
Robust and Optimal Opportunistic Scheduling for
Downlink 2-Flow Inter-session Network Coding

with Varying Channel Quality

Wei-Cheng Kuo, Chih-Chun Wang
{wkuo, chihw}@purdue.edu

School of Electrical and Computer Engineering, Purdue University, USA

Abstract—This paper considers the downlink traffic from a
base station to two different clients. Assuming infinite backlog, it
is known that inter-session network coding (INC) can significantly
increase the throughput of each flow. However, the corresponding
scheduling solution (assuming dynamic arrivals and requiring
bounded delay) is still nascent.

For the 2-flow downlink scenario, we propose the first op-
portunistic INC + scheduling solution that is provably optimal
for time-varying channels, i.e., the corresponding stability region
matches the optimal linear-INC capacity. To that end, we first in-
troduce a new binary INC operation, which is distinctly different
from the traditional wisdom of XORing two overheard packets.
We then develop a queue-length-based scheduling scheme, which,
with the help of the new INC operation, can robustly and opti-
mally adapt to time-varying channel quality. A byproduct of our
results is a scheduling scheme for stochastic processing networks
(SPNs) with random departure. The new SPN results relax the
previous assumption of deterministic departure, a major limitation
of the existing SPN model, by considering stochastic packet
departure behavior, and could further broaden the applications
of SPN scheduling to other real-world scenarios.

I. INTRODUCTION

Since 2000, NC has emerged as a promising technique in

communication networks. The seminal work by [1] shows lin-

ear intra-session NC achieves the min-cut/max-flow capacity

of single-session multi-cast networks. The natural connection

of intra-session NC and the maximum flow allows the use of

back-pressure (BP) algorithms to stabilize intra-session NC

traffic, see [2] and the references therein.

However, when there are multiple coexisting sessions, the

benefits of inter-session network coding (INC) are far from

fully utilized. The COPE architecture [3] demonstrated that a

simple INC scheme can provide 40%–200% throughput im-

provement when compared to the existing TCP/IP architecture

in a testbed environment. Several analytical attempts have been

made to characterize the INC capacity (or provably achievable

throughput) for various small network topologies [4]–[7].

However, unlike the case of intra-session NC, there is no

direct analogy from INC to the commodity flow. As a result,

it is much more challenging to derive BP-based scheduling

for INC traffic. We use the following example to illustrate

this point. Consider a single source s and two destinations d1
and d2. Source s would like to send to d1 the Xi packets,

i = 1, 2, · · · ; and send to d2 the Yj packets, j = 1, 2, · · · .
The simplest INC scheme consists of three operations. OP1:

(a) INC using only 3 operations (b) INC using only 5 operations

Fig. 1. The virtual networks of two INC schemes.

Send uncodedly those Xi that have not been heard by any of

{d1, d2}. OP2: Send uncodedly those Yj that have not been

heard by any of {d1, d2}. OP3: Send a linear sum [Xi + Yj ]
where Xi has been overheard by d2 but not by d1 and Yj

has been overheard by d1 but not by d2. For future reference,

we denote OP1 to OP3 by NON-CODING-1, NON-CODING-2,

and CLASSIC-XOR, respectively.

OP1 to OP3 can also be represented by the virtual network

(vr-network) in Fig. 1(a). Namely, any newly arrived Xi and

Yj virtual packets1 (vr-packets) that have not been heard by

any of {d1, d2} are stored in queues Q1
∅ and Q2

∅, respectively.

The superscript k ∈ {1, 2} indicates that the queue is for the

session-k packets. The subscript ∅ indicates that those packets

have not been heard by any of {d1, d2}. NON-CODING-1 then

takes one Xi vr-packet from Q1
∅ and send it uncodedly. If

such Xi is heard by d1, then the vr-packet leaves the vr-

network, which is described by the dotted arrow emanating

from the NON-CODING-1 block. If Xi is overheard by d2
but not d1, then we place it in queue Q1

{2}, the queue for

the overheard session-1 packets. NON-CODING-2 in Fig. 1(a)

can be interpreted similarly. CLASSIC-XOR operation takes

an Xi from Q1
{2} and a Yj from Q2

{1} and sends [Xi + Yj ].

If d1 receives [Xi + Yj ], then Xi is removed from Q1
{2}

and leaves the vr-network. If d2 receives [Xi + Yj ], then

Yj is removed from Q2
{1} and leaves the vr-network. The

transition probability (of the edges) of the vr-network can be

computed by analyzing the corresponding random events when

transmitting the packet physically.

