) (B5)

R(2,1) +R(2,2) ≥ b6 , max(F1 + F2 −M2,

F1 + 2F2 −M1 −M2) (B6)

Note that the values a1 to a4 and b1 to b6 are computed by
evaluating the max operations in (A1) to (B6). For example,
if M2 < M1 < F1, then a1 = F1 −M2 in (A1). However, if
F1 < M2 < M1, then a1 = 0 in (A1). The key observation
is that once we fix the (F1, F2,M1,M2) value, the 28 linear
inequalities immediately collapse to 10 linear inequalities.

We now discuss some perquisite of the detailed proof.

Tight inequalities: There are 10 inequalities in (A1) to
(B6). Each corner point in this 4-dimensional polytope must
satisfy at least 4 of them with equalities and sometimes more.
If an inequality is satisfied with equality, we say such an
inequality is tight. Therefore, we need to have at least 4 tight
inequalities. One main contribution of this proof is to analyze
the relationship among these 10 inequalities for any arbitrary
(F1, F2,M1, F2) so that we do not need to exhaustively
examining all

(
10
4

)
combinations for every (F1, F2,M1, F2).

For simplicity we use the notation (·) to represent an inequality
being tight. For example, (A1) represents (A1) being tight.
Another example is that the four equalities (A1), (A3), (B1),
and (B6) jointly imply R(1,1) = a1, R(1,2) = b1 − a1,
R(2,1) = a3, and R(2,2) = b6 − a3.

Global conditions: Without loss of generality, we assume
implicitly the following conditions throughout Appendix A.

M2 ≥ 0 (G1)
M1 ≥M2 (G3)
M1 ≤ F1 + F2 (G5)

F2 ≥ 0 (G2)
F1 ≥ F2 (G4)

These technical assumptions are without loss of generality.
Specifically, (G1) and (G2) ensure non-negativity; (G3) and
(G4) always hold after swapping the user and file indices; and
(G5) holds since there is no need to store more than the total
file size F1 + F2. In the future, we refer these 5 inequalities
as the global conditions G:

G , {(G1), (G2), (G3), (G4), (G5)}

Additional notation: For any set of (linear) inequalities
A, we use ~RA to denote the set of ~R vectors that satisfy
simultaneously all inequalities of A. For any two sets of
inequalities A and B, we say A implies B if ~RA ⊆ ~RB.
We use A ⇒ B as shorthand.

We say the two sets of inequalities A and B are equivalent,
denoted by A ⇔ B, if A ⇒ B and B ⇒ A. Sometimes
the equivalence and implication relationships hold only under
some additional conditions C. To that end, we use

A C⇒ B

to represent A implies B under conditions5 C. Similarly, the
notation A C⇔ B represents conditional equivalence under C.

In the following, we only provide the proof for the vertices
of Case 1 in Fig. 1, similar steps can be applied for proving
the remaining Cases 2–5. See [33] for detailed steps.

Case 1: We assume

M1 ≤ F2. (c1)

Ineq. (c1) and G jointly describe the scenario when the
(M1,M2) value falls into the lower-left triangle in Fig. 1 with

5A more rigorous notation of conditional implication should be (A∪C)⇒
B. However, by writing A C⇒ B it is clearer what are the inequalities of
interest (i.e., A and B) and what are extra conditions being considered (i.e.,
C).
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solid edges and being marked as “Case 1”. In this case, the
a1 to b6 values of (A1) to (B6) become

a1 = F1 −M2, a2 = a3 = F1 + F2 −M1 −M2,

a4 = F2 −M2, b1 = b2 = b4 = 2F1 + F2 −M1 −M2,

b3 = F1 + F2 −M2, b5 = b6 = F1 + 2F2 −M1 −M2.
(c1.ab)

Using our previous notation and the definition of a1 to b6, the
above statement can be summarized as {(c1)}∪G ⇒ {(c1.ab)}.
We now further divide this case into two sub-cases. Case 1.1:
We assume

M1 +M2 ≤ F2 (c1.1)

and Case 1.2: We assume

M1 +M2 > F2. (c1.2)

Cases 1.1 and 1.2 further divide the solid lower-left triangle
of Fig. 1 by a dotted line. In the following we focus on Case
1.1, the left sub-triangle.

Case 1.1: We consider the following 5 subcases.
Case 1.1.1 (A1) is tight. i.e., (A1) holds. Under conditions

G, (c1) and (c1.1), we can prove the following relationship

{(A1), (B1), (B2), (B3)} G,(c1),(c1.1)
=⇒

{(A2), (A3), (A4), (B4), (B5), (B6)}. (15)

The above relationship is derived by first noting {(c1)}∪G ⇒
{(c1.ab)} and by the following intermediate steps

{(A1), (B1)} (c1.ab),(G1)
=⇒ (A2) (16)

{(A1), (B2)} (c1.ab),(G1)
=⇒ (A3) (17)

{(A1), (B3)} (c1.ab),(G1)
=⇒ (A4) (18)

{(A1), (B1), (B2)} (c1.ab),(G1),(c1)
=⇒ (B4) (19)

{(A1), (B1), (B3)} (c1.ab),(G1)
=⇒ (B5) (20)

{(A1), (B2), (B3)} (c1.ab),(G1)
=⇒ (B6). (21)

Each intermediate step can be verified by straightforward
algebraic operations. For example, part of (c1.ab) ensures
that a1 = F1 − M2, a2 = F1 + F2 − M1 − M2, and
b1 = 2F1 +F2−M1−M2. Under these a1, a2, and b1 values,
(A1), (A2), and (B1) become

R(1,1) = F1 −M2 (22)
R(1,2) ≥ F1 + F2 −M1 −M2 (23)
R(1,1) +R(1,2) ≥ 2F1 + F2 −M1 −M2 (24)

Subtracting (A1) (i.e., (22)) from (B1) (i.e., (24)), we have
R(1,2) ≥ F1 + F2 −M1 which implies (A2) (i.e., (23)) under
condition (G1). We thus prove the intermediate step (16).

