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Abstract—This work considers Gaussian linear control systems
where the goal is to guarantee system-state mean-square stability
(i.e., E

(
∥x(t)∥2

)
≤ D) while minimizing the traffic rate R

between the sensor(s) and the controller. Most existing results
either assume zero delay or focus on the asymptotic setting
that overlooks the impact of delay. Nonetheless, in practice the
communication delay is randomly distributed due to varying
channel/network conditions. When the sensor measurement fi-
nally arrives at the controller, the age-of-information is thus ran-
dom. Heuristically, an “old” measurement provides less valuable
information than a “young” measurement but the quantitative
impact of random delay on the optimal rate-cost tradeoff R∗(D)
remains an open problem. This work provides the first lower
bound RLB(D) for the random delay setting and designs a
simple scheme that leads to a numerically evaluated upper
bound RUB(D). Jointly RLB(D) and RUB(D) bracket the optimal
tradeoff R∗(D). The new RLB(D) is asymptotically tight when
either D → ∞ or R → ∞, and sheds further insights on how
the (random) age of information could impact the performance
of a cyber-physical control system.

I. PROBLEM FORMULATION

Consider a discrete-time Gaussian linear control system:

x(t+ 1) = Ax(t) + u(t) +w(t) (1)
y(t) = Cx(t) + v(t), (2)

where x(t) is the N -dimension system state column vector
at time t, A is the state evolution matrix, u(t) is the control
action to be decided by the controller at time t, y(t) is the
M -dimensional observation column vector of the sensor, and
C is the observation matrix. The disturbance w(t) and the
measurement noise v(t) are zero-mean i.i.d. Gaussian vectors
with covariance matrices Σw and Σv, respectively.

The system starts with x(−1) = 0 and u(−1) = 0. In
each time slot t a variable-length bit string s(t) ∈ {0, 1}∗
is transmitted by the sensor over a noise-free digital channel.
s(t) will eventually reach the controller with zero error. That
is, any corruption will be corrected either by error-correcting
codes or by Automatic Repeat reQuest. The delay effects of
ECC and ARQ are modeled by a non-negative integer random
variable δ(t). That is, s(τ) sent at time τ will be received
at time t = τ + δ(τ). We assume δ(t) is i.i.d., has bounded
support [0, δmax], and is independent of w(t) and v(t). The
distribution of δ(t) is described by its pmf {pδ : δ ∈ [0, δmax]}.
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Figure 1: The system diagram

For each time t, the string s(t) transmitted by the sensor is
a function of the current and past observations:

s(t) = ft({y(τ) : τ ∈ [0, t]}) (3)

The length of the variable-length string s(t) is denoted by
|s(t)|, which is a random variable. We also define

T [t1,t2] = {τ : τ + δ(τ) ∈ [t1, t2]} (4)

as the set of indices τ for which s(τ) arrives between [t1, t2].
Assuming each s(τ) is time stamped, the controller thus

knows the set T [0,t] at time t. It then computes u(t) by

u(t) = gt(T [0,t],
{
s(τ) : τ ∈ T [0,t]

}
) (5)

See Fig. 1 for the illustration of the system operation.
For any given encoder and controller pair ({ft}, {gt}), we

define the average bit length of the scheme as

L({ft}, {gt}) , sup
t∈[0,∞)

E(|s(t)|). (6)

Given any constant D > 0, the optimal rate-cost tradeoff is

R∗(D) , min
f,g

L({ft}, {gt}) (7)

subject to sup
t∈[0,∞)

E
(
∥x(t)∥2

)
≤ D. (8)

where (8) represents the mean square stability constraint.
While the characterization of R∗(D) for random delay

δ(t) remains an open problem, this work provides a pair of
lower and upper bounds denoted by RLB(D) and RUB(D),
respectively.

II. MOTIVATION AND EXISTING RESULTS

The increasing importance of cyber physical systems (CPS)
has been a driving force for new schemes in both control and
information theory. For example, the modern electricity grid
needs to accommodate the inherent system baseloads, diverse
energy generating and consumption units, e.g., electric cars.
Therefore, sensors, controller(s), generators, and smart con-
sumption units are constantly communicating with each other



with the goal of maximizing the overall system stability. One
key question is how the underlying random communication
delay could affect the rate-cost tradeoff R∗(D). The answer
would shed further insights on how the varying network
conditions could impact the controllability of a CPS.

