On Coded Caching for Two Users with Overlapping
Demand Sets

Chih-Hua Chang, Chih-Chun Wang Senior Member, IEEE, Borja Peleato Senior Member, IEEE
Purdue University, West Lafayette, IN 47907, USA
Email:{chang377,chihw,bpeleato } @purdue.edu

Abstract—Coded caching is a technique for reducing conges-
tion in communication networks by prefetching content during
idle periods and exploiting multicasting opportunities during
periods of heavy traffic. Most of the existing research in this area
has focused on minimizing the worst case (i.e., peak) rate in a
broadcast link with multiple identically distributed user requests.
However, modern content delivery networks are investing very
heavily in profiling their users and predicting their preferences.

The minimal achievable rate of a coded caching scheme with
heterogeneous user profiles is still unknown in general. This
paper presents the first steps towards solving that problem by
analyzing the case of two users with distinct but overlapping
demand sets. Specifically, it provides a complete characterization
of the uniform-average-rate capacity when the sets overlap in
just one file and shows that such capacity can be achieved with
selfish and uncoded prefetching. Then, it characterizes the same
capacity under selfish and uncoded prefetching when the demand
sets overlap in two or more files. The paper also provides explicit
prefetching schemes that achieve those capacities. All our results
allow for arbitrary (and not necessarily identical) users’ cache
sizes and number of files in each demand set.

I. INTRODUCTION

The increasing demand of video streaming data has led to a
significant challenge in content distribution over communica-
tion networks. Coded caching has recently received great suc-
cess in reducing the peak transmission rate in some networks
by exploiting multicasting opportunities in the underlying
broadcast channels. A coded caching scheme has two phases:
placement and delivery. In the placement phase, the users can
access the files at the server to fill their cache memories during
the off-peak hours. In the delivery phase, the users announce
their requests and the server, with full knowledge of the users’
cache contents, transmits the information required to satisfy
such requests for all the users.

Caching has been extensively studied in content distribution
networks with different objectives such as access latency
and transmission rate [1], [2]. Traditional “uncoded caching”
schemes focus on caching the content most likely to be
requested and, when the content absent from the users’ caches
is requested, they deliver it in plain form, uncoded. The most
commonly used placement algorithms for uncoded caching are
least frequently used (LFU) and least recently used (LRU),
where the former retains the most frequently accessed subfiles
in the past and the latter keeps the most recently used subfiles.

This work was supported in parts by NSF under Grant CCF-1422997, Grant
ECCS-1407604, Grant CCF-1618475, and Grant CCF-1816013.

Coded caching, initially proposed in [3], can reduce the
worst-case delivery time by a factor of (m) respect to
traditional uncoded caching schemes, where N is the number
of files, K is the number of users, F' is the individual file
size, and M is the individual cache size normalized by F.
Existing works have characterized the coded caching capacity
for some special NV and K values [3]-[6] and derived order-
optimal capacity expressions for general N and K [3], [7]-
[10]. The worst-case setting is analytically appealing but it
is not throughput optimal in practice with a time sequence of
requests. Some recent results have focused on the average-rate
capacity [8], [11]-[14], evaluating the transmission rate over
a distribution of demands. The order-optimal average-rate ca-
pacity results of user-independent file popularity, i.e., all users
having the same file popularity profile has been investigated
in [8], [9], [11]-[14]. Nevertheless, the assumption of user-
independent file popularity in these works is not compatible
with traditional uncoded caching schemes, since the number of
users with similar preferences can be small and each user often
operates in a distributed manner with its own file popularity
and prediction algorithm.

The rate improvement of coded caching primarily comes
from the broadcasting nature and the simultaneous users’
demands. However, the latter will not occur frequently and will
require synchronization among the users. When the demands
of users are served sequentially, coded caching increases
the system complexity without providing any rate reduction.
Clearly, the system should apply coded caching when users’
demands are synchronized, and employ traditional uncoded
caching when they come sparsely in time. One way to cover
both scenarios is to enforce the so-called uncoded prefetching
condition, which ensures that cached content is always of an
uncoded form so that the content is useful to both the coded
and uncoded delivery. It is obvious that such flexibility is at
the expense of degrading the overall capacity since uncoded
prefetching is a subclass of general prefetching schemes.