Similarly, (c1.ab) implies that (B2), and (B4) become

R(1,1) +R(2,1) ≥ 2F1 + F2 −M1 −M2 (25)
R(1,2) +R(2,1) ≥ 2F1 + F2 −M1 −M2 (26)

Adding up (B1) and (B2) (i.e., (24) and (25)) and subtracting
(A1) (i.e., (22)) twice, we have R(1,2) +R(2,1) ≥ 2F1 +2F2−
2M1 which implies (B4) (i.e., (26)), provided both (G1) and

(c1) hold simultaneously. We have thus proven the interme-
diate step (19). Since the proofs of other intermediate steps
(17), (18), (20), and (21) are very similar and straightforward,
we omit their details.

By (15), the four tight linear inequalities in Case-1.1.1 can
only be (A1) (thus (A1)), (B1), (B2), and (B3). Solving these
equations, the corresponding corner point is Vertex 1 (F1 −
M2, F1 + F2 −M1, F1 + F2 −M1, F2) listed in Table III.

Case 1.1.2: (A2) is tight. i.e., (A2) holds. We can then prove
the following relationship

{(A2), (A3), (B1), (B5)} G,(c1),(c1.1)
=⇒

{(A1), (A4), (B2), (B3), (B4), (B6)}. (27)

The above relationship is derived by {(c1)} ∪ G ⇒ {(c1.ab)}
and by the following intermediate steps

{(A2), (B1)} (c1.ab),(G1)
=⇒ (A1) (28)

{(A2), (A3)} (c1.ab),(c1.1)
=⇒ (B4) (29)

{(A2), (B5)} (c1.ab),(G1)
=⇒ (A4) (30)

{(A2), (A3), (B1)} (c1.ab)
=⇒ (B2) (31)

{(A2), (B1), (B5)} (c1.ab),(G1)
=⇒ (B3) (32)

{(A2), (A3), (B5)} (c1.ab)
=⇒ (B6). (33)

We omit the detailed proofs of the intermediate steps as they
are extremely similar to the two examples discussed in the
proof of Case 1.1.1.

By (27), the four tight linear inequalities in Case-1.1.2 can
only be (A2) (thus (A2)), (A3), (B1), and (B5). Solving these
equations, the corresponding corner point is Vertex 2 (F1, F1+
F2 −M1 −M2, F1 + F2 −M1 −M2, F2) listed in Table III.

Case 1.1.3: (A3) is tight. i.e., (A3) holds. We can then prove
the following relationship

{(A3), (A2), (B2), (B6)} G,(c1),(c1.1)
=⇒

{(A1), (A4), (B1), (B3), (B4), (B5)} (34)

by the following straightforward intermediate steps

{(A3), (B2)} (c1.ab),(G1)
=⇒ (A1) (35)

{(A3), (A2)} (c1.ab),(c1.1)
=⇒ (B4) (36)

{(A3), (B6)} (c1.ab),(G1)
=⇒ (A4) (37)

{(A3), (A2), (B2)} (c1.ab)
=⇒ (B1) (38)

{(A3), (B2), (B6)} (c1.ab),(G1)
=⇒ (B3) (39)

{(A3), (A2), (B6)} (c1.ab)
=⇒ (B5). (40)

By (34), the four tight linear inequalities in Case-1.1.3 can
only be (A3) (thus (A3)), (A2), (B2), and (B6). Solving these
equations, the corresponding corner point is Vertex 2 (F1, F1+
F2 −M1 −M2, F1 + F2 −M1 −M2, F2) listed in Table III.

Case 1.1.4: (A4) is tight. i.e., (A4) holds. We can then prove
the following relationship

{(A4), (B3), (B5), (B6)} G,(c1),(c1.1)
=⇒

{(A1), (A2), (A3), (B1), (B2), (B4)} (41)
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by the following straightforward intermediate steps

{(A4), (B3)} (c1.ab),(G1)
=⇒ (A1) (42)

{(A4), (B5)} (c1.ab),(G1)
=⇒ (A2) (43)

{(A4), (B6)} (c1.ab),(G1)
=⇒ (A3) (44)

{(A4), (B3), (B5)} (c1.ab),(G1)
=⇒ (B1) (45)

{(A4), (B3), (B6)} (c1.ab),(G1)
=⇒ (B2) (46)

{(A4), (B5), (B6)} (c1.ab),(G1),(c1)
=⇒ (B4). (47)

By (41), the four tight linear inequalities in Case-1.1.4 can
only be (A4) (thus (A4)), (B3), (B5), and (B6). Solving these
equations, the corresponding corner point is Vertex 3 (F1, F1+
F2 −M1, F1 + F2 −M1, F2 −M2) listed in Table III.

Case 1.1.5: None of (A1) to (A4) is tight. Recall that in
all the discussion of Case 1.1 and its subcases, we assume G,
(c1), (c1.1), and (c1.ab). Since

{(A2), (A3)} (c1.ab),(c1.1)
=⇒ (B4), (48)

any corner point that is loose for all 4 inequalities (A1) to
(A4) (and thus being loose for (A2) and (A3)) must also be
loose for (B4). Therefore the corner point must be decided by
4 out of the 5 remaining inequalities (B1), (B2), (B3), (B5),
and (B6). By (c1.ab), the inequalities corresponding to (B1),
(B2), (B5), and (B6) become

R(1,1) +R(1,2) ≥ b1 = 2F1 + F2 −M1 −M2 (49)
R(1,1) +R(2,1) ≥ b2 = 2F1 + F2 −M1 −M2 (50)
R(1,2) +R(2,2) ≥ b5 = F1 + 2F2 −M1 −M2 (51)
R(2,1) +R(2,2) ≥ b6 = F1 + 2F2 −M1 −M2 (52)

We observe that the tight versions (equalities) of these inequal-
ities are linearly dependent. As a result, any three of them
being tight implies the fourth one is also tight. We hereby say
that these 4 inequalities are co-dependent.