It is known [8] that with dynamic packet arrivals, any INC

1We often use “virtual packets” to refer to the packets (jobs) inside the
vr-network.
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Fig. 2. The two components of optimal dynamic INC design.

scheme that (i) uses only these three operations and (ii) attains

bounded decoding delay with arrival rates (R1, R2) can always

be converted to a scheduling solution that stabilizes the vr-

network with arrival rates (R1, R2), and vice versa. The INC

design problem is thus converted to a scheduling problem

on the vr-network. To distinguish the above INC design for

dynamical arrivals (the concept of the stability region) and

the INC design assuming infinite backlog and decoding delay

(the concept of the Shannon capacity), we term the former

the dynamic INC design problem and the latter the block-code
INC design problem.

The above vr-network representation also allows us to divide

the optimal dynamic INC design problem into solving two

major challenges: Challenge 1: The example in Fig. 1(a)

focuses on dynamic INC schemes using only 3 possible op-

erations. Obviously, the more INC operations one can choose

from, the larger the degree of design freedom, and the higher

the achievable throughput. The goal is thus to find a (small)
finite set of INC operations that can provably maximize the
“block-code” achievable throughput. Challenge 2: Suppose

that we have found a set of INC operations that achieves the

block-code capacity. However, it does not mean that such a

set of INC operations always leads to a dynamic INC design

since we still need to consider the delay/stability requirements.

Specifically, once the INC operation set is decided, we can

derive the corresponding vr-network. The goal is then to devise
a stabilizing scheduling policy for the vr-network, which leads
to an equivalent representation of the optimal dynamic INC
solution. See Fig. 2 for the illustration of these two tasks.

Both tasks turn out to be highly non-trivial and optimal

dynamic INC solution [4], [8], [9] has been designed only for

the scenario of fixed channel quality. Specifically, [10] answers

Challenge 1 and shows that for fixed channel quality, the 3

INC operations in Fig. 1(a) plus 2 additional DEGENERATE-

XOR operations, see Fig. 1(b) and Section II-B1, can achieve

the block-code INC capacity. One difficulty of resolving Chal-

lenge 2 is that an INC operation may involve multiple queues

simultaneously, e.g., CLASSIC-XOR can only be scheduled

when both Q1
{2} and Q2

{1} are non-empty. This is in sharp

contrast with the traditional BP solutions in which each queue

can act independently.2 For the vr-network in Fig. 1(b), [4]

circumvents this problem by designing a fixed priority rule

that gives strict precedence to the CLASSIC-XOR operation.

2To be more precise, a critical assumption in [C.1 [11]] is that if two queues
Q1 and Q2 can be activated at the same time, then we can also choose to
activate exactly one of the queues if desired. This is unfortunately not the
case in the vr-network. E.g., CLASSIC-XOR activates both Q1

{2} and Q2
{1}

but no coding operation in Fig. 1(a) activates only one of Q1
{2} and Q2

{1}.

Alternatively, [8] derives a BP scheduling scheme by noticing

that the vr-network in Fig. 1(b) can be decoupled into two

vr-subnetworks (one for each data session) so that the queues

in each of the vr-subnetworks can be activated independently

and the traditional BP results follow.

However, the channel quality varies over time for practical

wireless downlink scenarios. Therefore, one should oppor-

tunistically choose the most favorable users as receivers,

the so-called opportunistic scheduling technique. Nonetheless,

recently [12] shows that when allowing opportunistic cod-

ing+scheduling for time-varying channels, the 5 operations

in Fig. 1(b) no longer achieve the block-code capacity. The

existing dynamic INC design in [4], [8] are thus strictly

suboptimal for time-varying channels since they are based on

a suboptimal set of INC operations (recall Fig. 2).

In this work, we propose a new optimal dynamic INC design

for 2-flow downlink traffic with time-varying channels. Our

detailed contributions are summarized as follows.

Contribution 1: We introduce a new INC operation such

that (i) The underlying concept is distinctly different from the

traditional wisdom of XORing two overheard packets; (ii) It

uses only the ultra-low-complexity binary XOR operation; and

(iii) The new INC operation is guaranteed to achieve the best

possible capacity of any linear block-code INC solutions.

Contribution 2: The introduction of new INC operations

leads to a new vr-network that is different from Fig. 1(b)

and for which the existing “vr-network decoupling + BP”

approach in [8] no longer holds. To answer Challenge 2 of

the optimal dynamic INC design, we generalize the results

of Stochastic Processing Networks (SPNs) [13], [14] and

successfully apply it to the new vr-network. The end result

is an opportunistic, dynamic INC solution that is completely

queue-length-based and can robustly adapt to time-varying

channels while achieving the largest possible stability region.