Motivated by the above discussion on limitations of user-
independent file popularity and flexibility of uncoded prefetch-
ing, this work studies the average-rate capacity of coded
caching with selfish and uncoded prefetching. Specifically, we
assume that each user k is associated with a file demand set
(FDS) O and requests each of those files with probability ﬁ
(see Section II for details). Users will only cache segments
from files in their demand set, hence the term selfish prefetch-
ing. The FDS setting reflects user-dependent file popularity

978-1-7281-5089-5/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Purdue University. Downloaded on August 24,2020 at 17:08:35 UTC from IEEE Xplore. Restrictions apply.

by considering different users k; and ko with O, # Oy,.
Average-rate capacity results for disjoint FDS (O, NOy, =)
and dominant FDS (O, C ©y,) were derived in [15], [16].
This work studies the case of two users (K = 2) and arbitrary
number of files N, where the FDSs ©, of user 1 and ©5 of
user 2 overlap in o« common files.

We first show that the average-rate capacity when ©; and
©; share a single common file (v = 1) can be achieved by
selfish and uncoded prefetching. Then we find the average-rate
capacity of selfish and uncoded prefetching for an arbitrary
number of common files. From a practical perspective, this
paper answers the following question:

Suppose there are two users with significantly dif-
ferent file preferences (as is common in practice).
However, there are « files that are simultaneously
desired by both users, where o can be any number.
What is the best coded caching in this scenario?

II. PROBLEM FORMULATION

We consider a coded caching system with one server and
K = 2 users. The central server has access to N files
Wi,...,Wn, with the same file size of F' bits. Each W,
is independently and uniformly distributed over {0, 1}¥. The
cache content of user k is denoted Z;. and has size M} I bits
for k € {1,2}. Without loss of generality, we assume M}, €
[0, N]. For any positive integer z, we define [z] £ {1,...,z}.

The operation of the system contains two phases, the
placement phase and the delivery phase. In the placement
phase, each user k£ populates its cache content by

Zy = ¢p(Wh,...,Wn), Vk € {1,2} (D

where ¢y is the caching function of user k. In the delivery
phase, the two users send a demand request d2 (d1,d2) €
[NV]? to the server, i.e., user k demands file Wy, . We denote the
probability mass function (pmf) of the random request dj, by
pgz] for k € {1,2}. In this work, we assume that the demands
of user-1 and user-2 are statistically independent, that is, the
joint pmf of the two users’ demand de [N)%is p = p&ll] pi)].

After receiving the demand index vector J: the server
broadcasts an encoded signal

Xg=v(d,W,...,Wy))

of R zF' bits with encoding function ¢ using an error-free link
to all K users. Each user & then uses X - and his/her cache
content Zj, to decode the requested file

Wa, = p(d, X 7. Z1), 3)

where p is the decoding function of user k. A coded
caching scheme is completely specified by K caching func-
tions {qbk}kK:l, one encoding function ¢, and K decoding
functions {pu < .

Definition 1. The file demand set (FDS) of user k is defined
as O, = {n € [N] : s 0}, which is the set of files that
user k desires with a strictly positive probability.

Definition 2. A coded caching scheme is zero-error feasible
if Wy, = Wy, for all k € [K], all d, € ©y, in the FDS, and
all Wy, -+ ,Wy) € {0, 1}VF.

Throughout this manuscript, we consider exclusively zero-
error feasible schemes.

Definition 3. A coded caching scheme uses uncoded prefetch-
ing if the cache content of user k is

.,wN) :¢k(W1,...

where each w; is an uncoded subfile of W, i € [N]. That is,
each user k stores uncoded fractions of the N files.