Since (B1), (B2), (B5), and (B6) are co-dependent and
since a corner point requires 4 tight linearly independent
inequalities, all 5 inequalities (B1), (B2), (B3), (B5), and (B6)
must be tight simultaneously and jointly they yield exactly one
corner point Vertex 4 (F1 − M2

2 , F1 + F2 −M1 − M2

2 , F1 +
F2 −M1 − M2

2 , F2 − M2

2 ) listed in Table III.
The proof of Case 1.1.5 is completed by further proving

that Vertex 4 is a legitimate corner point that satisfies (A1) to
(A4) as well. The detailed verification steps are

Vertex 4
(c1.ab),(G1)⇒ (A1); Vertex 4

(c1.ab),(G1)⇒ (A2); (53)

Vertex 4
(c1.ab),(G1)⇒ (A3); Vertex 4

(c1.ab),(G1)⇒ (A4). (54)

Case 1.2: In this case we assume both (c1) and (c1.2) are
true. This sub-case is the right sub-triangle above the dotted
line in the solid lower-left triangle (Case 1) of Fig. 1. We now
consider the following 6 subcases of Case 1.2.

Case 1.2.1: (A1) is tight, i.e., (A1) holds. Since the inter-
mediate steps of Case 1.1.1, i.e., (16)-(21) does not require
condition (c1.2), the statement in (15) holds even if we swap
out (c1.1) by (c1.2). The rest of the analysis is verbatim to
Case 1.1.1 and the corner point is also Vertex 1.

Case 1.2.2: (A2) is tight. i.e., (A2) holds. Note that we
cannot reuse the derivation in Case 1.1.2 since (29) requires
(c1.1) being true but in this case we only have (c1.2). That
said, we can still prove the following relationship

{(A2), (B1), (B4), (B5)} G,(c1),(c1.2)
=⇒

{(A1), (A3), (A4), (B2), (B3), (B6)} (55)

by reusing (28), (30), (32), and the following straightforward
intermediate steps

{(A2), (B4)} (c1.ab),(c1.2)
=⇒ (A3) (56)

{(A2), (B1), (B4)} (c1.ab),(c1.2)
=⇒ (B2) (57)

{(A2), (B4), (B5)} (c1.ab),(c1.2)
=⇒ (B6). (58)

By (55), the four tight linear inequalities in Case-1.2.2 can
only be (A2) (thus (A2)), (B1), (B4), and (B5). Solving these
equations, the corresponding corner point is Vertex 5 (F1, F1+
F2 −M1 −M2, F1, F2) listed in Table III.

Case 1.2.3: (A3) is tight. i.e., (A3) holds. We can then prove
the following relationship

{(A3), (B2), (B4), (B6)} G,(c1),(c1.2)
=⇒

{(A1), (A2), (A4), (B1), (B3), (B5)} (59)

by reusing (35), (37), (39), and the following straightforward
intermediate steps

{(A3), (B4)} (c1.ab),(c1.2)
=⇒ (A2) (60)

{(A3), (B2), (B4)} (c1.ab),(c1.2)
=⇒ (B1) (61)

{(A3), (B4), (B6)} (c1.ab),(c1.2)
=⇒ (B5). (62)

By (59), the four tight linear inequalities in Case-1.2.3 can
only be (A3) (thus (A3)), (B2), (B4), and (B6). Solving
these equations, the corresponding corner point is Vertex 6
(F1, F1, F1 + F2 −M1 −M2, F2) listed in Table III.

Case 1.2.4: (A4) is tight, i.e., (A4) holds. Since the inter-
mediate steps of Case 1.1.4, i.e., (42)-(47) does not require
condition (c1.2), the statement in (41) holds even if we swap
out (c1.1) by (c1.2). The rest of the analysis is verbatim to
Case 1.1.4 and the corner point is also Vertex 3.

Case 1.2.5: None of (A1) to (A4) is tight, but (B4) is tight,
i.e., (B4) holds. We can prove

{(B1), (B2), (B5), (B6), (B4)} G,(c1),(c1.2)⇒ {(B3)} (63)

using the following intermediate step

{(B1), (B6), (B4)} (c1.ab),(c1)⇒ {(B3)}. (64)

The statement (63) implies that when none of (A1) to (A4) is
tight but (B4) holds, the corner point is decided solely by the
inequalities (B1), (B2), (B5), and (B6) and we do not need to
check whether (B3) is tight or not.

Recall that under the a1 to b6 values in (c1.ab), the in-
equalities corresponding to (B1), (B2), (B5), and (B6) are co-
dependent as shown in Case 1.1.5. Therefore, the statement
(63) further implies that the corner point must be tight for all
5 inequalities (B1), (B2), (B5), (B6), (B4). Solving these 5
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joint equations (four of them are codependent), we obtain the
corner point Vertex 7 (F1+ F2−M1−M2

2 , F1+ F2−M1−M2

2 , F1+
F2−M1−M2

2 , F2 + F2−M1−M2

2 ) listed in Table III.
The proof of Case 1.2.5 is completed by further proving

that Vertex 7 is a legitimate corner point that satisfies (A1) to
(A4) as well. The detailed verification steps are

Vertex 7
(c1.ab),(G1),(c1)⇒ (A1); Vertex 7

(c1.ab),(c1.2)⇒ (A2); (65)

Vertex 7
(c1.ab),(c1.2)⇒ (A3); Vertex 7

(c1.ab),(G1),(c1)⇒ (A4). (66)

Case 1.2.6: None of (A1) to (A4) is tight, nor is (B4). If we
retrace the proof of Case 1.1.5, we notice that (48) ensures that
when in Case 1.1.5, we always have (B4) being loose. Since
(48) holds only under (c1.1), ineq. (B4) can be tight or loose
in Case 1.2. That is why in Case 1.2.5, we discussed the case
when (B4) is tight and in this case we assume (B4) is loose.
Since the arguments in Case 1.1.5 after (48) no longer uses
the condition (c1.1), we can use the same argument verbatim
and prove that the corner point in Case 1.2.6 is the Vertex 4
(F1− M2

2 , F1 +F2−M1− M2

2 , F1 +F2−M1− M2

2 , F2− M2

2 )
listed in Table III.