Contribution 3: A byproduct of our results is a scheduling

scheme for SPNs with random departure. The new results

relax the previous assumption of deterministic departure, a

major limitation of the existing SPN model, by considering

stochastic packet departure behavior, and thus could further

broaden the applications of SPN scheduling to other real-world

scenarios.

The rest of the paper is organized as follows. Section II

discusses the existing results on INC design and on SPN

scheduling. Sections III and IV propose a new INC operation

and a new SPN scheduling solution, respectively. Section V

elaborates how to combine the new INC operation and the new

SPN scheduling to derive the optimal dynamic INC solution.

Section VI contains the simulation results and Section VII

concludes the paper.

II. PROBLEM FORMULATION AND EXISTING RESULTS

In this section, we will introduce the problem formulation

and then discuss the latest results on the block-code LNC

literature (related to Challenge 1) and on the SPN scheduling

work (related to solving Challenge 2).
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Fig. 3. The time-varying broadcast packet erasure channel.

A. Problem Formulation — The Broadcast Erasure Channel

We model the 1-base-station/2-client downlink traffic as a

broadcast packet erasure channel. See Fig. 3 for illustration.

The detailed model description is as follows. Consider the

following slotted transmission system.

Dynamic Arrival: In the beginning of every time t, there are

A1(t) session-1 packets and A2(t) session-2 packets arriving

at source s. We assume that A1(t) and A2(t) are i.i.d. integer-

valued random variables with mean (E{A1(t)},E{A2(t)}) =
(R1, R2) and bounded support. Recall that Xi and Yj , i, j ∈
N, denote the session-1 and session-2 packets, respectively.

Time-Varying Channel: We model the time-varying channel

quality by a random process cq(t), which, as will be elaborated

shortly after, decides the reception probability of the broadcast
packet erasure channel. We consider two types of random

processes: cq(t) being i.i.d. or being periodic. Let CQ denote

the support of cq(t) and we assume |CQ| is finite. For any

a ∈ CQ, we use fc to denote the expected/long-term frequency

of cq(t) = c. Obviously
∑

c∈CQ fa = 1 since the total

frequency is 1.

Broadcast Packet Erasure Channel: For each time slot t,
source s can transmit one packet, which will be received by a

random subset of destinations {d1, d2}. Specifically, there are

4 possible reception status {d1d2, d1d2, d1d2, d1d2}, e.g., the

reception status rcpt = d1d2 means that the packet is received

by d1 but not d2. The reception status probabilities can be

described jointly by a vector �p
Δ
= (pd1d2

, pd1d2
, pd1d2

, pd1d2).
For example, �p = (0, 0.5, 0.5, 0) means that every time we

transmit a packet, with 0.5 probability it will be received by

d1 only and with 0.5 probability it will be received by d2
only. It will never be received by d1 and d2 simultaneously.

In contrast, if we have �p = (0, 0, 0, 1), then it means that the

packet is always received by d1 and d2 simultaneously.

Opportunistic INC: Since the reception probability is de-

cided by the channel quality, we write �p(cq(t)) as a function

of cq(t) at time t. In the beginning of time t, we assume

that s is aware of the channel quality cq(t) (and thus knows

�p(cq(t))) so that s can opportunistically decide how to encode

the packet for the current time slot. See Fig. 3.

ACKnowledgement: In the end of time t, both d1 and d2 will

report back to s whether they have received the transmitted

packet or not. This models the use of ACK.

B. Existing Results on Block INC Design

[12] focuses on the above setting but considers the infinite

backlog block-code design instead of dynamic arrivals. Two

findings of [12] are summarized here.
1) The 5 INC operations in Fig. 1(b) are no longer optimal

for time-varying channels: In Section I, we have detailed

3 INC operations: NON-CODING-1, NON-CODING-2, and

CLASSIC-XOR. Two additional INC operations are introduced

in [10]: DEGENERATE-XOR-1 and DEGENERATE-XOR-2 as

illustrated in Fig. 1(b). Specifically, DEGENERATE-XOR-1 is

designed to handle the degenerate case in which Q1
{2} is non

empty but Q2
{1} = ∅. Namely, there is at least one Xi packet

overheard by d2 but there is no Yj packet overheard by d1.

Not having such Yj implies that one cannot send [Xi + Yj ]
(the CLASSIC-XOR operation). An alternative is thus to send

the overheard Xi uncodedly (as if sending [Xi + 0]). We

term this operation DEGENERATE-XOR-1. One can see from

Fig. 1(b) that DEGENERATE-XOR-1 takes a vr-packet from

Q1
{2} as input. If d1 receives it, the vr-packet will leave the

vr-network. DEGENERATE-XOR-2 is the symmetric version

of DEGENERATE-XOR-1.

