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Abstract—Recently, Wang and Chen [1] showed that network
coding (NC) can double the throughput as compared to routing in
delay-constrained single-unicast communication. This is in sharp
contrast to its delay-unconstrained counterpart where coding
has no throughput gain. The result reveals that the landscape
of delay-constrained communication is fundamentally different
from the well-understood delay-unconstrained one and calls
for investigation participation. In this paper, we generalize the
Koetter-Medard algebraic approach [2] for delay-unconstrained
network coding to the delay-constrained setting. The generalized
approach allows us to systematically model deadline-induced
interference, which is the unique challenge in studying network
coding for delay-constrained communication. Using this algebraic
approach, we characterize the coding capacity for single-source
unicast and multicast, as the rank difference between an informa-
tion space and a deadline-induced interference space. The results
allow us to numerically compute the NC capacity for any given
graph, serving as a benchmark for existing and future solutions
on improving delay-constrained throughput.

1. INTRODUCTION

Real-time communication systems that require delay guar-
antees have become prevalent. Typical systems of this kind
include multimedia communication systems such as VoIP and
video conferencing, and cyber-physical systems such as real-
time surveillance and network control. As a result, delay-
sensitive traffic has expressed a phenomenal growth in recent
years [3]. Further, Cisco predicts that global delay-sensitive
IP video will reach 104 exabytes per month in 2018, a 3-fold
growth from 2013, and will account for 79% of consumer
Internet traffic by then [4].

A common characteristic of these systems is that they
have a strict deadline for information delivery. Information
bits traversing the network need to be delivered before their
deadlines, otherwise they expire and deem useless to the
applications. In addition to delay constraints, real-time com-
munication systems also require guarantees on the timely
throughput, defined as the throughput of information bits that
are delivered on time. This naturally leads to the following
fundamental question:

« Given a network and an end-to-end delay constraint, how
to characterize the timely capacity, i.e., the maximum rate
at which a source node can stream perishable information
to its receiver nodes subject to the delay constraint?

While there have been results to the above problem under
certain single-hop network settings [5]-[9], the problem re-

mains largely open for multi-hop networks. In general, an
optimal multi-hop communication scheme needs to decide the
optimal routes of the information flow in space in order to
fully utilize all the available link capacity resources, while
simultaneously tracking the delay of individual packets in
time to ensure the packets can arrive at receivers and the
information can be recovered before expiration. The design
problem becomes even more involved when we allow network
coding [10] at intermediate nodes that intelligently mix the
information content in packets before forwarding them. Such a
3-way coupling among space, time, and coding choices creates
a unique challenge.

When the delay constraint is sufficiently large (e.g., larger
than the end-to-end delay of the longest path between the
source and its receivers), the delay-unconstrained capacities
are well understood. For example, for unicast, i.e., from one
source node to one receiver node, the delay-unconstrained
capacity can be characterized by the classic min-cut/max-flow
theorem, and an optimal routing solution can be obtained
in polynomial time using the Ford-Fulkerson algorithm [11].
Since optimal routing already achieves the capacity, i.e., the
min-cut value, network coding cannot improve throughput
over optimal routing when there is only one unicast flow in
the network. Similarly, the research community has established
a comprehensive understanding on the routing and coding
capacities for delay-unconstrained broadcast and multicast,
i.e., from one source node to multiple receiver nodes.

The story changes completely when the delay constraint is
small and is active, and our understanding of timely capacities
is still nascent. Even for unicast, the timely routing and coding
capacity cannot be computed by the standard graph-theoretic
notion of edge cuts [12], [13], and very little is known for the
cases of multicast and broadcast. Recently, Wang and Chen
in [1] obtain a perhaps surprising result: there are network
instances on which network coding can double the timely
throughput as compared to optimal routing even for single
unicast. This is in sharp contrast to the delay-unconstrained
case where both optimal routing and coding achieve the same
single-unicast capacity. Chekuri et al. in [14] provide an upper
bound on the timely coding capacity over timely routing
capacity, suggesting that coding gain in delay-constrained
single-unicast may go beyond a constant value.