APPENDIX B
PROOF OF PROPOSITION 3

In the following, we will prove that each of the 7 vertices
in Case 1 can be achieved by space sharing among the 7
basic achievable schemes listed in Table II. The space sharing
schemes with the 7 basic achievable schemes for the rest 21
vertices (Vertices 8-28) are provided in [33].

Vertex 1: As summarized in Fig. 1, Vertex-1 rate vector
(F1 −M2, F1 + F2 −M1, F1 + F2 −M1, F2) is the corner
point for 4 out of 11 sub-regions. Table IV describes an
achievable scheme that attains Vertex-1 rate vector as long
as the following Applicable Range (AR) holds

[AR]: M2 ≤M1 ≤ min(F1, F2 +M2), (67)

which is the union of the 4 desired sub-regions.
Each row of Table IV describes one basic scheme and

the last row describes the total (combined) effect after space
sharing. Each basic scheme takes parts of files 1 and 2 and
stores coded data in parts of memories 1 and 2. The columns
of f1, f2, m1, and m2 correspond to the amount of files
1 and 2 and memories 1 and 2 of each basic scheme. The
columns of R(1,1), R(1,2), R(2,1), and R(2,2) correspond to
the rates contributed by each basic scheme under each request
pattern. The intersection of the “Total” row and the four
rate columns thus represents the achievable rate vector of the
overall scheme.

To ensure that Table IV indeed describes a legitimate
scheme, one needs to verify the following three conditions:

1) All the file sizes and the memory sizes are non-negative.
For example, 1.1.Cov uses F1 −M1 +M2 of file 1 and
F2−M1 +M2 of file 2 to encode. The AR (67) ensures
that both sub-file sizes are non-negative.

2) For any given row, the assigned subfile sizes and the
assigned memory sizes satisfy the required condition of
the basic scheme listed in Table II. For example, as

summarized in Table II the 1.1.Cov scheme requires that
max(m1,m2) ≤ f1. As a result, in the row of 1.1.Cov in
Table IV we must satisfy max(M2,M2) ≤ F1−M1+M2,
which is ensured by the AR (67).

3) For any given row, the delivery rate vector is com-
puted correctly according to Table II. For example, as
summarized in Table II the 1.1.Cov scheme achieves
R(1,1) = f1 − min(m1,m2). As a result, correct rate
computation in the row of 1.1.Cov of Table IV requires
the equality F1−M1 = (F1−M1+M2)−min(M2,M2)
to hold, which is ensured by6 the AR (67).

Verifying these three statements is very straightforward and
we thus omit the details here.

Remark: The main reason that the Vertex-1 scheme in
Table IV is accompanied by an AR condition (67) is to ensure
that the above three conditions about file/memory sizes and
rate computation are properly met.

Vertex 2: As summarized in Fig. 1, Vertex-2 rate vector
(F1, F1 + F2 −M1 −M2, F1 + F2 −M1 −M2, F2) is the
corner point of 1 out of 11 sub-regions. Table V describes the
corresponding space-sharing scheme that attains Vertex-2 rate
vector. One can easily verify that the applicable range listed in
Table V, i.e. M1 +M2 ≤ min(F1, F2), completely covers the
desired sub-region. Furthermore, the applicable range ensures
that the three conditions on the file/memory sizes and rate
computation are met, also see the discussion of Vertex 1. Since
the verification step is straightforward, we omit the details. The
proof of Vertex-2 achievability is thus complete.

Remark: As will be seen later, each of our schemes,
described in the corresponding table, is associated with an
applicable range. To prove the legitimacy of the scheme,
we always have to check (i) the applicable range covers
the sub-regions of the corresponding corner point; and (ii)
the applicable range ensures that the three conditions on
the file/memory sizes and rate computation are met. Since
checking (i) and (ii) can all be verified very easily, we will
not repeatedly emphasize these important verification steps
in the sequel. Instead we only describe the schemes and the
corresponding applicable ranges.

Vertex 3: Per Fig. 1, Vertex-3 rate vector (F1, F1 + F2 −
M1, F1 + F2 −M1, F2 −M2) is the corner point of 2 out of
11 sub-regions. Table VI describes an achievable scheme that
attains Vertex-3 rate vector and its applicable range.

Vertex 4: Per Fig. 1, Vertex-4 rate vector (F1 − M2

2 , F1 +
F2−M1−M2

2 , F1+F2−M1−M2

2 , F2−M2

2 ) is the corner point
of 2 out of 11 sub-regions. Table VII describes an achievable
scheme that attains Vertex-4 rate vector and its applicable
range.

Vertex 5: Per Fig. 1, Vertex-5 rate vector (F1, F1 + F2 −
M1 − M2, F1, F2) is the corner point of 1 out of 11 sub-
regions. Table VIII describes an achievable scheme that attains
Vertex-5 rate vector and its applicable range.

Vertex 6: Per Fig. 1, Vertex-6 rate vector (F1, F1, F1+F2−
M1 −M2, F2) is the corner point of 1 out of 11 sub-regions.

6In this example, it is trivially true regardless whether the AR condition
(67) holds or not.
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TABLE IV
VERTEX 1 (F1 −M2, F1 + F2 −M1, F1 + F2 −M1, F2) WITH APPLICABLE RANGE: M2 ≤M1 ≤ min(F1, F2 + M2).

Scheme f1 f2 m1 m2 R(1,1) R(1,2) R(2,1) R(2,2)

Mix.Emp M1−M2 M1−M2 M1−M2 0 M1−M2 M1−M2 M1−M2 M1−M2

1.1.Cov F1−M1+M2 F2−M1+M2 M2 M2 F1−M1 F1+F2−2M1+M2 F1+F2−2M1+M2 F2−M1+M2

Total F1 F2 M1 M2 F1−M2 F1+F2−M1 F1+F2−M1 F2

TABLE V
VERTEX 2 (F1, F1 + F2 −M1 −M2, F1 + F2 −M1 −M2, F2) WITH APPLICABLE RANGE: M1 + M2 ≤ min(F1, F2).

