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Abstract—One main objective of ultra-low-latency communi-
cations is to minimize the data staleness at the receivers, recently
characterized by a metric called Age-of-Information (AoI). While
the question of when to send the next update packet has been
the central subject of AoI minimization, each update packet
also incurs the cost of transmission that needs to be jointly
considered in a practical design. With the exponential growth
of interconnected devices and the increasing risk of excessive
resource consumption in mind, this work derives an optimal
joint cost-and-AoI minimization solution for multiple coexisting
source-destination (S-D) pairs. The results admit a new AoI-
market-price-based interpretation and are applicable to the setting
of (a) general heterogeneous AoI penalty functions and Markov
delay distributions for each S-D pair, and (b) a general network
cost function of aggregate throughput of all S-D pairs. Extensive
simulation is used to demonstrate the superior performance of
the proposed scheme.

I. INTRODUCTION

The increasing demand for real-time communications, in-
cluding VR/AR systems, remote surgeries, and autonomous
driving services [1]–[3], prompts a back-to-basics approach for
next-generation low-latency network designs [4]. Recently, a
new metric called Age-of-Information (AoI) was introduced to
rigorously quantify data staleness [5]. The corresponding AoI
minimization problems have since been studied for various
settings [6]–[11]. In particular, [12]–[14] considered a single
source-destination (S-D) pair, where each data packet sent
from the source experiences random delay. Once it is delivered
to the destination, an instantaneous ACK packet will inform
the source, and the ACK will be used to decide when to
send the next packet. [12], [13] characterized the optimal
transmission schedules that minimize the average AoI. [14]
extends the results to arbitrary AoI penalty functions. Recently,
[15] generalized the 1-way-delay setting in [12]–[14] to the
2-way-delay setting, where the ACK also experiences random
delay, and proposed a distribution-oblivious online algorithm
that provably converges to the optimum.

Meanwhile, as the exponential growth of connected devices
brings more convenience to the society, such as gigantic
number of devices also poses an increasing risk of excessive
resource consumption [16]. Existing results [13], [14] assume
a maximum average sampling rate constraint Rmax, which
essentially solve1 the following joint cost-&-AoI minimization
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1While the results of [13], [14] are presented as having a maximum
sampling rate constraint, the approaches of [13], [14] can also be used to
solve the cost-&-AoI minimization problem when loss(x) is affine.

problem

minimize avg.aoi.penalty + loss(sampling.rate) (1)

where the network cost function loss(x) = 0 if x ≤ Rmax and
loss(x) = ∞ if x > Rmax. This work strengthens the results
in [13], [14] with the following contributions.

(i) Instead of a specialized cost function loss(·), we solve
(1) for arbitrary continuously differentiable, convex, non-
decreasing loss(·). The results characterize the complete trade-
off between cost and AoI under a more general throughput-to-
cost and AoI-penalty structure, and hence significantly broaden
the applicability of [13], [14].

(ii) We generalize the single S-D pair results [13], [14] for
multiple coexisting S-D pairs. Specifically, we characterize
how coexisting S-D pairs can optimally and collectively bal-
ance their individual AoI minimization goals via a shared cost
function of the aggregate network throughput. See (7) for the
rigorous definition. The solution takes into account different
timeliness requirements and different transmission costs of
each S-D pair by allowing for heterogeneous AoI penalty
functions and general cost function loss(·). This network-wide
joint cost-&-AoI minimization will greatly benefit future 5G
network designs, which aim to support a million devices in a
square kilometer [17] of widely-ranging throughput-cost and
AoI targets.

(iii) Analytically, the solution admits a new AoI-market-
price-based interpretation, and can thus be viewed as a new
AoI-centric network utility maximization (NUM) framework.

(iv) Simulation results show that our scheme successfully
curbs the excessive resource consumption of the existing cost-
oblivious AoI-optimal policy and optimally balances all S-D
pairs with 24–56% savings compared to the state of the art.

A. Existing Joint Cost-&-AoI Minimization Results

This work focuses on the cost-&-AoI minimization for the
queue-based setting with random service time and random
ACK delay, see [13]–[15]. Existing cost-&-AoI minimization
results are based on various significantly different network
scenarios [13], [14], [18]–[25]. For instance, both [18] and
[19] considered AoI minimization with either the average
power constraint or with the sampling cost consideration.
Both considered block fading channels, in which whether each
packet transmission succeeds or fails will be fed back to the
source instantaneously at the end of the time slot. There is
no concept of random delayed delivery that is central in our
setting. [24], [26], [27] focused on energy harvesting sources,



a scenario that is very different from our simple but highly
relevant setting of multiple S-D pairs with delayed delivery.
In addition, most existing works considered AoI with an
affine throughput-to-cost function [13], [14], [20]–[23], [25],
another distinction from the general loss(·) in this work.