Rate-cost tradeoff R∗(D) is a classic subject in control and
information theory with dozens of important results over the
years. One way of categorizing the existing results is by the
types of system state disturbance and by the communication
channel models. A summary for a very limited selection of
existing works is provided in Table I. For example, when
fixing the delay to zero δ(t) = 0, our work assumes Gaussian
disturbance with error-free digital communication channels,
which very closely follows the settings of variable-length
coding [3], [10], fixed-length coding [5], and entropy-based
studies [13]. See the first row of Table I.

In the following, we highlight two major differences be-
tween this work and the existing results.

A. Contribution 1: A comprehensive treatment for finite D.
A recurring fundamental result in various settings [5], [6],

[11], [12] is the minimum asymptotic rate. For any large but
finite stability requirement D, we always have

R∗(D) >
N∑

n=1

max(log2(|λn(A)|), 0) (9)

where {λn(A)} are the eigenvalues of the evolution matrix A.
This lower bound is loose for small D but is provably tight
when D → ∞. Note that most existing works [5], [6], [9],
[11], [12] first derived analytical lower bounds for any finite D
and then let D → ∞. During the derivation, only the unstable
directions of the system states are considered. The reason is
that from the perspective of asymptotic stability, the directions
with |λn(A)| < 1 are inherently stable so it does not contribute
to the lower bound in (9). However, if we leave those stable
directions “uncontrolled” they could still contribute to a finite
but large mean-square norm. As a result, any high-performance
scheme for small D must take into account both the stable and
unstable directions. This is the approach taken in this work
since we aim to estimate/bracket the optimal R∗(D) for all D.
This finite D emphasis is also studied in [3].

Also note that our rate-cost tradeoff definition considers the
supremum in both (6) and (8). We call this setting individual
rate and individual stability requirements, which is in contrast
with the following requirements:

[Time avg. rate:] L , lim sup
T

1

T

T∑
t=1

K∑
k=1

E (|sk(t)|) (10)

[Time avg. stability:] lim sup
T

1

T

T∑
t=1

E
(
∥x(t)∥2

)
≤ D. (11)

Relatively speaking, the time averaged rate/stability require-
ment (e.g., the results in [3], [13]) is more relevant in the
asymptotic regime while the individual rate/stability require-
ment is more stringent and more relevant in the finite regime,
the main focus of this work.

B. Contribution 2: Random delay δ(t).

Most existing works assume zero delay, which may not
fully capture the varying network dynamics like scheduling
and congestion in modern CPSs.

One challenge of analyzing random delay δ(τ) is that the
packets arriving at the controller have different1 ages. How to
actively minimize the age of information has recently attracted
much attention in both the information theory and networking
communities [15]. In a broad sense this work studies how the
randomly distributed age of information would alter the rate-
cost tradeoff R∗(D) for a Gaussian linear control system.

It is worth mentioning that although there is no dedicated
communication channel from the controller back to the sensor,
see Fig. 1, the controller, if desired, can feedback (some of)
the delay information δ(t) back to the sensor by embedding
it in the control action u(t). The sensor can then deduce it
by observing y(t) and change the encoder/decoder {ft, gt}
functions to better adapt to the delay realization δ(t). This
phenomenon of controlling the state through the “random
information/delay disturbance” is absent when delay is fixed
to zero or some fixed number. One main contribution of this
work is to derive a new lower bound that holds even with this
new delay-information feedback loop.

The most related works are [7], [8]. [8] studies the rate-
cost tradeoff under a zero-delay erasure channel model. [7]
studies the stability under a random delay model but does
not impose any communication rate constraint (measurements
are of infinite precision). The most defining feature of [7],
[8] is that they analyze special schemes called packetized
predictive controllers and sequence-based controllers, and thus
essentially derive new achievable upper bounds RUB(D). In
contrast, this work focuses on deriving a fundamental lower
bound RLB(D) that holds for any possible designs.