Zk:(wl,.. ,WN), Vk € [K] (4)

Definition 4. A coded caching scheme uses selfish prefetching
if all K caching functions ¢y, in (1) can be replaced by

Zi = on({W,, 1 n € O4}), Vk € [K]. (5)

Namely, each user k only stores the files that he/she is
interested in, thus the name selfish. In contrast, the more
general design using (1) is referred to as an unselfish scheme.

Definition 5. The average-rate of a coded caching scheme is
defined as

> PR (6)
The uniform-average-rate of a scheme is defined as

Re— 1t > Rp (7

— HK
Hk=1 ‘@k| vd dp €Oy

Furthermore, we will use Rsu to denote the uniform-average-
rate of a selfish and uncoded prefetching scheme.

R can be viewed as a first-order approximation to the
average-rate R that replaces the joint distribution p 7 with a
uniform distribution over the FDS HkK:1 O. In [6], an exact
characterization of R has been provided for the 2-user/2-file
setting (N = K = 2), which involves a detailed discussion of
NX = 4 dimensional request rates on the underlying values
of (M, Ms) and p. Instead of focusing on the exact R, in
this work we focus on the simplified, more tractable quantity
R, but allow the N value to be > 2.

III. MAIN RESULTS

Consider a system with K = 2 users and arbitrary N files,
where users 1 and 2 have FDS O and O, respectively, with
|©1] = Ny and |©3] = N,. Without loss of generality, we
assume N; < Ny < N such that there are four possible
relationships between ©7 and ©Os:

0, =06, Identical
0,NBy =10 Disjoint ®)
O, C 6, Dominant

©1 N0 # {0,001} Overlapped

The optimal coded caching schemes for K = 2 users and arbi-
trary N files for the identical and disjoint (©1, ©2) cases were

Authorized licensed use limited to: Purdue University. Downloaded on August 24,2020 at 17:08:35 UTC from IEEE Xplore. Restrictions apply.

N

P1 PO
NZ

P3

N,—1

P4 P2

P5
0 M,
0 N,—1 N, N
Fig. 1. The minimum average rate R of coded caching for |©1] = Ny,

|92| = No, and o = 1. For any (M7, M>) inside each subregion, the rate
R is characterized by the corresponding equation marked in that region.

solved in [15]. The dominant cases with (|©| =1, |02 = N)
and with (|©| = 2,|©3] = 3) were also solved in [15] with
some further discussion for large (01, O2) values.

This work focuses on the case of overlapped ©1 and ©-. We
refer to files in the intersection as common and their number
is denoted by a £ |©1 N O3]. All other files (not common)
will be labeled unique, since they belong to a single FDS.
Section III-A describes the minimum average rate R of coded
caching when ©; and ©3 overlap in a single file (o« = 1). Then
Section III-B presents the minimum average rate Ry, with
selfish and uncoded prefetching for arbitrary overlap between
©1 and O5 (a > 1).

A. Minimum average rate for o = 1

Proposition 1 (|©1| = Ni, |02 = Na, a = 1). Consider
K = 2 users and N = Nj + Ny — 1 files with file demand
sets ©1 = {1,...,N1}, Oy = {Nl,...,Nl + Ny — 1} such
that ©1 N ©3 = {N1} and o = 1. The uniform-average rate
R is tightly characterized by:

R>0 (PO)
R>1-M;/N, (P1)
R>1- M/N, (P2)
. 1 M, N;—1

>(2-—) -t M. P
Rz < N1> Ny N1No 2 (P3)
. 1 My Np—1

> (2 —) -2 — M P4
B2 < N2> No NiN, ° ®4)
. 1 M, M,

> _ _ s e
R> (2 w N2> N TN (P5)

The relationship of R versus (M1, Ms) is illustrated in Fig. 1.

_ The proof of Proposition 1 is relegated in [17]. Note that the
R described by (P0) to (P5) is the optimal uniform-average-
rate for general coded caching (including unselfish and coded

prefetching designs). Subsection III-B will describe a coded
caching scheme with selfish and uncoded prefetching which
achieves this bound for o = 1. Therefore the R in Prop. 1 is
also the optimal uniform-average-rate for selfish and uncoded
prefetching designs when a = 1.