It is nontrivial to compute the (linear) coding capacity for



delay-constrained communication. Existing results on network
coding in delay-unconstrained communication do not extend
directly to delay-constrained case. The new challenge lies
in that in delay-constrained communication, optimal network
coding needs to cancel the interference caused by future,
not-yet decoded packets within the same flow. Such a new
notion of interference, called deadline-induced interference,
is strongly coupled with time (in particular deadlines) and is
absent in delay-unconstrained communication.

In this paper, we provide an algebraic characterization
for the timely (linear) coding capacity for single-unicast
and single-multicast. In particular we generalize the well-
established Koetter-Medard algebraic approach [2] for delay-
unconstrained network coding to the delay-constrained setting.
The generalized approach allows us to systematically model
deadline-induced interference and its influence in timely cod-
ing capacity. Using this algebraic approach and leveraging
an elegant technique by Guo, Cai, and Sun in [I5], we
characterize the coding capacity for single-source unicast and
multicast, as the rank difference between an information space
and a deadline-induced interference space. With proper time-
expanded graph illustration similar to that in [14], our results
can be thought as applying the Koetter-Medard algebraic
approach to a special multi-source network coding scenario
with infinite sources and a structure network of infinite size.

II. MopEL

Time is chopped into slots of equal length. We consider a
network modeled as a directed acyclic graph G = (V, E), on
which each edge has a capacity constraint and incurs a unit
transmission delay. Links with long delay are thus modeled as
a path of multiple edges.

We consider single-source delay-constrained communica-
tion scenarios where a source node s streams perishable
information to a set of receiver nodes R, over the graph G.
Every information bit generated at s in the beginning of time
slot ¢ has to be received and recovered by all receiver nodes
by the beginning of time slot ¢t + D. Here D > 0 is the
maximum allowed end-to-end communication delay specified
by applications. Since each edge incurs a unit transmission
delay, with delay constraint D, any packet traverses through
a path longer than D hops is deemed useless. Without loss of
generality, we assume D < |E|. We follow the conventional
terminology and term the communication scenario unicast if
there is only one receiver node (i.e., |R| = 1) and multicast if
there is more than one receiver (i.e., |[R| < |V| - 1).

We consider linear network coding in delay-constrained
communication on G where a vertex v can mix its incoming
packets and send out coded ones. It can also delay packets
before mixing them. The message a vertex sends on an
outgoing edge is a linear combination of delay versions of
the messages it receives. Following conventional notations [2],
we name the set of all local coding coefficients and the delay
factors as local encoding kernel, denoted by K.

Let C be the minimum of min-cuts between s and receivers
in R; clearly C is an upper bound for the maximum commu-

nication rate between s and receivers in R. Thus, without loss
of generality, we assume that there are C outgoing edges from
source s and C incoming edges into any receiver r '. Given
the kernel %, the network can be regarded as a linear system
[2], [10]. The network transfer matrix from s to an r € R, in
the z-transform domain, can be expressed as

$0 T+ (K2 +-- 4, (O 7P+ ¢, TP+

(D
where every ¢! (K) is a C X C matrix that does not contain
polynomials of z in its entries and is given as

¢ (K) =0, and ¢} (K) = AF~'BL, Vi> 1.

Here we consider stationary linear network coding. Matrix A
describes how to code the input information packets injected
into the source and then place coded ones onto internal
network links; the nilpotent matrix F functions as obtaining
the distribution of information packets on internal network
after holistic one-hop advance from the previous state; B, is
to retrieve information packets from internal network links at
sink node r. To facilitate further discussion, we define

O(K) £ | $H(K) (KO $p(KO) |.

Equation (1) is insightful in that it “expands” the network
transfer matrix according to the distinct delays it incurs to the
messages transmitted over it. Essentially, ¢ () is the “net-
work gain” corresponding to i unit delay. More specifically, for
messages transmitted over the network, ¢! (K) determines the
information observed by receiver r after exactly i unit delay.
Thus it is conceivable that ¢} ()K) and the structure revealed in
(1) may be useful in studying the decoding delay of network
coding, as explored in [15], [16].

In delay-unconstrained communication, given that the finite
field size g is large enough, the maximum possible rate C can
be achieved by optimizing the kernel K [2], [10] and random
linear network coding can achieve the maximum rate with high
probability [17].