We use the following example to illustrate the sub-

optimality of the above 5 operations. Suppose s has an X
packet for d1 and a Y packet for d2 and consider a duration

of 2 time slots. Also suppose that s knows beforehand that

the time-varying channel will have (i) �p = (0, 0.5, 0.5, 0) for

slot 1; and (ii) �p = (0, 0, 0, 1) for slot 2. The goal is to transmit

as many packets in 2 time slots as possible.

Solution 1: INC based on the 5 operations in Fig. 1(b).
In the beginning of time 1, both Q1

{2} and Q2
{1} are empty.

Therefore, we can only choose either NON-CODING-1 or

NON-CODING-2. Since the setting is symmetric, without loss

of generality we assume that we choose NON-CODING-1 and

thus send X uncodedly. Since �p = (0, 0.5, 0.5, 0) in slot 1,

there are only two cases to consider. Case 1: X is received

only by d1. In this case, we can send Y in the second time

slot, which is guaranteed to arrive at d2 since �p = (0, 0, 0, 1)
in slot 2. The total sum rate is sending 2 packets (X and

Y ) in 2 time slots. Case 2: X is received only by d2. In this

case, Q1
{2} contains one packet X , and Q2

∅ contains one packet

Y , and all the other queues in Fig. 1(b) are empty. We can

thus choose either NON-CODING-2 or DEGENERATE-XOR-

1 for slot 2. Slot 2 will then deliver 1 packet to either d2 or

d1, depending on which INC operation we choose. Since no

packet is delivered in slot 1, the total sum rate is 1 packet in 2

time slots. Since both cases have probability 0.5, the expected

sum rate is 2 · 0.5 + 1 · 0.5 = 1.5 packets in 2 time slots.

An optimal solution: We can achieve strictly better through-

put by introducing new INC operations. Specifically, in slot 1,

we send the linear sum [X + Y ] even though neither X nor
Y has ever been transmitted, a distinct departure from the

existing 5-operation-based solutions.

Again consider two cases: Case 1: [X+Y ] is received only

by d1. In this case, we let s send Y uncodedly in slot 2. Since

�p = (0, 0, 0, 1) in slot 2, the packet Y will be received by both

d1 and d2. d2 is happy since it has now received the desired

Y packet. d1 can use Y together with the [X + Y ] packet

received in slot 1 to decode its desired X packet. Therefore, we

deliver 2 packets (X and Y ) in 2 time slots. Case 2: [X+Y ] is
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received only by d2. In this case, we let3 s sends X uncodedly

in slot 2. By the symmetric argument of Case 1, we deliver 2

packets (X and Y ) in 2 time slots. As a result, the sum-rate of

the new solution is 2 packets in 2 slots, a 33% improvement

over the existing solution.

Remark: This example focuses on a 2-time-slot duration

due to the simplicity of the analysis. It is worth noting that

the throughput improvement persists even for infinitely many

time slots. See the simulations results in Section VI.

2) The block-code capacity region for linear INC: We

summarize the high-level description of [Proposition 1, [12]]:

Proposition 1: [Proposition 1, [12]] For the block-code

setting, a rate vector (R1, R2) can be achieved by a linear

INC scheme if and only if a specifically constructed linear

programming (LP) problem is feasible. Given any (R1, R2),
the LP problem of interest involves 18 · |CQ|+7 non-negative

variables and |CQ| + 17 (in-)equalities and can be explicitly

computed.

Our goal is to design a dynamic INC scheme, of which the

stability region matches the block-code capacity region. To

that end, we will later show that the stability region of our

dynamic INC matches the region described in Proposition 1.

C. Stochastic Processing Networks (SPNs)

The main tool that we use to stabilize the vr-network is

scheduling for the stochastic processing networks (SPNs). In

the following, we will discuss the existing results on SPNs.

1) The Main Feature of SPNs: The SPN is a generalization

of the store-and-forward networks. In an SPN, a packet can

not be transmitted directly from one queue to another queue

through links. Instead, it must first be processed by a unit

called “Service Activity” (SA). The SA first collects a certain

amount of packets from one or more queues (named the

input queues), jointly processes these packets, generates a

new set of packets, and finally redistributes them to another

set of queues (named the output queues). There is one rule

for the SA activation: An SA can be activated only when
all its input queues can provide enough amount of packets
for the SA to process. This SA rule captures directly the

INC behavior. Other applications of SPNs include the video

streaming problem [15] and the Map-&-Reduce scheduling

[16].