II. MODEL AND FORMULATION

A. System Model With K Source-Destination Pairs

We consider a network of K coexisting S-D pairs, each
of which is composed of a source, a destination, a source-
to-destination (s2d) channel and a destination-to-source (d2s)
channel as shown in Fig. 1. The ACK-based generate-at-
will model [12]–[15] is considered. To be specific, after the
source transmits a packet, the packet will experience some
delay before arriving at the destination. Once delivered, the
destination immediately generates an ACK-packet and sends
it back to the source, which again may experience some delay.
After the ACK of the previous packet arrives, the source can
wait for an arbitrary amount of time. After the carefully chosen
waiting time, the source generates a new status update packet
and transmits it. The process then repeats itself. The detailed
system evolution is described below (also see [13]–[15] for
the description for the special case of K = 1).

Source Destination

Delay Z(k)

Delay Y(k)

ACK immediately

Fig. 1: An S-D pair with two-way delay.

Time sequences: For the k-th S-D pair, the system con-
sists of three discrete-time real-valued non-negative random
processes X(k)

i , Y (k)
i , and Z

(k)
i , for all i ≥ 0. X(k)

i is the
waiting time of the source between receiving the (i − 1)-th
ACK and generating/transmitting the i-th update packet;2 Y (k)

i

(resp. Z(k)
i ) is the random delay for the i-th use of the s2d

(resp. d2s) channel.
For each S-D pair, S(k)

i denotes the time instant when
the i-th packet is generated/transmitted. The i-th packet ar-
rives at the destination at time D

(k)
i , and the i-th ACK

packet is received by the source at time A(k)
i . The values of

(S
(k)
i , D

(k)
i , A

(k)
i ) refer to the absolute time instants, while

the values of (X
(k)
i , Y

(k)
i , Z

(k)
i ) represent the lengths of the

intervals. They are related by the following equations: Ini-
tialize A

(k)
0 = X

(k)
0 = Y

(k)
0 = Z

(k)
0 = 0. For all i ≥ 1,

we have S
(k)
i = A

(k)
i−1 + X

(k)
i , D(k)

i = S
(k)
i + Y

(k)
i , and

A
(k)
i = D

(k)
i + Z

(k)
i . We call the time interval [A

(k)
i−1, A

(k)
i )

the i-th round, consisting of the i-th waiting time X(k)
i at the

source, the i-th s2d delay Y (k)
i and d2s delay Z(k)

i . See Fig. 2.

2The assumption that X
(k)
i ≥ 0 prevents the source from transmission

before receiving the ACK, which reflects the principle in the stop-and-wait
ARQ mechanism [28]. One may design an even better algorithm that transmits
anticipatively before the ACK is delivered, which, however, is beyond the
scope of this paper.
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Fig. 2: Evolution of the AoI penalty function γk(∆k(t)).

Age-of-Information and its penalty function: Following [5],
we define the Age-of-Information ∆k(t) at time t by

∆k(t) , t−max{S(k)
i : i satisfies D(k)

i ≤ t}. (2)

The AoI penalty function γk(∆k(t)) represents the level of
data staleness. Three popular choices are: (i) linear γk,lin(∆) =
wk · ∆ [29]; (ii) quadratic γk,qrd(∆) = wk · ∆2 [15]; and
(iii) exponential γk,exp(∆) = ewk∆ − 1 [14]. In all the three
choices, wk ≥ 0 are tunable parameters. An S-D pair carrying
time-sensitive traffic may use an exponential penalty function
and/or use a larger weight wk, while less urgent traffic may use
a linear penalty and/or with a smaller wk. Our results hold for
any heterogeneous choices of γk(·), not limited to the above
three. See Fig. 2 for the evolution of γk(∆k(t)).