Assuming zero disturbance, see row three of Table I, [2]
studies the transmission rate when the sensor can actively
modulate the timing of the transmission over a communication
channel with unknown but bounded delay. Time- and event-
triggering schemes are proposed and analyzed. The results can
again be interpreted as deriving new upper bounds RUB(D).

III. PRELIMINARIES AND SOME SIMPLE DERIVATIONS

We summarize the Kalman filter (KF) formulas that will be
used extensively and provide some new but simple derivations.

A. The KF Formulas

Consider a zero-delay Gaussian linear control system (i.e.,
P (δ(t) = 0) = 1) and its KF estimate x̂(t). Define Pt as the
covariance of the estimate error x(t)− x̂(t). Since the system
starts from x(−1) = 0, we have x̂(−1) = 0 and P−1 = 0.
x̂(t) is calculated iteratively for t ∈ [0,∞):

Φt = APt−1A
T +Σw (12)

Γt = ΦtC
T(CΦtC

T +Σv)
−1 (13)

1Packet arrivals can also be out of order. I.e., an older string s(τ1) may
arrive later than a newer string s(τ2) if τ1 + δ(τ1) > τ2 + δ(τ2).



Table I: Summary of a non-comprehensive selection of existing works.

Noiseless communication channel Noisy communication channel
Stochastic
or Gaussian
disturbance

This work, [5], [10]. (i) [5], [10] consider only the unstable
directions; (ii) [5] develops the asymptotic lower bound
R >

∑N
n=1 max(log(|λn|), 0) and a stabilizing coder-

controller with time-sharing protocals; (iii) [10] studies the
optimality of LTI controllers.

[3], [13]. (i) [3], [13] consider both stable and unstable
directions; (ii) [13] introduces the novel sequential rate-
distortion (SRD) framework. Full evaluation of the SRD results
involves finding the minimizing distribution P ; (iii) [3]
develops new matrix-based finite-regime lower bounds.

Deterministic
(i.e., unknown
but bounded)
disturbance

[6], [14]. (i) [6] considers only the unstable direc-
tions; (ii) [6] develops the asymptotic lower bound: R >∑N

n=1 max(log(|λn|), 0); (iii) [14] focuses exclusively on
linear time-invariance controllers. A continuity assumption is
needed, which may make it difficult to evaluate.

[9], [11]. (i) [9] considers only the unstable directions;
(ii) introduces the novel concept of anytime capacity, which
has led to many follow-up works; (iii) studies the asymptotic
regime and may be difficult to evaluate.

Zero
disturbance

[12] (i) considers only the unstable directions; (ii) develops
the asymptotic lower bound R >

∑N
n=1 max(log(|λn|), 0)

[2] follows [12] but considers, additionally, bounded but
unknown communication delay. Time-triggering and event-
triggering schemes are proposed and analyzed.

[4], [11]. (i) [11] considers only the unstable direc-
tions; (ii) [11] develops the asymptotic lower bound: R >∑N

n=1 max(log(|λn|), 0); (iii) [4] studies the observability
and controllability with feedback communication channels.

ŵt−1 = Γt (y(t)− C(Ax̂(t− 1) + u(t− 1))) (14)
x̂(t) = Ax̂(t− 1) + u(t− 1) + ŵt−1 (15)
Pt = Φt − ΓtCΦt (16)

where ŵt−1 is the external update when computing x̂(t) from
x̂(t− 1). Each ŵt−1, t ∈ [0,∞), is independently distributed
Gaussian with zero mean and covariance

Σŵt−1
= ΦtC

T(CΦtC
T +Σv)

−1CΦT
t . (17)

We assume the convergence of Pt , Φt, Γt, and Σŵt−1
and

denote their t → ∞ limits by P , Φ, Γ, and Σŵ, respectively.

B. The distribution of the ages of information

Throughout this paper, we use the convention that∑b
τ=a f(τ) = 0 and

∏b
τ=a f(τ) = 1 if b < a, regardless of

the underlying function f(·), and the convention log
(
0
0

)
= 0.