B. Minimum average rate with selfish and uncoded prefetching
for a>1

Selfish and uncoded prefetching is not optimal in general,
since it imposes unnecessary restrictions on the content of the
caches. However, there are some cases in which it can proved
that selfish and/or uncoded prefetching is optimal. One such
example is Prop. 1 above and another example is provided in
[15] for dominant ©; = {1} and ©, = {1,...,N}, N > 2.
Furthermore, as discussed in Section I the simplicity of selfish
and uncoded prefetching is a significant advantage when files,
users, or links change dynamically.

This section provides an exact characterization of how the
caches should be populated for a general My, My, Ny, No,
and o (number of common files) in the case of K = 2 users
with selfish and uncoded prefetching.

Lemma 1. Without loss of generality, the optimal selfish and
uncoded prefetching schemes for K = 2 users satisfy the
following rules:

1) If a user is devoting a portion C' of its cache to prefetch ~y
common files, this capacity should be evenly distributed among
the files, i.e., a portion % of its cache to each of the common
files. The same holds for unique (non-common) files.

2) If both users are to cache a part of the same file, their
cached portions should overlap as little as possible.

Proof. The Lemma can be straightforwardly proven by using
symmetry and multicasting gain. See [17] for details. O

Since we are assuming selfish and uncoded prefetching,
each user will have to devote part of its cache to store common
files and the rest to store its own unique files. Let M/{ and M§
denote the amount of cache capacity devoted to common files
by users 1 and 2, respectively, and M and M that devoted
to unique files. Assuming that no capacity goes unused, we
have M7 4+ M = M; for i = 1,2. The average rate with
selfish and uncoded prefetching is given by

5
Rsu - ijRja
j=1

where p; and R;, 7 = 1,...,5 correspond to the probability

and transmission rate for different types of requests. Their

expressions are shown in Table I, with f.,; = % fui =
M . . .

~ 5 respectively representing the fraction of each common

and unique file being cached by user ¢ = 1, 2.

The following two propositions optimize the selfish and
uncoded prefetching to minimize the uniform-average rate Rau
in a system with a single server and K = 2 end users with
arbitrary cache capacities and file demand sets. When there
are multiple such schemes yielding the same Ry, our results
provide a full characterization of the optimal solution set of

€))

Authorized licensed use limited to: Purdue University. Downloaded on August 24,2020 at 17:08:35 UTC from IEEE Xplore. Restrictions apply.

TABLE I
PROBABILITY MASS AND TRANSMISSION RATE FOR DIFFERENT TYPES OF USERS’ REQUESTS.

| Request di | Request da | Probability p 7 |

Rate

—)(Np—a)

unique unique p1 = = NN, Ry =(1— fur) + (1 — fu2)

unique common p2 = % Ry = (1— fe2) + (1 = fu1)

common unique p3 = % R3 = (1— fe1) + (1 — fu2)

Same common file Py = Nlo‘Nz Ry =1 —min(fe1, fe2)

Different common files ps = 0‘1\(]‘?;,? Rs =2 — fe1 — fe2 —min(fe1, fe2,1 — fe1,1 — fe2)
(M7, M$). Prop. 2 focuses on the case aw = 1 and Prop. 3 M5
on « > 2. In all cases, it is enough to specify how each a
user should split its cache between common and unique files, Region B
since Lemma 1 can then be used to determine a suitable set MS > max(MS, a — MY)

. . 2 1 1

of file segments for each user to cache. In order to simplify Y T —

the equations, we will denote the number of unique files in
each demand set as 1 = N1 — « and 32 = Ny — a.

Proposition 2. When o = 1, the average rate is minimized
by the following placement scheme: cache unique files first. If
there is space left after having cached all of them, then fill it
with common file segments. More generally, the optimal set of
cache distributions (M§, MS) is:

max(07M1 7&1) SM{’ §maX(M1 751,M2752) (10)
max (0, My — B2) <M§ < max(M; — 1, Mz — f2). (11)
Proof. See proof for Prop 3. U

The average rate Ry, resulting from the placement scheme
in Prop. 2 matches that in Prop. 1 and Fig. 1, as expected.