Overall objective: Define the k-th average throughput by

Rk(T ) =
1

T
E{max{i : A

(k)
i ≤ T}}. (3)

We use a single loss(·) function to represent the cost for the
network to carry the traffic of all K pairs. We aim to minimize

lim sup
T→∞

 K∑
k=1

1

T

∫ T

0

γk(∆k(t))dt

+ loss

(
K∑
k=1

ckRk(T )

)
(4)

where the constants ck > 0 describe the (relative) amount
of resource consumption for carrying the underlying traffic,
e.g., a large ck means it is more costly to carry the k-th S-D
pair. Note that the AoI penalty γk(·) can also be individually
weighted for each pair. We do not explicitly specify their
weighting coefficients herein since they can be completely
absorbed when choosing γk(·) arbitrarily and heterogeneously.

Technical assumptions (i)–(v): (i) loss(·) : [0,∞) →
(−∞,∞) is a continuously differentiable, non-decreasing and
convex function; for each S-D pair, we assume (ii) Y (k) and
Z(k) are of bounded support; (iii) (Y

(k)
i , Z

(k)
i ) can be of arbi-

trary joint distribution PY (k)Z(k) but the vector random process
{(Y (k)

i , Z
(k)
i ) : i ≥ 1} is ergodic, stationary and Markov;

(iv) E{Y (k)
i } + E{Z(k)

i } > 0; (v) γk(·) : [0,∞] → [0,∞] is
a continuously differentiable and strictly increasing function
satisfying γk(0) = 0 and γk(∞) =∞.



Our model implicitly assumes the network can support all
the K users. However, we allow for any arbitrary convex
loss function loss(·) to implicitly deal with the inability of
supporting too many users, e.g., if we set loss(·) to be infinity
when the number of users > Kmax, then the scheme would
automatically limit the number of users. The loss function
loss(·) is a function of the “average” throughput, not the
“instantaneous” throughput. Therefore, it is an instance of
“soft constraints” (see similar rate constraints in [13], [14]
that can also be viewed as instances of soft constraints).

B. From the Long-Term Average to a Single-Round Analysis
We first define two functions for the k-th S-D pair:

hk(y′, z′, x, y) ,
∫ y′+z′+x+y

0

γk(t)dt−
∫ y

0

γk(t)dt (5)

gk(y′, z′, x) , E
{
hk(y′, z′, x, Y

(k)
i )|Y (k)

i−1 = y′, Z
(k)
i−1 = z′

}
(6)

where gk(y′, z′, x) is the conditional expectation of
hk(y′, z′, x, Y

(k)
i ) over Y

(k)
i . The intuition behind

(5) is that the shaded area in Fig. 2 is computed by
hk(Y

(k)
i−1, Z

(k)
i−1, X

(k)
i , Y

(k)
i ). We observe that the overall area

underneath γk(∆k(t)) can be decomposed as a summation
of smaller sub-areas with shapes similar to the shaded area
hk(Y

(k)
i−1, Z

(k)
i−1, X

(k)
i , Y

(k)
i ) in Fig. 2. Using this observation

(also used in [13]–[15]), we can convert the original problem
(4) to the following equivalent single-round minimization
problem:

µ∗ , inf
X

(1)
i ,...,X

(K)
i

K∑
k=1

E
{
gk(Y

(k)
i−1, Z

(k)
i−1, X

(k)
i )

}
E
{
Y

(k)
i−1 + Z

(k)
i−1 +X

(k)
i

}
+ loss

 K∑
k=1

ck

E
{
Y

(k)
i−1 + Z

(k)
i−1 +X

(k)
i

}
 (7)

for which the i-th waiting time X(k)
i is a function of the delays

of the previous round (Y
(k)
i−1, Z

(k)
i−1). Our goal is to design

the set of K waiting time functions {X(1)
i , ..., X

(K)
i } that

minimizes (7). The value of the round index i is irrelevant
herein since whatever design that minimizes (7) can and will
be repeatedly applied to all rounds i ≥ 1. In the sequel, we
focus exclusively on solving (7).