Scheme f1 f2 m1 m2 R(1,1) R(1,2) R(2,1) R(2,2)

Mix.Emp M1 M1 M1 0 M1 M1 M1 M1

Emp.Mix M2 M2 0 M2 M2 M2 M2 M2

1.1.Cov F1−M1−M2 F2−M1−M2 0 0 F1−M1−M2 F1+F2−2M1−2M2 F1+F2−2M1−2M2 F2−M1−M2

Total F1 F2 M1 M2 F1 F1+F2−M1−M2 F1+F2−M1−M2 F2

TABLE VI
VERTEX 3 (F1, F1 + F2 −M1, F1 + F2 −M1, F2 −M2) WITH APPLICABLE RANGE: M2 ≤M1 ≤ min(F1 + M2, F2).

Scheme f1 f2 m1 m2 R(1,1) R(1,2) R(2,1) R(2,2)

Mix.Emp M1−M2 M1−M2 M1−M2 0 M1−M2 M1−M2 M1−M2 M1−M2

2.2.Cov F1−M1+M2 F2−M1+M2 M2 M2 F1−M1+M2 F1+F2−2M1+M2 F1+F2−2M1+M2 F2−M1

Total F1 F2 M1 M2 F1 F1+F2−M1 F1+F2−M1 F2−M2

TABLE VII
VERTEX 4 (F1 − M2

2
, F1 + F2 −M1 − M2

2
, F1 + F2 −M1 − M2

2
, F2 − M2

2
) WITH APPLICABLE RANGE: M2 ≤M1 ≤ min(F1, F2).

Scheme f1 f2 m1 m2 R(1,1) R(1,2) R(2,1) R(2,2)

Mix.Emp M1−M2 M1−M2 M1−M2 0 M1−M2 M1−M2 M1−M2 M1−M2

Ha.Fi M2 M2 M2 M2 M2/2 M2/2 M2/2 M2/2
1.1.Cov F1−M1 F2−M1 0 0 F1−M1 F1+F2−2M1 F1+F2−2M1 F2−M1

Total F1 F2 M1 M2 F1− 1
2
M2 F1+F2−M1− 1

2
M2 F1+F2−M1− 1

2
M2 F2− 1

2
M2

Table IX describes an achievable scheme that attains Vertex-6
rate vector and its applicable range.

Vertex 7: Per Fig. 1, Vertex-7 rate vector
(F1 + F2−M1−M2

2 , F1 + F2−M1−M2

2 , F1 + F2−M1−M2

2 , F2 +
F2−M1−M2

2 ) is the corner point of 1 out of 11 sub-regions.
Table X describes an achievable scheme that attains Vertex-7
rate vector and its applicable range.

APPENDIX C
PROOF OF COROLLARY 2

The uniform average rate capacity R̃ = 1
4 (R(1,1) +R(1,2) +

R(2,1) + R(2,2)) is a special case of the average rate with
popularity p~d = 0.25 for all ~d ∈ {1, 2}. In the following, we
use Proposition 1 to derive the closed-form expression of the
uniform average rate capacity as in Fig. 6.

We combine (B1) and (B6) to obtain

R̃ ≥ 1

4
max{2F1 + 2F2 − 2M2, 3F1 + 2F2 −M1 − 2M2,

2F1 + 3F2 −M1 − 2M2, 3F1 + 3F2 − 2M1 − 2M2}
(68)

and combine (B2) and (B5) to obtain

R̃ ≥ 1

4
max{2F1 + 2F2 − 2M1, 3F1 + 2F2 − 2M1 −M2,

2F1 + 3F2 − 2M1 −M2, 3F1 + 3F2 − 2M1 − 2M2}.
(69)

Therefore, the uniform average rate R̃ must simultaneously
satisfy (68) and (69), which can be expanded as a set of 7
inequalities7 as follows.

R̃ ≥ F1 + F2 −M1

2
(P1)

R̃ ≥ F1 + F2 −M2

2
(P2)

R̃ ≥ 3F1 + 2F2 − 2M1 −M2

4
(P3)

R̃ ≥ 2F1 + 3F2 − 2M1 −M2

4
(P4)

R̃ ≥ 3F1 + 2F2 −M1 − 2M2

4
(P5)

R̃ ≥ 2F1 + 3F2 −M1 − 2M2

4
(P6)

R̃ ≥ 3F1 + 3F2 − 2M1 − 2M2

4
. (P7)

Now we show that the set of 7 inequalities is sufficient to
describe the uniform average rate capacity. Note that the joint
7 inequalities (P1) to (P7) are symmetric with respect to the
file and user indices; therefore without loss of generality, we
assume F1 ≥ F2 and M1 ≥ M2. Under this assumption,
(P1), (P3), (P4) and (P6) are always loose and the remaining
3 inequalities (P2), (P5), and (P7) jointly form the lower-
triangular region (M1 ≥M2) in Fig. 6.

7When assuming F1 ≥ F2, (P4) and (P6) are always loose. The remaining
5 inequalities are indeed the 5 facets described in Fig. 6.
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TABLE VIII
VERTEX 5 (F1, F1 + F2 −M1 −M2, F1, F2) WITH APPLICABLE RANGE: max(M1,M2) ≤ F2 ≤ min(F1,M1 + M2).

Scheme f1 f2 m1 m2 R(1,1) R(1,2) R(2,1) R(2,2)

Mix.Emp F2−M2 F2−M2 F2−M2 0 F2−M2 F2−M2 F2−M2 F2−M2

Emp.Mix F2−M1 F2−M1 0 F2−M1 F2−M1 F2−M1 F2−M1 F2−M1

1.2.Cov F1−2F2 M1+M2−F2 M1+M2−F2 M1+M2−F2
F1−2F2 F1−F2

F1−2F2 M1+M2−F2+M1+M2 +M1+M2 +M1+M2

Total F1 F2 M1 M2 F1 F1+F2−M1−M2 F1 F2

TABLE IX
VERTEX 6 (F1, F1, F1 + F2 −M1 −M2, F2) WITH APPLICABLE RANGE: max(M1,M2) ≤ F2 ≤ min(F1,M1 + M2).