For communication between s and r subject to delay con-
straint D, we leverage the insights revealed in (1) to tackle the
new challenge caused by deadline-induced interference within
the same information flow. In particular, we define

¢4 (K) - ¢ (K) ¢ (K)
&y (K) &p_; (K)

0}, (%) = . : @
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and
¢y (K) ¢y (K)
Op_ (K = .. : 3)
0 ¢y (K)

!Given a graph G that does not satisfy this assumption, we can create virtual
source and receiver nodes and connect them to the corresponding actual source
and receiver nodes each with C parallel edges. The amended graph will satisfy
the assumption and have the same timely coding capacity as G.



Let x, be the C-dim message injected into the network and
vy be the C-dim message received by r, both at time . We
have

| = %0, xp] Q)
=@ (K) + [x1,..,xpl [ 0 Q) (5 |,

which represents what the receivers will receive from time
0 to D. Only [yg,...,yg] will be used to decode x( since
the delay requirement is D, and the contribution (or the
interference) of future packets (with respect to xg) is indeed
[x1,....xp][ 0 Q) () | Thus, intuitively, Q}, () repre-
sents the aggregate information space observed by r until delay
D, and its rank represents the number of independent messages
in this space. Meanwhile, Qf, | (K) captures the interference
space spanned by future messages, and its rank represents the
number of messages that got corrupted.

[y(’),...

III. TomeLy (LiNEAR) CopING CAPACITY
A. Unicast Case

We start from the unicast case, where s denotes the source
and r denotes the only receiver.

Theorem 1. The timely unicast (linear) coding capacity
between s and r under delay constraint D can be computed
by solving the following problem,

max {rank (Qp (K)) — rank (Qp_, (K))},  (4)
all possible x
where Qp,(K) and Q},_,(K) are defined in (2) and (3),
respectively.

Before proceeding to the proof, we make the following
remarks. (i) We obtain the result by following an approach
very similar to that in [15] for studying decoding delay
of network codes. The key difference is that we need to
address an additional challenge to guarantee the achievability
of the rate computed in (4), while such challenge is absent
in the problem studied in [15]. (ii) Intuitively, leveraging
the understanding presented at the end of previous section
on O, (K) and Qf,_, (K), the rank difference represents the
number of “corruption-free” messages r can decode subject to
delay constraint D. (iii) Theorem 1 allows us to numerically
compute the timely unicast coding capacity for any given
graph, serving as a benchmark for solutions on improving
timely unicast throughput.

We first present a lemma to be used in the proof of Theorem
1 in the following.

Lemma 2. For a given local coding kernel K, the timely
unicast (linear) coding capacity between s and r under delay
constraint D is upper bounded by

w = rank (Q) (K)) — rank (Q},_, (K)). 5)

Proof: The proof follows a set of arguments very similar
to those in proving Theorem 2 in [15]. Given K, let w’ < C be
the timely unicast linear coding capacity. Since we consider
stationary linear network coding, there must exists a decoding

matrix U so that ' number of individual messages in the
message vector xp can be decoded by time D, or equivalently,

r _ Iw’ 0
Op(KOU = [ 0 0 ]
This suggests that every column in [ 1’6/ } is in the range of
O, (K); consequently, we have the following observation
[ Iy r r r
[ 0 } ¢y (K) ¢ (K) ¢ ()
rank (Q}, (K)) =rank 0 0 ¢ (50 Ppy (K
L 0 0 0 0 ¢, (K
[ 1 0 0
0 ¢, (7O Pp_1 (K)
<rank . . .
) 0 0 ¢y (K)
=rank (Q}_, (K)) + '.
Thus we have «’ < rank(Q;) (7()) - rank(Qf)_ | (7()). [ |

We now present the proof of Theorem 1.
Proof: By Lemma 2, we know that w defined in (5) is
an upper bound on the timely unicast capacity for a given K.
A remaining critical step is to show that this bound is indeed
achievable.
We first expand Qf, | (K) by adding a DC X C zero matrix
to its left as follows:

Py (K) 2| Opexe Q5 (KO |

Recall that @, (K) = [ ¢)(K) ¢} (K) ¢ (K) | is
the first C rows of Q7 (K). Let m = rank(Q;)_l (7()), then
rank (Pz)f1 (‘K)) = m and rank (Qg (7()) is m+ w.