Recall that the delay pmf {pδ} is defined from the sensor’s
perspective. Namely, the string s(τ) will be received at time
t = τ + δ(τ). We now consider the delay experienced by
the controller at time t, denoted by θ(t). Namely, at time
t, the latest string received by the controller is s(t − θ(t)).
Given {pδ}, we compute the pmf of θ(t) as follows. Define
pS ,

∑
δ∈S pδ as the probability that δ(t) belongs to a set S.

Assume any arbitrary but fixed t value. The pmf of θ(t) is

pθ = p[0,θ] ·
t∏

τ=t−θ+1

p(t−τ,δmax], ∀θ ∈ [0, δmax] (18)

where the first term of (18) is the probability that string s(t−
θ) is received by time t, and the rest of (18) computes the
probability that none of s(τ), τ ∈ [t− θ+1, t], has arrived by
time t. Although the formula (18) involves t, the final value
pθ does not since θ(t) is a stationary random process.

In general, the stationary random process θ(t) has memory.
We thus analyze the joint pmf of (θ1, θ2) = (θ(t), θ(t +m))
for two time instants t1 = t and t2 = t +m. The expression
of the joint pmf, denoted by pθ1,θ2(m), contains three cases.

Case 1: If θ2 > θ1 +m then pθ1,θ2(m) = 0. It is because
even if there is no new arrival during time (t, t+m], the delay
θ2 experienced at time t+m is at most θ1 +m.

Case 2: If θ2 = θ1 +m then

pθ1,θ2(m) = p[0,θ1] ·
t+m∏

τ=t−θ1+1

p(t+m−τ,δmax] (19)

It is because if θ2 = θ1+m, then it means that string s(t−θ1)
is received by time t and none of the strings s(τ), ∀τ ∈ [t−
θ1 + 1, t+m], has arrived by time t+m.

Case 3: If θ2 < θ1 +m then

pθ1,θ2(m) =p[0,θ1] ·

(
t+m−θ2−1∏
τ=t−θ1+1

p(t−τ,δmax]

)
· p(θ2−m,θ2]

·

(
t+m∏

τ=t+m−θ2+1

p(t+m−τ,δmax]

)
(20)

Case 3 computes the probability that string s(t−θ1) is received
by time t; none of the strings s(τ), ∀τ ∈ [t−θ1+1, t+m−θ2),
has arrived by time t; string s(t+m−θ2) has arrived between
time (t, t+m]; and none of the strings s(τ), ∀τ ∈ (t+m−
θ2, t+m], has arrived by time t+m.

IV. MAIN RESULTS

A. A new lower bound

Proposition 1. For any given integers m ∈ [1,∞) and
θ1, θ2 ∈ [0, δmax], define an N ×N matrix Fθ1,θ2(m) by

Fθ1,θ2(m)
∆
=

θ1+m∑
i=θ2+1

Ai · Σŵ · (Ai)T (21)

=V · diag{σ(θ1,θ2,m)
n } · V T (22)

where (22) is the singular value decomposition of Fθ1,θ2(m)

with V being a unitary matrix and σ
(θ1,θ2,m)
n being the n-th

singular value of Fθ1,θ2(m) for n ∈ [1, N ]. Note that if θ2 ≥
θ1+m, then we simply have Fθ1,θ2(m) = 0 and σ

(θ1,θ2,m)
n = 0

per the convention adopted in this work.
Also define scalars D

(θ)
min and Dmin by

D
(θ)
min

∆
= tr

(
Aθ+1P (Aθ+1)T

)
+ tr

(
θ∑

i=0

AiΣw(Ai)T

)
(23)

Dmin
∆
=

∑
θ∈[0,δmax]

pθ · D
(θ)
min. (24)



If D ≤ Dmin, then no scheme can achieve supt E
(
∥x(t)∥2

)
≤

D. If D > Dmin, then for any scheme that satisfies
supt E

(
∥x(t)∥2

)
≤ D, its expected bit length L must satisfy:

L−
(
L · log2

(
L

L+ 1

)
+ log2

(
1

L+ 1

))
≥

1

m

∑
∀θ1,θ2

pθ1,θ2(m) ·

(
N∑

n=1

1

2
log2

(
σ
(θ1,θ2,m)
n

D
(θ1,θ2,m)
n

))
(25)

where the value of D(θ1,θ2,m)
n is the water-filling coefficients:

D(θ1,θ2,m)
n = min(η(m), σ(θ1,θ2,m)

n ), ∀n, θ1, θ2 (26)

and η(m) is the largest possible value that still satisfies∑
∀θ1,θ2

pθ1,θ2(m) ·

(
N∑

n=1

D(θ1,θ2,m)
n

)
≤ D− Dmin. (27)

We note that Proposition 1 makes no separate consideration
of whether |λn(A)| < 1 or not. It thus simultaneously con-
siders both stable and unstable directions of the system. Also
since Proposition 1 holds for all m, we can further improve
the bound by taking the supremum over all m ∈ [1,∞).