Scheme f1 f2 m1 m2 R(1,1) R(1,2) R(2,1) R(2,2)

Mix.Emp F2−M2 F2−M2 F2−M2 0 F2−M2 F2−M2 F2−M2 F2−M2

Emp.Mix F2−M1 F2−M1 0 F2−M1 F2−M1 F2−M1 F2−M1 F2−M1

2.1.Cov F1−2F2 M1+M2 M1+M2 M1+M2 F1−2F2 F1−2F2 F1−F2
M1+M2

+M1+M2 −F2 −F2 −F2 +M1+M2 +M1+M2 −F2

Total F1 F2 M1 M2 F1 F1 F1+F2−M1−M2 F2

TABLE X
VERTEX 7 (F1 + 1

2
(F2 −M1 −M2), F1 + 1

2
(F2 −M1 −M2), F1 + 1

2
(F2 −M1 −M2), F2 + 1

2
(F2 −M1 −M2)) WITH APPLICABLE RANGE:

max(M1,M2) ≤ F2 ≤ min(F1,M1 + M2).

Scheme f1 f2 m1 m2 R(1,1) R(1,2) R(2,1) R(2,2)

Mix.Emp F2−M2 F2−M2 F2−M2 0 F2−M2 F2−M2 F2−M2 F2−M2

Emp.Mix F2−M1 F2−M1 0 F2−M1 F2−M1 F2−M1 F2−M1 F2−M1

Ha.Fi M1+M2−F2 M1+M2−F2 M1+M2−F2 M1+M2−F2
M1+M2−F2

2
M1+M2−F2

2
M1+M2−F2

2
M1+M2−F2

2
1.1.Cov F1−F2 0 0 0 F1−F2 F1−F2 F1−F2 0

Total F1 F2 M1 M2
F1+ F1+ F1+ F2+

F2−M1−M2
2

F2−M1−M2
2

F2−M1−M2
2

F2−M1−M2
2

We now provide the proof of the achievability part. If we
describe each corner point of the triangular region of M1 ≥
M2 by the corresponding tuple (M1,M2, R̄), then there are 7
vertices in the region, and they are

v1 = (0, 0,
3F1 + 3F2

4
), v2 = (F2, 0,

3F1 + F2

4
),

v3 = (F2, F2,
3F1 − F2

4
), v4 = (F1, 0,

F1 + F2

2
),

v5 = (F1, F1,
F2

2
), v6 = (F1 + F2, 0,

F1 + F2

2
),

and v7 = (F1 + F2, F1 + F2, 0). (70)

The vertices v1 and v7 can be achieved by some trivial
schemes. The rest of them, v2, v3, v4, v5, and v6, can be
achieved by Vertices 1, 4, 8, 23, and 14 described in Table III.

APPENDIX D
RE-DERIVATION OF WORST-CASE RATE CAPACITY IN [17]

Corollary 3. The 2-user/2-file zero-error worst-case capacity
is characterized by the following 9 inequalities:

R∗ ≥ F1 + F2 −M1

2
(Q1)

R∗ ≥ F1 + F2 −M2

2
(Q2)

R∗ ≥ F1 −M1 (Q3)
R∗ ≥ F1 −M2 (Q4)
R∗ ≥ F2 −M1 (Q5)

R∗ ≥ F2 −M2 (Q6)

R∗ ≥ 2F1 + F2 −M1 −M2

2
(Q7)

R∗ ≥ F1 + 2F2 −M1 −M2

2
(Q8)

R∗ ≥ F1 + F2 −M1 −M2. (Q9)

If we further assume F1 ≥ F2, then (Q5), (Q6), and (Q8) are
always loose. The corresponding worst-case capacity R∗ is
described by Fig. 7, which consists of 11 vertices and the 6
planes (Q1), (Q2), (Q3), (Q4), (Q7), and (Q9).

Recall that the worst-case rate objective (4) is convex and
the PRCR is characterized by 28 linear constraints (O-1) to
(IV-6). The problem of minimizing R∗ subject to PRCR is
therefore a convex optimization problem. We solve the convex
optimization problem by first converting to the equivalent
linear programming problem as follows.

min
~R

R∗

s.t. R∗ ≥ R(1,1) (71)
R∗ ≥ R(1,2) (72)
R∗ ≥ R(2,1) (73)
R∗ ≥ R(2,2) (74)
(A1) to (B6).

By plugging in (A1) to (B6), the linear programming problem
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Q7

Q4

Q3

Q2

Q1

Q9

Fig. 7. The capacity of worst-case rate under the assumption F1 ≥ F2. Each
corner point is labeled by a tuple (M1,M2, R∗), where (M1,M2) describe
the location and the third coordinate describe the corresponding exact worst-
case rate capacity R∗.

can be further converted to the following equivalent form

min
~R

R∗

s.t. R∗ ≥ ai, i ∈ {1, 2, 3, 4} (75)
2R∗ ≥ bj , j ∈ {1, 2, 3, 4, 5, 6}. (76)

Note that the values of a1 to b6 are calculated by max
operations and we can expand each ≥ inequality with max
operation on the right-hand side to multiple inequalities. If we
expand the max operation in (75), we will have (Q3) to (Q6),
and if we expand the max operation in (76), we will have (Q1),
(Q2), (Q7) to (Q9). The converse proof is thus complete.

For the achievability part, without loss of generality, we
only consider the corner points in the region F1 ≥ F2 and
M1 ≥ M2, and there are 7 vertices v1, v2, v4, v6, v8, v10,
and v11 as shown in Fig. 7. The vertices v1 and v11 can be
achieved by some trivial schemes. The rest of them, v2, v4,
v6, v8, and v10, can be achieved by Vertices 1, 14, 1, 14, and
23 described in Table III.

Since the worst-case objective (4) is not a linear function of
rates R~d, ~d ∈ [N ]K , the facets of the worst-case rate region
may not match the facets of PRCR. For example, it can be
observed that the edge (v6, v8) in Fig. 7 is a new edge that
did not appear in Fig. 1.