2) SPNs with Deterministic Departure: All the existing

SPN scheduling solutions [13], [14] assume a special class

of SPNs, which we call SPNs with deterministic departure.

We elaborate the detailed definition in the following.

Consider a time-slotted system with i.i.d./periodic channel

quality cq(t). An SPN consists of three components: the input

activities (IAs), the service activities (SAs), and the queues.

We suppose that there are K queues, M IAs, and N SAs in

the SPN.

Input Activities: Each IA denotes a session (or a flow) of

packets and outputs packets to a deterministic set of queues

3ACK is critical in this scheme. I.e., s needs to know whether it is d1 or
d2 who has received [X + Y ] in slot 1 before deciding whether to send Y
or X in slot 2.

when activated. When an IA m is activated, it sends αk,m

packets to queue k. Let A ∈ R
K∗M be the “input matrix”

with Ak,m = −αk,m, for all m and k. At each time t, a

random subset of IAs will be activated. Equivalently, we define

a(t)
Δ
= (a1(t), a2(t), · · · , aM (t)) ∈ {0, 1}M as the “arrival

vector” at time t. If am(t) = 1, then IA m is activated at time

t. We assume that the random vector a(t) is i.i.d. over time

with the average rate vector R = E{a(t)}. We also assume

that the A matrix is a fixed (deterministic) system parameter

and all the randomness of IAs lies in a(t).
Service Activities: When SA n is activated, it takes packets

from a set of queues, denoted by In, and sends packets to

another set of queues, denoted by On. In and On are named

the input and output queues of SA n, respectively. Specifically,

when SA n is activated, it takes βk,n packets from queue k for

all k ∈ In and send β′
k̃,n

packets to queue k̃ for all k̃ ∈ On.

Let B ∈ R
K∗N be the “service matrix” with Bk,n = βk,n if

k ∈ In and Bk,n = −β′
k,n if k ∈ On. In the beginning of

each time t, the SPN scheduler is made aware of the current

channel quality cq(t) and can choose to “activate” a subset of

the SAs. Let x(t) ∈ {0, 1}N be the “service vector” at time

t. If xn(t) = 1, then it implies that we choose to activate SA

n at time t. Note that for some applications we may need to

impose the condition that some of the SAs cannot be scheduled

in the same time slot. To model this interference constraint,
we require x(t) to be chosen from a pre-defined set of binary

vectors X. Define Λ to be the convex hull of X and let Λ◦ be

the interior of Λ.
Acyclicness and Time-Varying Channels: The input/outuput

queues In and On of the SAs can be used to plot the

corresponding SPN. We assume that the SPN is acyclic. We

allow the input/ouput service rates βk,n and β′
k,n to depend

on the current channel quality cq(t), but assume that cq(t)
does not change In and On, the topology of the SPN. For

simplicity, we write B as a deterministic function B(c) where

c = cq(t) to highlight the assumption that βk,n and β′
k,n may

depend on cq(t). Recall that fc is the relative frequency of

cq(t) = c. We then have the following proposition.
Definition 1: An arrival rate vector R is “feasible” if there

exist sc ∈ Λ for all c ∈ CQ such that

A ·R+
∑
c∈CQ

fc · B(c) · sc = 0. (1)

A rate vector R is “strictly feasible” if there exist sc ∈ Λ◦ for

all c ∈ CQ such that (1) holds.
Proposition 2: [A combination of [13], [14]] Only feasible

R can possibly be stabilized. Moreover, there exists an SPN

scheduler that can stabilize all R that are strictly feasible.
The achievability part for SPNs with deterministic departure

(Proposition 2) is proven by the Deficit Max-Weight (DMW)

algorithm in [13] and by the Perturb Max-Weight (PMW)

algorithm in [14].
3) SPNs with Random Departure: Although the SPN with

deterministic departure is relatively well understood, those

SPN scheduling results cannot be applied to the INC vr-

network. The reason is as follows. When a packet is broadcast
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Fig. 4. An SPN with random departure.

by the base station, it can arrive at a random subset of receivers

with certain probability distributions. Therefore, the vr-packets

move among the vr-queues according to some probability

distribution. This is not compatible with the deterministic

departure SPN model, in which when an SA is activated we

know deterministically βk,n(c) and β′
k,n(c), the opportunistic

service rates when the channel quality is cq(t) = c. We call

the SPN model that allows random βk,n(c) and β′
k,n(c) the

SPN with random departure.