There exist m linearly independent row vectors in Pj,_, (K),
denoted as Ry,. .., R,. Recall that O, (K) and QF, | (K) have
the forms defined in (2) and (3), respectively. This indicates
that we can find another w row vectors from ®, (), denoted
as Si,...,5, so that the m + w row vectors R;,...,R,, and
Si,...,5, constitute a maximum linearly independent group
of the row vectors in Q}, (). Take note of the row-coordinates
of {§;}¢, in O}, (K) as a index set {k;}?,.

Let w-dim row vector &; denote the raw message ready to
be sent from the source s in the beginning of time z. It is
pre-coded into a C-dim message as follows:

Xy = .ftE,
where E = (e;j)wxc and

if j =k,
otherwise.

With such encoding, the aggregate information space (with
respect to X,) observed by r until delay D is represented by



Eo 07}, (K); the interference space spanned by future messages

is represented by E o 0}, | (K). Here
E- ¢, (K) E-¢)(K) E - ¢5, ()
E - ¢, () E- ¢, (K)
Eo Q) (50 2 . |
0 E - ¢, (%)
(6)
and
E- ¢, (K) E- ¢}, ()
Eo Q) (K) = - : (7
0 E - ¢,(K)

Next, we will show rank (E o 0, (‘K))—rank (E o QY (‘K)) =
w. By the way we construct E, we have

Sy
E-0(K)=| . |,
S

which has full row rank. Now observing that (i) R;,...,R),
is a maximum linearly independent group of row vectors in
Py (K) and (i) R;,...,Ry and S1q,..., S, jointly constitute
a maximum linearly independent group of the row vectors in
O}, (K), we conclude that none of §1,..., S, can be expressed
as linear combinations of row vectors in Q}, | (K) and thus
E o O, | (K). As a result, the rank difference between E o
Q5 (K) and EoQ7, | (K) is also w, which is exactly the length
of X,. With this observation, applying Theorem 2 in [15], we
conclude that the w-dim vector x; is decode-able at time 7+ D
and a timely throughput w is achievable.

Till now, we have proved that given a local coding kernel
K, the maximum achievable timely coding throughput is given
by rank (QE) (K )) - rank(Q;)_ . (7()). Further maximizing over
all possible coding kernel K gives the timely coding capacity.

|

B. Multicast Case

In multicast, there is one source but multiple receivers.
Information packets for different receivers may go though
different paths and were performed different coding operations.
As a result, each receiver r observes a unique Q7 (K). Clearly
an upper bound on the timely mulicast coding capacity is
the minimum of timely unicast coding capacities across all
receivers r € R. We show in the following theorem that it is
indeed achievable.

Theorem 3. The timely multicast (linear) coding capacity
between s and R under delay constraint D can be computed
by solving the following problem,
max min {rank (Q}, (K)) — rank (Q},_, (X))}, (8)
all possible x <R
where Q1 (K) and Qf | (K) are defined in (2) and (3),

respectively.

Theorem 3 is useful in the sense that it allows us to do
computer search to determine the timely multicast (linear)

coding capacity for a given network. Note that to show the
achieve-ability of the above capacity, we have to determine a
pre-coding operation at the source so that the message can
be decoded by all receivers in R. In the proof below, we
construct such a common pre-coding matrix to achieve the
timely multicast coding capacity in (8).

Proof: Given a local coding kernel K, we expand
Q},_, (K) for all r € R by supplementing a DC X C zero matrix
block to its left. Let

w = min {rank (0}, (%)) - rank (Q},_; (¥)}
rank (Qj) K )) -

rank(Q;)_1 (7()) for all » € R, we can construct find a pre-
coding matrix for each receiver r, denoted as E,, such that

Applying Theorem 1, since w <

rank (E, o O (K)) —rank (E, o O}, (K)) = w,

and also
(E,- @) N {Q)_; (KO)) = {0},

where ®, 2 [ ¢} (%) ¢} (%) ¢}, () | be the first C
rows of O (K), (-) is the linear span operator, and E,o Q' (K)
and E, o Q},_, (K) are defined in a way similar to those in (6)
and (7).
Each E, - @, has full row rank. Thus, by adding proper rows
and aggregating these new rows as a block T, we can construct
r’ (Dr

T such that (Q}, | (K)) C
(T,y and (E, - ®,y N(T,) = {0}. For any r,7" € R, let

an invertible square matrix

Er’ : (Dr' -
T, '