III. MAIN RESULTS

Recall that the waiting time X
(k)
i is a function of

(Y
(k)
i−1, Z

(k)
i−1). We consider the following hitting-time-based

φ
(k)
β with a tunable parameter β ≥ 0:

X
(k)
i (β) = φ

(k)
β (Y

(k)
i−1, Z

(k)
i−1) (8)

, inf

{
t > 0 :

d

dt
gk(Y

(k)
i−1, Z

(k)
i−1, t) > β

}
. (9)

Note that the waiting time function φ
(k)
β (·, ·) is based on

gk(·), which implicitly depends on the given, likely heteroge-
neously chosen, k-th AoI penality function γk(·) and the k-th

delay distribution Y (k)
i , see (5) and (6). As a result, different

k may have a different φ(k)
β (·, ·) even though they share the

same form of (9). For each β, we further define

aoik(β) , E
{
gk(Y

(k)
i−1, Z

(k)
i−1, φ

(k)
β (Y

(k)
i−1, Z

(k)
i−1))

}
(10)

Tk(β) , E
{
Y

(k)
i−1 + Z

(k)
i−1 + φ

(k)
β (Y

(k)
i−1, Z

(k)
i−1)

}
(11)

as the expected AoI penalty and time duration of the special
scheme φ(k)

β (·, ·), where both expectations are taken over the
random vector (Y

(k)
i−1, Z

(k)
i−1).

Lemma 1: Under technical assumptions (i)–(v), aoik(β)
and Tk(β) are continuous, non-decreasing and strictly positive
functions of β.

By the definition of (9), if d
dtgk(·, ·, t)|t=0 is lower bounded

away from 0, then φ(k)
β (·, ·) = 0 for all β that are sufficiently

close-to-zero. Therefore, the values of aoik(β) and Tk(β) in
(10) and (11) do not change with respect to β when β is small.
To formalize this observation, for every 1 ≤ k ≤ K, we define

β
(k)
0 , max{β : Tk(β) = Tk(0)}. (12)

We then have Tk(β1) = Tk(β2) and aoik(β1) = aoik(β2) for
all β1, β2 ∈ [0, β

(k)
0 ]. Before proceeding, we introduce one

more technical assumption.
Technical assumption (vi): For each k, we assume aoik(β)

and Tk(β) are continuously differentiable with respect to β if
β > β

(k)
0 .

In other words, we assume aoik(β) and Tk(β) are well-
behaved versus β while recognizing that aoik(β) (resp. Tk(β))
contains two pieces, one being a flat line segment for β ∈
[0, β

(k)
0 ] and one being a non-decreasing curve for β ∈

[β
(k)
0 ,∞) (see Lemma 1). The left and right derivatives at

the junction point β = β
(k)
0 are generally not equal. Hence

the derivative continuity is only assumed for β > β
(k)
0 .

Following (7), we define

µHT(β1, ..., βK) ,
K∑
k=1

aoik(βk)

Tk(βk)
+ loss

(
K∑
k=1

ck
Tk(βk)

)
(13)

as the objective value achieved when all K pairs employ
the hitting-time policy (8) and (9) with thresholds being
(β1, ..., βK), respectively. Also, define

µ∗HT , min
β1,...,βK

µHT(β1, ..., βK) (14)

as the minimum value achieved if all K pairs use the hitting-
time policy (after optimizing (β1, ..., βK)). It is clear that µ∗ ≤
µ∗HT since the latter is restricted to a special class of hitting-
time-based policies.

Proposition 1: Under technical assumptions (i)–(vi), we
have

µ∗ = µ∗HT. (15)

A high-level proof sketch is as follows. Consider any fixed
k. Suppose for an arbitrarily given scheme, the corresponding
expected i-th round AoI-penalty is ak and the expected i-th



round time duration is tk. We first prove that we can always
find a βk ≥ 0 such that aoik(βk)

Tk(βk) ≤
ak
tk

and 1
Tk(βk) ≤

1
tk

; that is,
the hitting-time policy using such βk “improves” the average
AoI penalty and the average throughput simultaneously. Since
the loss(·) is non-decreasing, replacing the given scheme by
our hitting-time policy will not hurt the overall objective value
in (7), hence Proposition 1.

Proposition 1 explicitly proves that the best hitting-time pol-
icy attains the optimal objective function value of any possible
designs. Therefore, in the following we can restrict our focus
to the hitting-time policies without sacrificing optimality.

The following results describe how to compute the thresh-
olds (β1, ..., βK) that achieves the minimum µ∗HT = µ∗.

Lemma 2: For each k,

βk · Tk(βk)− aoik(βk) (16)

is a continuous and strictly increasing function of βk. Fur-
thermore, its value is strictly negative when βk = 0 and it
approaches ∞ when βk →∞.