SPNs with random departure provide a unique challenge

for the scheduling design. [13] provides the following example

illustrating this issue. Fig. 4 describes an SPN with 6 transition

edges. We assume IA1 is activated at every time slot and

α1,1 = β1,1 = β2,2 = β3,2 = 1. Namely, for every time t,
1 packet will enter Q1; every time we activate SA1, 1 packet

will leave Q1; every time we activate SA2, 1 packet will leave

Q2 and 1 packet will leave Q3. These 4 transitions are all

deterministic. The two transitions SA1 → Q2 and SA1 → Q3

are random. Specifically, we assume that there are two possible

values of the pair (β′
2,1, β

′
3,1): (β′

2,1, β
′
3,1) = (1, 0) with

probability 0.5 and (β′
2,1, β

′
3,1) = (0, 1) with probability 0.5.

That is, whenever SA1 is activated, it takes a packet from Q1,

and with probability 0.5 this packet goes to Q2. Otherwise, this

packet goes to Q3. The random departure of SA1 implies that

the queue length difference |Q2|−|Q3| forms a binary random

walk. Note that SA2 has no impact on |Q2| − |Q3| since it

always takes 1 packet from each of the queues. The analysis of

the random walk shows that |Q2|−|Q3| goes unbounded with

rate
√
t. And hence there is no scheduling algorithm which

can stabilize both |Q2| and |Q3| simultaneously.

4) The Deficit Maximum Weight (DMW) Scheduling: Since

our scheme is based on the DMW algorithm, we briefly

describe in the following the DMW scheduling.

In DMW algorithm [13], each queue k maintains a real-

valued counter qk(t), called the virtual queue length. Initially,

qk(t) is set to 0. For comparison, the actual queue length is

denoted by Qk(t) instead.

The key feature of a DMW algorithm is that it makes a

back-pressured scheduling decision based on the virtual queue-

length, not on the actual queue length. Specifically, for each

time t, we choose the service vector (scheduling decision) by

x∗(t) = argmax
x∈X

dT (t) · x, (2)

where d(t) is the back pressure vector defined as d(t) =
BT (cq(t))q(t), B(cq(t)) is the service matrix B when the

channel quality is cq(t), and q(t) is the vector of the virtual

queue lengths. We then update q(t) according to the transition

Fig. 5. The virtual network of the proposed new INC solution.

matrices (A and B) and the flow conservation law:

q(t+ 1) = q(t)−A · a(t)− B(cq(t)) · x∗(t). (3)

Unlike the actual queue lengths Qk(t), which is always ≥
0, the virtual queue length q(t) can be smaller than 0 when

updated via (3). That is, we do not need to take the projection

to positive numbers when computing q(t).
Although the virtual queue length qk(t) is always updated

according to (3). The actual queue length has to follow the

SPN rule. That is, suppose SA n has been scheduled according

to (2) but for at least one of its input queues, say queue k, the

actual queue length Qk(t) is smaller than βk,n, the number

of packets that are supposed to leave queue k. Then DMW

simply skips scheduling SA n for this particular time slot.

III. THE PROPOSED NEW INC SOLUTION

The proposed new INC solution is described as follows.

We build upon the existing 5 operations, NON-CODING-

1, NON-CODING-2, CLASSIC-XOR, DEGENERATE-XOR-1,

and DEGENERATE-XOR-2. See Fig. 1(b) and the discussion

in Sections I and II-B1. We add 2 additional operations, termed

PREMIXING and REACTIVE-CODING, and 1 additional queue,

termed Qmix. We plot the vr-network of the new scheme in

Fig. 5. From Fig. 5, we can clearly see that PREMIXING

involves both Q1
∅ and Q2

∅ as input and outputs to Qmix.

REACTIVE-CODING involves Qmix as input and outputs to

Q1
{2} or Q2

{1} or simply lets the vr-packet leave the vr-network

(described by the dotted arrow). For every time instant, we can

choose one of the 7 operations and the goal is to stabilize the

vr-network. In the following, we describe in details how these

two INC operations work and how to integrate them with the

other 5 operations. Our description contains 4 parts.

Part I: The two operations, NON-CODING-1 and NON-

CODING-2, remain the same.

Part II: We now describe the new operation PREMIXING.

We can choose PREMIXING only if both Q1
∅ and Q2

∅ are non-

empty. Namely, there are Xi packets and Yj packets that have

not been heard by any of d1 and d2. Whenever we schedule

PREMIXING, we choose one Xi from Q1
∅ and one Yj from Q2

∅
and send [Xi + Yj ]. If neither d1 nor d2 receives it, both Xi

and Yj remain in their original queues.

If at least one of {d1, d2} receives it, we do the following.