Pr,r’ = [ Sr,r’ Rr,r’ ] = Er ' cDr’ [
We have

Er . (Dr’ =

E, O,
[ S rr Rr,r’ ] T,«/ }

= Sr,r’ : Er’ ° (Dr’ + Rr,r' : Tr’7

Note that for r € R, S,, = I,x, (an identity matrix) and
R.,=0.
Let a1, ..., ap be |R| finite-field variables, and we construct

a common pre-coding matrix as

E = Z a,E,.

reR

Now we properly choose a, in a way so that E is a pre-coding
matrix that meets our requirement. Define

fla,...,qr) = 1_[ det [Z a,S,,r/]

r'eR reR

as a nonzero polynomial. Clearly the degree of @, in the
polynomial will not exceed |R| from the definition. Using the
same arguments on characterizing the finite-field size needed
for achieving the network coding capacity under the delay-
unconstrained setting in [2], we know that there exists a set of
@1, ..., such that f (ai,...,g) # 0, given the finite field
size is strictly larger than the maximum degree of a, in the



polynomial, which is |R| in this case. Suppose we have chosen
@1,...,p these values (so that f (a1,..., ) # 0).

We now verify that the w X C pre-coding matrix E con-
structed above allows every receiver to recover the perishable
information stream of rate w. That is to show for all r € R,
rank (E o Q) (K)) - rank (E o 0, (X)) = w. Equivalently,
this is to show

« (i) for all ¥ € R, E-®, has w linearly independent rows;

o (ii) for all ¥ e R, (E - D) N(E o Qg_l) = {0}.

Note that by the definition of E and ®,., we have

E- cDr’ = Z a'rEr . (Dr’ = Z (Q’,»S nr " Er’ . cDr' + a/rRr,r' : Tr’)

reR reR
= (Z arS rr Z a'rRr,r’] Tr’ .
reR

reR

Er’ . (Dr’ +

To prove (i), we show that if there exists a vector i so that
h-E-®,. =0, then h must be a zero vector. Let & be a vector
satisfying h - E - ®,» = 0, then

h (Z a,s,,r,] E.-®p +h (Z a,Rr,,,] T, =0.

reR reR

By the way we construct E» and T,,, we have (E, - @) N
(T,) = {0}. The above equation then implies

h [Z ars,,,,] E, @, =h [Z arR,,,,] T, =0.

reR reR

Meanwhile, we also know that E, - @, has full row rank
and ),,cra,S,~ is invertible and thus is also fully rank
(since f(ap,...,ag) = [l det(X,eg@Srr) # 0). Thus
h(Sep @S ) Ew - @y = 0 implies h = 0.

We now prove (ii) by showing that any nonzero vector in
the linear space (E - ®,-) cannot be in linear space (Eo O}, ,).
Let i be a nonzero vector in (E - ®,.). We have

h-E-®, =h (Z @S ) E. -®, +h (Z a,R,,,,] T,.

reR reR

From the proof for (i) above, we know that i (Y,cg @S /) Ep -
@, # 0 and are given (E, - ®.) N (T,) = {0}. As such, & -
E - @, cannot be expressed as a linear combination of the
row vectors in T,; consequently i - E - @, ¢ (T,). By the
way we construct 7., we also know (Qg_1 (KO)) € (T,), thus
h-E-O,. ¢ (Qg_1 (K)) as well.

With (i) and (ii) proven, it is straightforward to ver-
ify that all receivers r € R have rank (E o O (‘K)) -

rank (E o Q) (7()) = w, following the same arguments in
the proof of Theorem 1. The proof is thus completed. ]

IV. CoNcLuUsIONS

There have long been interest in applying network coding
in delay-sensitive applications; see some recent examples in
[1], [14], [18]. Recently, wang and Chen show that network
coding outperforms traditional routing by elevating the com-
munication capacity in delay-constrained setting, even for
single-unicast [1]. We continue the study initiated in [1] and

give the first characterization in the literature for the timely
(linear) coding capacity of single-source communication over
any given network.

In the meantime, there is much room calling for future
research. A remaining question in our paper is how to estimate
the size of an adequate finite field. Further, even though
we could numerically compute the exact timely (linear) cod-
ing capacity, the complexity of solving the corresponding
combinatorial problems is high. Thus, future work could be
subsequently conducted to develop easy-to-compute upper and
lower bounds for timely coding capacity.
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