APPENDIX E
PROOFS OF 3-USER/3-FILE EXAMPLES

When (N,K) = (3, 3), the five families of linear in-
equalities (Instances 0-4) described in Section III-B could be
extended to include over 933 lower bounds on the PRCR
polytope: 27 Instance-0 inequalities, 81 Instance-1 inequal-
ities, 24 Instance-2 inequalities, 729 Instance-3 inequalities,
and over 72 Instance-4 inequalities. For the sake of simplicity,
the following proofs only list a minimal subset of them,
appropriately labeled with their instance number (Inst. 0-4).

TABLE XI
TRANSMITTED MESSAGES X~d

FOR EACH POSSIBLE DEMAND INSTANCE ~d.
THESE ACHIEVABLE RATES MATCH THE OBTAINED LOWER BOUNDS IN

EXAMPLE 3, HENCE THEY CORRESPOND TO THE PER-REQUEST CAPACITY.

Request ~d Transmitted messages X~d
Rate R~d

(1,2,3) ∅ 0
(1,3,2) (u3, v1 ⊕ u1, v2 ⊕ u2) 3
(2,1,3) (v2, w1 ⊕ v1) 2
(2,3,1) (u2, u3, v2, v1 ⊕ u1, v1 ⊕ w1) 5
(3,1,2) (u2, u3, v2, v1 ⊕ u1, u1 ⊕ w1) 5
(3,2,1) (u2, u3, w1 ⊕ u1) 3

A. Proof of Example 3
For the given (M1,M2,M3, F1, F2, F3) and p~d values in

this example, with the aid of a computer we find only 6
inequalities among those in the extended Instances 0-4 are
needed/active when solving the LP problem of minimizing
the rate R̄:

min
∑
~d

p~dR~d

s.t.
R(1,2,3) ≥ 0 (Inst. 0)
R(1,2,3) +R(1,3,2) +M2 ≥ F2 + F3 (Inst. 3)
R(1,2,3) +R(2,1,3) +M1 ≥ F1 + F2 (Inst. 3)
R(1,2,3) +R(3,2,1) +M1 ≥ F1 + F3 (Inst. 3)
R(1,2,3) +R(2,3,1) +M1 +M2 ≥ F1 + 2F2 + F3 (Inst. 4)
R(1,2,3) +R(3,1,2) +M1 +M3 ≥ F1 + F2 + 2F3. (Inst. 4)

Such solution is given by the vertex

R(1,2,3) = 0, R(2,1,3) = 2, R(3,1,2) = 5,

R(1,3,2) = 3, R(2,3,1) = 5, R(3,2,1) = 3,

resulting in R̄ = 25
16 . This is an information-theoretical lower

bound for the achievable average rate.
We now proceed to show that this lower bound can be

achieved and is therefore tight. Divide each file into subfiles
of unit size, w2 = (v1, v2) and w3 = (u1, u2, u3), and let each
user cache the corresponding file:

Z1 = {w1}, Z2 = {v1, v2}, Z3 = {u1, u2, u3}.

It can be shown that the transmitted messages X~d in Table XI
allow the server to fulfill all requests and yield an average rate
of R̄ = 25

16 . Since the average rate with this scheme matches
the above lower bound, we can conclude that R̄ = 25

16 is the
minimum achievable average-rate of this system.

Furthermore, the above scheme corresponds to a simple
extension of the basic coded caching schemes described in
Section III-A, which we can call 1.2.3.Cov: In the placement
phase, for k = 1, 2, 3, user k’s strategy is “to cover as much
file k as possible”. In the delivery phase, their demands can
be fulfilled by the transmission messages in ways similar to
the a.b.Cov schemes for 2-user/2-file. When at least one of
the users demands the same file that it is already caching (i.e.,
demand vectors (1, i, j), (i, 2, j) or (i, j, 3)) the transmitted
messages in Table XI can be one-to-one mapped to our 2-
user/2-file setting for demand (i, j) in a.b.Cov schemes, where
a and b are the corresponding user indexes.
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When all three users request a file different from the one
that they are caching (i.e., demands (2, 3, 1) and (3, 1, 2)) their
demands can be fulfilled by concatenating the transmission
messages for demands in two a.b.Cov schemes. Take the
demand (2, 3, 1) for example, we first focus on users 1 and
2 to transmit the message (v2, w1 ⊕ v1) for demand (2, 1) in
1.2.Cov scheme despite user 2 actually demands file 3 instead
of file 1. This provides user 1 with the desired file 2 but user
2 receives the undesired file 1; then we focus on users 2 and 3
transmitting the message (u2, u3, v1⊕w1) for demand (3, 1) in
1.3.Cov scheme as if user 2 already stored file 1. Finally, both
users 2 and 3 get their desired files. Similarly, the transmission
message for demand (3, 1, 2) can be obtained by concatenating
the message for demand (2, 1) in 1.2.Cov and the message for
demand (3, 2) in 2.3.Cov.

B. Proof of Example 4

This proof follows a parallel argument to that in Ap-
pendix E-A, solving the LP resulting from the inequalities
in Section III-B (only the relevant ones are listed) to obtain a
lower bound and then showing that the bound is achievable.
Noted that in this example, the naı̈ve extension of Instance 0-4
is not sufficient to obtain a tight lower bound, therefore we
further introduce Instance 4’. The LP problem

min
∑
~d

p~dR~d

s.t.
R(3,2,1) +M1 +M2 ≥ F3 + F2 (Inst. 2)
R(1,2,3) +R(2,3,1) +M1 +M2 ≥ F1 + 2F2 + F3 (Inst. 4)
R(1,3,2) +R(3,2,1) +M1 +M2 ≥ F1 + F2 + 2F3 (Inst. 4)
R(2,1,3) +R(3,2,1) +M1 +M2 ≥ F1 + 2F2 + F3 (Inst. 4)
R(2,3,1) +R(3,1,2) +M1 +M2 ≥ F1 + F2 + 2F3 (Inst. 4)
R(3,1,2) +R(3,2,1) + 2M1 +M2 ≥ F1 + F2 + 2F3