We remove both Xi and Yj from their individual queues. We

insert a tuple (rcpt;Xi, Yj) into Qmix. That is, unlike the other

queues for which each entry is a single vr-packet, each entry

of Qmix is a tuple.
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TABLE I
A SUMMARY OF THE REACTIVE-CODING OPERATION

The first coordinate of (rcpt;Xi, Yj) is rcpt, the reception

status of [Xi+Yj ]. For example, if [Xi+Yj ] was received by

d2 but not by d1, then we set/record rcpt = d1d2; If [Xi+Yj ]
was received by both d1 and d2, then rcpt = d1d2. The second

and third coordinates store the participating packets Xi and

Yj separately. The reason why we do not store the linear sum

directly is due to the new REACTIVE-CODING operation.

Part III: We now describe the new operation REACTIVE-

CODING. For any time t, we can choose REACTIVE-CODING

only if there is at least one tuple (rcpt;Xi, Yj) in Qmix. Choose

one tuple from Qmix and denote it by (rcpt∗;X∗
i , Y

∗
j ). We now

describe the encoding part of REACTIVE-CODING.

Whenever we schedule REACTIVE-CODING, if rcpt∗ =
d1d2, send Y ∗

j . If rcpt∗ = d1d2, send X∗
i . If rcpt∗ = d1d2,

send X∗
i . One can see that the coding operation depends on the

reception status rcpt∗ when [X∗
i + Y ∗

j ] was first transmitted.

This is why it is named REACTIVE-CODING.

The movement of the vr-packets depends on the current

reception status of time t, denoted by rcpt(t), and also on

the old reception status rcpt∗ when the sum [X∗
i + Y ∗

j ]
was originally transmitted. The detailed movement rules are

described in Table I. The way to interpret the table is as

follows. For example, when rcpt(t) = d1d2, i.e., neither d1
nor d2 receives the current transmission, then we do nothing,

i.e., keep the tuple inside Qmix. On the other hand, we remove

the tuple from Qmix whenever rcpt(t) ∈ {d1d2, d1d2, d1d2}. If

rcpt(t) = d1d2, then we remove the tuple but do not insert any

vr-packet back to the vr-network, see the second last row of

Table I. The tuple essentially leaves the vr-network in this case.

If rcpt(t) = d1d2 and rcpt∗ = d1d2, then we remove the tuple

from Qmix and insert Y ∗
j to Q2

{1}. The rest of the combinations

can be read from Table I in the same way. One can verify

that the optimal INC example introduced in Section II-B1 is a

direct application of the PREMIXING and REACTIVE-CODING

operations.

Before we continue describing the slight modification to

CLASSIC-XOR, DEGENERATE-XOR-1, and DEGENERATE-

XOR-2, we briefly explain why the combination of PREMIX-

ING and REACTIVE-CODING works. To facilitate discussion,

we call the time slot in which we use PREMIXING to transmit

[X∗
i + Y ∗

j ] “slot 1” and the time slot in which we use

REACTIVE-CODING “slot 2.” For example, if rcpt∗ = d1d2
and rcpt(t) = d1d2, then it means that d1 receives [X∗

i +Y ∗
j ]

and Y ∗
j in slots 1 and 2, respectively and d2 receives Y ∗

j in slot

2. In this case, d1 can decode the desired X∗
i and d2 directly

receives the desired Y ∗
j . We now consider the perspective of

the vr-network. Table I shows that the tuple will be removed

from Qmix and leave the vr-network. Therefore, no queue in the

vr-network stores any of X∗
i and Y ∗

j . This correctly reflects

the fact that both X∗
i and Y ∗

j have been received by their

intended destinations.

Another example is when rcpt∗ = d1d2 and rcpt(t) = d1d2.

In this case, d2 receives [X∗
i + Y ∗

j ] in slot 1 and d1 receives

X∗
i in slot 2. From the vr-network’s perspective, the movement

rule (see Table I) removes the tuple from Qmix and insert

an X∗
i packet to Q2

{1}. Since a vr-packet is removed from

a session-1 queue4 Qmix and inserted to a session-2 queue

Q2
{1}, the total number of vr-packets in the session-1 queue

decreases by 1. This correctly reflects the fact that d1 has

received 1 desired packet X∗
i in slot 2.

An astute reader may wonder why we can put X∗
i , a session-

1 packet, into a session-2 queue Q2
{1}. The reason is that when-

ever d2 receives X∗
i in the future, it can recover its desired Y ∗

j

by subtracting X∗
i from the linear sum [X∗

i +Y ∗
j ] it received in

slot 1. Therefore, X∗
i is now information-equivalent to Y ∗

j , a

session-2 packet. Moreover, d1 has received X∗
i . Therefore,

X∗
i is no different than a session-2 packet that has been

overheard by d1. As a result, it is fit to put X∗
i in Q2

{1}.