By Lemma 2, ∀x ≥ 0 the following equation

βk · Tk(βk)− aoik(βk)

ck
= x (17)

has a unique βk solution in (0,∞), which we denote by βk(x)
to emphasize its dependency on x. Define

m(r) ,
d

dr
loss(r) (18)

as the slope of the cost function loss(·). We then define

f(β1, · · · , βK) , m

(
K∑
k=1

ck
Tk(βk)

)
. (19)

Lemma 3: The following fixed-point equation

f(β1(x), · · · , βk(x)) = x (20)

has a unique root x∗ in the interval [0, f (β1(0), · · · , βK(0))].

Proposition 2: Eq. (14) is attained by

µ∗HT = µHT(β1(x∗), ..., βK(x∗)). (21)

Note that all our results require technical assumptions (i) to
(vi). For example, the uniqueness of x∗ in Lemma 3 requires
the convexity of loss(·).

An AoI-market-price-based interpretation: The intuition be-
hind Lemmas 2 and 3 and Proposition 2 is as follows. Given x,
the solution βk(x) is the threshold parameter that leads to the
hitting-time policy that minimize the average AoI penalty of the
k-th pair under the marginal cost x. Consequently, x can be
viewed as the price that the S-D pair has to pay for each packet
transmission. The larger the price x, the larger the βk(x) (see
Lemma 2 and (17)), the longer the expected duration of each
packet transmission Tk(βk(x)) (see Lemma 1), the less willing
for each S-D pair to send a new packet.

As a result, the right-hand side of the fixed-point equation
(20) is the “market price” of each packet transmission each

S-D pair is willing to pay when operating under parameter
βk(x). Note that f(β1, · · · , βK) in (18) and (19) is the
marginal network cost if the network is to support all K
pairs that adopt the hitting-time policy with parameters β1 to
βK , respectively. The left-hand side of (20) is thus how much
the network would charge for each packet transmission if all
S-D pairs operate under (β1(x), · · · , βK(x)). The optimum
(equilibrium) is attained when the market price balances how
much each S-D pair is willing to pay and how much the
network has to charge for each packet transmission, hence
the fixed-point equation.

By Propositions 1 and 2, we can find an optimal policy that
achieves µ∗ by the following steps.

Step 1: For each S-D pair, use the given AoI penalty
function γk(·) and the delay distribution (Y

(k)
i , Z

(k)
i ) to find

the explicit expression of hk(·), gk(·), φ(k)
β (·) by (5), (6),

and (9), respectively; Step 2: Use the waiting time function
φ

(k)
β (·) to derive the functions aoik(β) and Tk(β) of β by (10)

and (11) and the resulting function βk(x) of x by (17); Step
3: By Lemma 3, we use the bisection method [30] to find
x∗, the root of the fixed-point equation (20), and then derive
the optimal thresholds (β1(x∗), ..., βK(x∗)) in Proposition 2;
Step 4: For the k-th S-D pair, if the (i − 1)-th round delays
are (Y

(k)
i−1, Z

(k)
i−1) = (y′, z′), the source simply waits for

X
(k)
i = φ

(k)
βk(x∗)(y

′, z′) amount of time, see (8) and (9), before
generating/transmitting the next (i.e., the i-th) packet.

Steps 1 to 3 can be computed offline. Step 4 is a sim-
ple hitting-time-based policy using the computed parameter
βk(x∗). It is worth pointing out that the K-pair jointly
optimal solution can be computed very efficiently for large
K, say K = 103, since the optimal K-dimensional vector
(β∗1 , · · · , β∗K) in (14) is found by solving a 1-dimensional
fixed-point equation (20) via bisection.

IV. SIMULATION RESULTS

We compare our scheme to the following benchmarks:
(i) Zero-Wait (ZW) policy [31]: X(k)

i = 0, ∀k, i. ZW is
known to maximize the sum throughput [31].

(ii) AoI-Optimal policy [13]–[15]: this policy is also a
hitting-time-based policy3 but is oblivious to the network cost.

Due to the space limit, we only report the simulation results
using log-normal delays, which are empirically reasonable
channel models [32]. Similar results have been observed with
other delay distributions.

A. The Case of K = 1

When K = 1, our results characterize the joint cost-&-AoI
minimal solution of a single-pair setting with arbitrary cost
function loss(·), which has not been studied in [13], [14] that
consider the maximum sampling rate constraint.

We consider a single S-D pair with delays Y and Z being
log-normal random variables with (µY , σ

2
Y ) = (0.5, 0.25),

(µZ , σ
2
Z) = (0.5, 0.5), and the correlation coefficient ρY Z =

3This is consistent with our findings since our results contain the cost-
oblivious setting [13]–[15] as a special case once we hardwire loss(·) = 0.