(Inst. 4’)

yields

R(1,2,3) = 2, R(2,1,3) = 3, R(3,1,2) = 3,

R(1,3,2) = 4, R(2,3,1) = 3, R(3,2,1) = 2,

with R̄ = 5
2 . The last inequality is labeled Instance 4’ because

it does not correspond to a strict application of Instance 4 in
Section III-B. Its derivation follows a similar reasoning, but
they are not strictly identical. Specifically

R(3,1,2) +R(3,2,1) + 2M1 +M2 (77)
≥ H(X(3,1,2)) + 2H(Z1) +H(X(3,2,1)) +H(Z2) (78)
≥ H(X(3,1,2), Z1) +H(X(3,2,1), Z1, Z2) (79)
≥ H(X(3,1,2), Z1,W3) +H(X(3,2,1), Z1, Z2,W2,W3) (80)
≥ H(X(3,1,2), X(3,2,1), Z1, Z2,W2,W3) +H(W3) (81)
≥ H(X(3,1,2), X(3,2,1), Z1, Z2,W2,W3,W1) +H(W3)

(82)
= H(W1,W2,W3) +H(W3) = F1 + F2 + 2F3 (83)

The per-request rates above yield an information-theoretical
lower bound for the average rate R̄ ≥ 5

2 . This bound can be

TABLE XII
TRANSMITTED MESSAGES X~d

FOR EACH POSSIBLE DEMAND INSTANCE ~d.
THESE ACHIEVABLE RATES MATCH THE OBTAINED LOWER BOUNDS IN

EXAMPLE 4, HENCE THEY CORRESPOND TO THE PER-REQUEST CAPACITY.

Request ~d Transmitted messages X~d
Rate R~d

(1,2,3) (u2, w1 ⊕ u1) 2
(1,3,2) (w1, v2, u1, u3) 4
(2,1,3) (v2, u1 ⊕ v1, w1 ⊕ u2) 3
(2,3,1) (v2, u3, u1 ⊕ v1) 3
(3,1,2) (u2, u3, w1 ⊕ v2) 3
(3,2,1) (u2, u3) 2

achieved by dividing the files into unit-length subfiles, w2 =
(v1, v2) and w3 = (u1, u2, u3), to be stored in the caches as
follows.

Z1 = {u1} Z2 = {v1, v2 ⊕ u2} Z3 = {w1, v1, u3}.

The transmitted messages X~d in Table XII allow the server
to fulfill all requests and yield an average rate of R̄ = 5

2 ,
identical to the above lower bound. Hence, this is the minimum
achievable average-rate of the system.

It is unclear whether this scheme can be decomposed
in terms of the basic coded caching schemes described in
Section III-A. All efforts to confirm or deny this hypothesis
have been unsuccessful.

C. Proof of Example 5

Without solving an LP problem as in the proofs of Exam-
ple 3 and 4, we can directly combine the following relevant
Instance 4 inequalities to obtain a tight lower bound:

R(1,2,3) +R(2,3,1) +M1 +M2 ≥ F1 + 2F2 + F3 (Inst. 4)
R(1,3,2) +R(3,2,1) +M1 +M2 ≥ F1 + F2 + 2F3 (Inst. 4)
R(2,1,3) +R(1,3,2) +M1 +M2 ≥ 2F1 + F2 + F3 (Inst. 4)
R(2,3,1) +R(3,1,2) +M1 +M2 ≥ F1 + F2 + 2F3 (Inst. 4)
R(3,1,2) +R(1,2,3) +M1 +M2 ≥ 2F1 + F2 + F3 (Inst. 4)
R(3,2,1) +R(2,1,3) +M1 +M2 ≥ F1 + 2F2 + F3 (Inst. 4)

to yield

2(R(1,2,3)+R(1,3,2)+R(2,1,3)+R(2,3,1)+R(3,1,2)+R(3,2,1))

+ 6M1 + 6M2 ≥ 8(F1 + F2 + F3)

or equivalently R̄ ≥ 1. The average rate can be achieved by
Example 5 in [3]. That is, dividing the three files as w1 =
(t1, t2, t3) w2 = (u1, u2, u3) and w3 = (v1, v2, v3), to be
stored in the caches as follows.

Z1 = {t1, u1, v1} Z2 = {t2, u2, v2} Z3 = {t3, u3, v3}.

The transmitted messages X~d in Table XIII allow the server to
fulfill all requests and yield an average rate of R̄ = 1, identical
to the above lower bound. Hence, this is the minimum achiev-
able average-rate of the system. This scheme can be regarded
as a simple extension of Ha.Fi scheme in Section III-B, which
we can call 1/3.Fi: In the placement phase, each file is divided
equally into three subfiles of size 1

3 instead of half and each
user stores one subfile of each file. In the delivery phase, coded
subfiles are transmitted to benefit multiple users.
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TABLE XIII
TRANSMITTED MESSAGES X~d

FOR EACH POSSIBLE DEMAND INSTANCE ~d.
THESE ACHIEVABLE RATES MATCH THE OBTAINED LOWER BOUNDS IN

EXAMPLE 5, HENCE THEY CORRESPOND TO THE PER-REQUEST CAPACITY.

Request ~d Transmitted messages X~d
Rate R~d

(1,2,3) (t2 ⊕ u1, t3 ⊕ v1, u3 ⊕ v2) 1
(1,3,2) (t2 ⊕ u1, t3 ⊕ v1, u2 ⊕ v3) 1
(2,1,3) (t1 ⊕ u2, t3 ⊕ v1, u3 ⊕ v2) 1
(2,3,1) (t1 ⊕ u2, t2 ⊕ v1, u3 ⊕ v3) 1
(3,1,2) (t1 ⊕ u1, t3 ⊕ v2, u2 ⊕ v3) 1
(3,2,1) (t1 ⊕ u1, t2 ⊕ v2, u3 ⊕ v3) 1
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