Proposition 3. When o > 2, the average rate is minimized
by the following placement scheme:

1) Cache common files in the smallest among My and Mo,
up to a maximum of half from each common file. Then
have the other user cache an identical (but disjoint)
fraction of common files.

2) If any cache capacity remains after 1,
devoted to caching unique files.

3) If a cache is still not full after 1 and 2, a user should
cache additional segments from common files.

it should be

The general equations characterizing the optimal set of cache
distributions (M{, MS) for o > 2 are somewhat tedious, see
[17] for details, but the optimal set can be easily found from
Fig. 2 and 3 for any given o, My, Ms, N1, No.

Proof. The average rate in Eq. (9) and Table I is piecewise
linear in M7 and M, with four linear regions corresponding to
which of the following is minimum: M{, M35, a— M7, ao— M3,
as shown in Fig. 2. The problem that we aim to solve is

Minimize Rq, (12)
Mg, M ie{1,2}
subject to M{ + M = M;, ie{l,2} (13)
0<Mf<a, ie{l,2} (14)
0<M*<Bi=N—a, ic{l,2} (15

Region A
M{ < min(M§, @ — M5$)

Region D

My > max(Ms5,a — M5)

Region C

_M§ < min(M§, a — MY)

- B My

Fig. 2. Average rate is piecewise linear in the fractions of overlapping files
being cached by each user. The feasible region is shaded.

Eq. (13) allows us to express M;* = M;—M7 fori = 1,2. The
feasible region of joint (13), (14), and (15) is thus max(0, M;—
Bi) < Mf < min(M;,) for ¢ = 1,2 as shaded in Fig. 2. The
gradient of Ry, with respect to M7y and M5 is given by

« Region A: VRSH(Mf,MC) = 7w (1—a1)
o Region B: VRsu(Ml,MQ) = N11N2 (0, @)
e Region C: VR, (M{, M§) = N11N2(171 Q)
e Region D: V Ry, (M{, Ms) = N11N2 (r,0)

These gradients are illustrated in Fig. 3.

When o = 1, the gradients point away from the origin, so
the average rate is minimized when M7 and M are as small
as possible. This proves Prop. 2.

When a = 2, the gradients point away from the lower left
diagonal, so the average rate is minimized when M| = M§
and they are less than 5, or as small as possible if that is not
feasible (i.e., if max(M; — Ny + o, My — Np +) > 9).

When o > 2, the gradients point away from the center for
all four regions and the minimum average rate is achieved by
Mf = M$ = min(§, My, M3), when feasible.

The three caching schemes proposed in Props. 2-3 fulfill
those conditions. ([

Corollary 1. If we assume min(M, M) > 1 and max(M; —
B1, Ma—B2) < 1 as shown in Fig. 3, the optimal set for o« = 2

Authorized licensed use limited to: Purdue University. Downloaded on August 24,2020 at 17:08:35 UTC from IEEE Xplore. Restrictions apply.

‘ Pttt ‘ | I + ' % I
t tr ot . AN ~~ —
Myt bttt S VRN -
t t t . NN -
t tot e . NN
t t - e e NN
t S T N NN -
i Optimal cache O . AN Op'tim\l ce.a\ehe \ .
M= g, y Tftrﬁt'ﬂ . ", 5, / \istrgutigp 1\ '\
e VNN NN NN N
0 —— M 0 i
0 My =By M, a 0 My =By My =By M, a
a=1 a=3

Fig. 3. Gradient fields of Reu respect to M, M§, for different values of a. The optimal (M, MS) which minimize the average rate within the feasible

region (shaded) is also shown.

is given by:

max(0, 8) < M¢ = M¢ < min (%,MMMQ) . 16)
Under those same assumptions, the optimal (unique) solution

when o > 2 is My = M5 = 3.