0.66. The vector process {(Yi, Zi) : i ≥ 1} is i.i.d. and the AoI
penalty function is quadratic γ1(∆) = 0.5 ·∆2. We consider
an exponential loss(r) = eαr − 1 with c1 = 1, see (7). The
waiting time of the proposed policy can be computed using
the four steps outlined in the end of Sec. III. For instance,
when α = 16, we have x∗ = 147.21 and β1(x∗) = 39.37
according to Steps 1 to 3. If the delays in the previous round
are (Y

(1)
i−1 = 1, Z

(1)
i−1 = 1), then the waiting time for this round

is X(1)
i (β1(x∗)) = 4.95.

We run the three schemes ZW, AoI-Optimal, and Proposed
scheme for different α values and Fig. 3 plots the resulting
joint cost-&-AoI objective values. As expected, the Proposed
always achieves the lowest objective value. For large α = 20,
it leads to substantial savings of 80% and 66% when compared
to ZW and AoI-Optimal policies, respectively.
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Fig. 3: Simulation results for a single S-D pair.

B. The Case of K = 5 With Two Classes of Traffic
We also examine the case when heterogeneous traffics are

competing for the shared resources. In this experiment, we fix
loss(r) = e4r−1 and consider five S-D pairs with two classes
of traffic. We vary the composition of the two classes between
20/80 (one Class-1 S-D pair and four Class-2 S-D pairs) to
80/20 (four Class-1 pairs and one Class-2 pair).

All five S-D pairs have identical log-normal delays Y and Z
as described in Sec. IV-A. However, each Class-1 pair has an
AoI penalty function γClass1(∆) = ∆2, whereas each Class-2
pair has a smaller AoI penalty function γClass2(∆) = 0.05 ·∆2;
that is, Class-1 traffic is more “urgent.” For simplicity, we
do not impose individual throughput weighting and thus set
ck = 1 for all k = 1 to 5, see (7).

Compared to the cost-oblivious AoI-Optimal policy, the
savings of the Proposed range from 56% for the 20/80 case
to 24% for the 80/20 case, see Fig. 4a. For deeper analysis,
we plot the single-pair average AoI penalty for both classes,
see Figs. 4c and 4d. Since Class-1 has a larger AoI penalty
function, its average AoI penalty is always higher (see the
magnitude of of y-axis in Figs. 4c and 4d). Furthermore,
since Class-1 is more “urgent,” our scheme allocates higher
throughput for Class-1 than Class-2 (see the magnitude of y-
axis in Figs. 4e and 4f).

We also observe that when the percentage of Class-1
pairs increases, the network is carrying more “urgent” traffic.
However, since all pairs share the same network resources,
each Class-1 pair cannot expect to receive the same amount of
bandwidth as before. As a result, the throughput of each Class-
1 pair decreases (Fig. 4e) and its average AoI penalty increases

(Fig. 4c). Each Class-2 pair also reduces its own throughput
(Fig. 4f) and increases its own AoI penalty (Fig. 4d) to
make room for the newly added Class-1 pairs in the network.
Overall, the sum throughput of all 5 pairs increases when
we have more Class-1 pairs (Fig. 4b). This is because the
network recognizes that it is now carrying more urgent pairs
and increases its sum throughput accordingly.4

Note that both ZW and AoI-Optimal are cost-oblivious and
each S-D pair thus blindly decides its own transmission policy
without considering the collective network resource consump-
tion. That is why all their performance curves are flat lines
that do not react to different Class-1 percentages. In contrast,
the proposed scheme optimally balances the throughput and
AoI-penalty while taking into account different compositions
of the underlying traffic.
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Fig. 4: Simulation results for five coexisting S-D pairs.

V. CONCLUSION

We have derived the optimal policy that jointly mini-
mizes the sum of AoI penalties and the shared network cost
across multiple coexisting traffics, while optimally balancing
the heterogeneously timeliness requirements, heterogeneous
throughput-to-cost relationships, and heterogeneous underly-
ing delay distributions.

4Each S-D pair is allocated with less throughput when the Class-1 per-
centage increases, see Figs. 4e and 4f. But because each Class-1 pair has a
higher throughput than that of a Class-2 pair and because we gradually replace
the Class-2 pair(s) by Class-1 pair(s), the sum throughput still increases, see
Fig. 4b.
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