A detailed proof is provided separately in [1]. Technically,
for each fixed m, a single-shot approach is used, which focuses
exclusively on two fixed time instants t and t + m, rather
than the entire time axis. Together with the individual stability
condition in (8), this approach allows new careful analysis
of the probabilistic impact of random delay at these two
time instants and circumvents the difficulty, pointed out in
[3, Remark 2], of applying the water-filling principle under
the time average stability condition in (11).

Intuitively, Proposition 1 contains three components. Com-
ponent 1 is the minimum achievable stability Dmin in (24).
Specifically (23) describes the minimum achievable D

(θ)
min

when the controller is facing a deterministic delay θ, which
depends on both P and Σw and grows exponentially with
respect to θ. D(θ)

min is then averaged according to {pθ}.
Component 2 is the Fθ1,θ2(m) in (21), which is based on

the covariance Σŵ instead of Σw. Specifically, each update
ŵ(t), see (15), represents the “additional information” that
a new KF estimate x̂(t + 1) has over the old x̂(t) due to
the controller receiving exactly 1 additional observation y(t).
However, suppose θ(t) = θ1 and θ(t +m) = θ2. Then there
are roughly (θ1 +m− θ2) number of new observations s(τ)
(and thus y(τ)) arriving during time (t, t+m]. The summation
of (θ1 +m− θ2) terms in (21) then represents the maximum
amount of additional information that can be carried during
(t, t+m] if no quantization/compression is ever performed.

Component 3 then invokes the classic rate-distortion results
to characterize the stability impact when quantizing the addi-
tional information Fθ1,θ2(m) in Component 2. As a result, the
average in the right-hands side of (25) is taken over the joint
pmf pθ1,θ2(m). Since the rate-distortion results are entropy-
based, the left-hand side of (25) quantifies the largest possible
entropy H(s(t)) given E(|s(t)|) ≤ L, which further relates
the expected length L to the entropy H(s(t)).

Proposition 2. Continue from Proposition 1. If the A matrix
is non-defective, then we also have

lim
m→∞

1

m

∑
∀θ1,θ2

pθ1,θ2(m) ·

(
N∑

n=1

1

2
log2

(
σ
(θ1,θ2,m)
n

D
(θ1,θ2,m)
n

))

=

N∑
n=1

max(log2(|λn(A)|), 0)

Proposition 2 shows that when using (25) as an entropy
lower bound rather than an expected-length lower bound, then
the right-hand side of (25) coincides with the asymptotic
entropy lower bound (9) and is thus tight when D → ∞.

The main step of proving Proposition 2 is to note that since
Σŵ is positive definite, we can have βminI ≼ Σŵ ≼ βmaxI for
some βmin and βmax, where I is the identity matrix. Then we
replace Σŵ in (21) by βminI (or βmaxI) that helps crystalize
the relationship between σ

(θ1,θ2,m)
n and λn(A).

The detailed proofs of Propositions 1 and 2 are omitted due
to the space constraint.

B. A simple upper bound

The main focus of this work is on deriving the new lower
bound. For upper bounds, we can adapt a straightforward
KF-based quantizer in a similar way as in [8]. Specifically,
first let the sensor computes the KF estimate x̂(t). Then
consider a (potentially rotated) rectangle lattice where the
corresponding Voronoi regions are hyperrectangles. The x̂(t)
is then represented by the index of the corresponding Voronoi
region and the index is later entropy coded to generate the
variable length string s(t).