The uniform-average capacity of a coded caching scheme
with selfish and uncoded prefetching when o > 2 can be found
by evaluating Eq. (9) with the policy in Prop. 3. Specifically,
when My > My, Rsu is tightly characterized by

Fou 2.0 Q)
Ruz1- 3 @
Rw>2—i2—i§—a9§Nf” Q)
RS”>2_%_%_21\?1N2 (Q3)
Rozo- b Mo Mok Mheol) g
Rsu>2—%_%_% Q5)

for the regions illustrated in Fig. 4. The equations for the
remaining regions (i.e., M > M>) can be found by symmetry,
exchanging the roles of users 1 and 2.

IV. SIMULATIONS

This section illustrates the average rate capacity expressions
in Fig. 4 for the particular case of Ny = Ny = 128 and
M; = My = M. It will compare the average rate with the
optimal selfish and uncoded prefetching scheme described in
Prop. 3 with two others:

e Uncoded transmission (UT): during the delivery phase,
transmissions cannot encode multiple file segments into
a single message. The server will send to each user
whatever file segments it is missing from its cache,
uncoded. There is no multicasting gain except when both

M,
N
Q1 Qo0
NZ
Q2
a
N~ Q4
N, —a—] Q3
Q5
a —
2
0 T f T M,
a
o = Ni—a Nyi= N N

Fig. 4. The minimum average rate R for |©1] = Ni, |©2| = Na, and
« > 2 with selfish and uncoded prefetching.

users demand the same file, hence selfish prefetching is
optimal. The minimum uniform-average rate is

- « M
> _ _
huz (2-57) (- %)

where N, denotes the value of Ni = No.

o Shared caches (SC): users can share the content of their
caches with each other. The two caches can therefore be
treated as a single memory of size 2M that both users can
access, without restricting the prefetching to be selfish or
uncoded. The minimum uniform-average rate is

~ « 2M
w>(2-) (1-7o—).
hex (2o 5) (-5)

The UT scheme adds constraints to our system and therefore
provides an upper bound to the general uniform-average rate
capacity, while the SC scheme adds capabilities that our
system did not have and therefore provides a lower bound to

a7

(18)

Authorized licensed use limited to: Purdue University. Downloaded on August 24,2020 at 17:08:35 UTC from IEEE Xplore. Restrictions apply.

N

N = = = Uncoded transmission
\ . : Selfish-uncoded prefetching |
AN ' Shared caches

-

©
T

4

-

=l
T
[4
L

Uniform-average rate
o o -
© = b B
k4
4
4
'
e
’,

n

e o 9

N B o
T
b4
i

0 20 40 60 80 100 120 140
Cache size M

o

Fig. 5. Uniform-average rate as a function of the cache size M when N1 =
N = 128 and o = 96.

the general (including unselfish and coded prefetching) coded
caching capacity.

Fig. 5 presents the uniform-average rates (normalized by
the file size) for the three schemes when o« = 96 and the
cache size per user grows from nothing (M = 0) to being
able to cache all the files in the FDS (M = 128). The rate
with our scheme falls between the other two, as expected, but
it is interesting to note that for small M it is a lot closer to
the SC than to the UT. This tells us that, even if we removed
the selfish and uncoded prefetching restrictions, we would not
be able to achieve a significant reduction in the rate.

Fig. 6 presents the uniform-average rates (normalized by
the file size) for the three schemes when M = 16 and
the intersection between the file demand sets (FDS) grows
from empty (o = 0) to a complete overlap (o« = 128). It
can be observed that the UT scheme yields nearly constant
rate regardless of the number of common files. This can be
explained by the fact that, with N,, = 128 files in each demand
set, the probability of both users requesting the same file is
fairly low, even with a complete overlap. The uniform-average
rate of our scheme is again relatively close to the capacity
lower bound, specially when the overlap between the users’
interests is small.