At the controller side, in time t the latest received quan-
tized estimate, denoted by [x̂(t − θ(t))]q , is used to generate
u(t) = −Aθ(t)+1[x̂(t− θ(t))]q , which aims to bring the state
x(t+ 1) back to 0 according to the latest quantized estimate
[x̂(t− θ(t))]q . This type of predictive controllers is relatively
straightforward and the detailed description is omitted.

We use Monte-Carlo simulation to compute its numerical
performance, which then serves as an upper bound RUB(D).

C. Discussion and further extension

Proposition 1 suggests that the impact of random ages θ(t)
are two fold: The marginal distribution pθ directly impacts
the minimum achievable stability Dmin, see (24). The joint
distribution pθ1,θ2(m) then decides how much information can
be effectively compressed and transmitted from the sensor to
the controller, see (21) and (25).

These main ideas can be readily generalized to the setting
of K sensors: Each sensor k transmits its own string sk(t) and
delay δk(t) is incurred during the transmission. The controller
decides u(t) based on all the sk(τ) it has received. Now the
sensor-side delays form a K-dimensional vector δ⃗(t). We use
its pmf pδ⃗ to compute the distribution of the K-dimensional
delay vector experienced by the controller, denoted by pθ⃗ and
pθ⃗1,θ⃗2(m). Finally, we apply the same three components of
Proposition 1 to lower bound the traffic sum rate from the K
sensors to the controller.
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Figure 2: Numerical evaluation.

V. A NUMERICAL EXAMPLE

We assume Σw = I3×3, Σv = I2×2, and

C =

[
1 1 0
0 1 1

]
. (28)

Consider three different state evolution matrices A1 to A3:

Ai =

2 αi 0
0 1 αi

0 0 0.9

 , ∀i ∈ {1, 2, 3} (29)

with α1 = 0, α2 = 0.5, and α3 = 3. Namely, system matrix
A3 has the highest coupling between the three coordinates
while system matrix A1 is diagonal and has no coupling.
Fig. 2(a) plots D

(θ)
min versus θ. As one may expect, the

highly coupled A3 has the highest exponential growth rate.
Surprisingly, the growth rate of the decoupled A1 is higher
than the slightly coupled A2. Furthermore, when θ = 0 the
D

(θ)
min of A3 is actually slightly smaller than that of A1. Since

A1 to A3 have the same set of eigenvalues λn(Ai), their
asymptotic minimum rates (9) are identical. This shows that
the finite length performance depends heavily on the interplay
among A, C, Σw, Σv and delay distribution {pδ}.

In the following, we focus exclusively on A2 and assume
pδ = 0.25 for all δ ∈ [1, 4]. By (18), we have pθ being 1/4,
3/8, 9/32, and 3/32 for θ being 1, 2, 3, and 4, respectively.
We then compute Dmin = 354.12 using (24). Fig. 2(b) plots
RLB(D) in Proposition 1 for the cases of m = 1, 15, and 40,
respectively. One can see that the lower bounds of m = 1, 15,
and 40 dominate the scenarios of small, medium, and large
D values, respectively. The “envelope" (or equivalently the
supremum) over all m ∈ [1,∞) then gives the strongest lower
bound. In the remaining discussion, we take the supremum
over m ∈ [1, 40] when evaluating the lower bound.

Fig. 2(c) plots the entropy part of the lower bound (the right-
hand side of (25)). For comparison, we also plot the cases of
fixed deterministic delay with δ = 1 to 4, respectively. In
all five cases (one random and four deterministic delays), the
asymptotes converge to the entropy being H(s(t)) = 1, as
predicted by (9) since the eigenvalues of A2 are 2, 1, and 0.9.

Fig. 2(d) plots the upper bound RUB(D) vs the lower
bound RLB(D). One can see that the vertical asymptote of
our lower bound (i.e., Dmin = 354.12) is tight and matches
the numerically computed upper bound RUB(D).

VI. CONCLUSION

This work derives a lower bound RLB(D) for the optimal
rate-cost tradeoff with i.i.d. random delay, and uses a simple
scheme to numerically compute an upper bound RUB(D). The
results complement the existing age of information problems
by quantitatively bracketing the impact of (random) age of
information to the optimal R∗(D). The new RLB(D) is asymp-
totically tight when either D → ∞ or R → ∞.
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