V. CONCLUSION

This paper studied the average rate capacity of a coded
caching system with two users having arbitrary cache ca-
pacities and demanding files from different but overlapping
demand sets. It characterized the general capacity when both
sets overlap on a single file, and concluded that such min-
imum average rate can be achieved even if each user can
only cache uncoded file segments from its own file demand
set. The paper then focused on this scenario of selfish and
uncoded prefetching and derived explicit expressions for the
minimal achievable uniform-average rate when the file demand
sets have arbitrary size and number of overlap. Finally, we
provided detailed placement and delivery schemes capable of

Uniform-average rate

= = = Uncoded transmission
— Selfish-uncoded prefetching
. Shared caches

(1] 20 40 60 80 100 120 140
FDS overlap o

Fig. 6. Uniform-average rate as a function of the FDS overlap « when
N1 = Ny =128 and M = 16.

achieving the derived capacities. Simulation results were used
to illustrate our results and bound their gap to an optimal
unselfish and coded prefetching scheme.

REFERENCES

[1] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” in Proc. IEEE INFOCOM, March 2010.

[2] P. Krishnan, D. Raz, and Y. Shavitt, “The cache location problem,”
IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 568-582, Oct 2000.

[3] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856-2867, May 2014.

[4] C. Tian, “Symmetry, demand types and outer bounds in caching sys-
tems,” in Proc. IEEE Int. Symp. Inform. Theory, Jul. 2016, pp. 825-829.

[5] D. Cao, D. Zhang, P. Chen, N. Liu, W. Kang, and D. Gunduz, “Coded
caching with heterogeneous cache sizes and link qualities: The two-user
case,” in Proc. IEEE Int. Symp. Inform. Theory, 2018, pp. 1545-1549.

[6] C. Chang and C. Wang, “Coded caching with full heterogeneity: Exact
capacity of the two-user/two-file case,” in Proc. IEEE Int. Symp. Inform.
Theory, July 2019, pp. 6-10.

[71 M. A. Maddah-Ali and U. Niesen, “Decentralized coded caching attains
order-optimal memory-rate tradeoff,” IEEE/ACM Trans. Netw., vol. 23,
no. 4, pp. 1029-1040, Aug 2015.

[8] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Characterizing the
rate-memory tradeoff in cache networks within a factor of 2,” IEEE
Trans. Inf. Theory, vol. 65, no. 1, pp. 647-663, Jan 2019.

[9] T. Luo, V. Aggarwal, and B. Peleato, “Coded caching with distributed

storage,” IEEE Trans. Inf. Theory, pp. 1-1, 2019.

T. Luo and B. Peleato, “The transfer load-i/o trade-off for coded

caching,” IEEE Commun. Lett., 2018.

U. Niesen and M. A. Maddah-Ali, “Coded caching with nonuniform

demands,” IEEE Trans. Inf. Theory, vol. 63, no. 2, pp. 1146-1158, 2017.

J. Zhang, X. Lin, and X. Wang, “Coded caching under arbitrary

popularity distributions,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp.

349-366, Jan. 2018.

M. Ji, A. M. Tulino, J. Llorca, and G. Caire, “Order-optimal rate of

caching and coded multicasting with random demands,” IEEE Trans.

Inf. Theory, vol. 63, no. 6, pp. 3923-3949, Jun. 2017.

J. Hachem, N. Karamchandani, and S. N. Diggavi, “Coded caching for

multi-level popularity and access,” IEEE Trans. Inf. Theory, vol. 63,

no. 5, pp. 3108-3141, May 2017.

C. Chang and C. Wang, “Coded caching with heterogeneous file demand

sets — the insufficiency of selfish coded caching,” in Proc. IEEE Int.

Symp. Inform. Theory, July 2019, pp. 1-5.

S. Wang and B. Peleato, “Coded caching with heterogeneous user

profiles,” in Proc. IEEE Int. Symp. Inform. Theory, July 2019.

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

Authorized licensed use limited to: Purdue University. Downloaded on August 24,2020 at 17:08:35 UTC from IEEE Xplore. Restrictions apply.

https://engineering.purdue.edu/~ chihw/pub_pdf/ICC2020_FDS_overlapping.pdf.