Part IV: We now describe the slight modification to

CLASSIC-XOR, DEGENERATE-XOR-1, and DEGENERATE-

XOR-2. A unique feature of the new scheme is that some

packets in Q2
{1} may be a X∗

i packet that is inserted by

REACTIVE-CODING when rcpt∗ = d1d2 and rcpt(t) = d1d2.

(Also some Q1
{2} packets may be Y ∗

j .) However, in our

previous discussion, we have shown that those X∗
i in Q2

{1}
is information-equivalent to a Y ∗

j packet overheard by d1.

Therefore, in the CLASSIC-XOR operation, we should not

insist on sending [Xi+Yj ] but can also send [P1+P2] as long

as P1 is from Q1
{2} and P2 is from Q2

{1}. The same relaxation

must be applied to DEGENERATE-XOR-1 and DEGENERATE-

XOR-2 operations. Other than this slight relaxation, the three

operations work in the same way as previously described in

Sections I and II-B1.

The new two operations PREMIXING and REACTIVE-

CODING allow us to achieve the linear block-code capacity for

any time-varying channels. We conclude this section by listing

in Table II the transition probabilities of half of the edges

of the vr-network of Fig. 5. For example, when we schedule

PREMIXING, we remove a packet from Q1
∅ if at least one of

{d1, d2} receives it. As a result, the transition probability along

the Q1
∅ →PREMIXING edge is pd1∨d2

Δ
= pd1d2

+pd1d2
+pd1d2 .

All the other transition probabilities in Table II can be derived

similarly. The transition probability of the other half of the

edges can be derived by symmetry.

IV. THE PROPOSED SCHEDULING SOLUTION

In this section, we first formalize the model of SPNs with

random departure and then we propose a new scheme that

4Qmix is regarded as both a session-1 and a session-2 queue.
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TABLE II
A SUMMARY OF THE TRANSITION PROBABILITY OF THE VIRTUAL

NETWORK IN FIG. 5, WHERE pd1∨d2
Δ
= pd1d2

+ pd1d2
+ pd1d2 ;

pd1
Δ
= pd1d2

+ pd1d2 ; NC1 STANDS FOR NON-CODING-1; CX STANDS

FOR CLASSIC-XOR; DX1 STANDS FOR DEGENERATE-XOR-1; PM
STANDS FOR PREMIXING; RC STANDS FOR REACTIVE-CODING.

Edge Trans. Prob. Edge Trans. Prob.

Q1
∅ →NC1 pd1∨d2 Q1

∅ →PM pd1∨d2

NC1→ Q1
{2} pd1d2

PM→ Qmix pd1∨d2

Q1
{2} →DX1 pd1 Qmix →RC pd1∨d2

Q1
{2} →CX pd1 RC→ Q1

{2} pd1d2

achieves the optimal throughput region for SPNs with random

departure. We conclude this section by providing the key steps

of the corresponding stability/throughput analysis.

A. A Simple SPN model with Random Departure

Although our solution applies to general SPNs with random

departure, for illustration purposes we describe our scheme

by focusing on a simple SPN model with random departure,

which we termed the (0,1) random SPN. The (0,1) random

SPN includes the INC vr-network in Section III as a special

example and is thus sufficient for our discussion.

Recall the definitions in Section II-C2 for SPNs with

deterministic departure (we use deterministic SPNs as short-

hand). The differences between the (0,1) random SPN and the

deterministic SPN are:

Difference 1: In a deterministic SPN, SA n can be scheduled

only if for all k in the input queues In, queue k has at least

βk,n number of packets in the queue. For comparison, In a

(0,1) random SPN, SA n can be scheduled only if for all

k ∈ In, queue k has at least 1 packet in the queue.

Difference 2: In a deterministic SPN, when SA n is sched-

uled, for all k ∈ In, exactly βk,n number of packets will

leave queue k. In a (0,1) deterministic SPN, when SA n is

scheduled, for all k ∈ In, the number of packets leaving

queue k is a binary random variable with mean βk,n. Namely,

with probability βk,n, 1 packet will leave queue k and with

probability 1− βk,n no packet will leave queue k.

Difference 3: In a (0,1) deterministic SPN, when SA n is

scheduled, for all k ∈ On, the number of packets entering

queue k is a binary random variable with mean β′
k,n.

One can easily verify that the INC vr-networks in Figs. 1(a),

1(b), and 5 are special examples of the (0,1) random SPN.

B. The Proposed Solution For (0,1) Random SPNs

For any constant ε > 0, say ε = 0.001, the proposed scheme

works as follows.

Similar to the DMW algorithm, each queue k maintains

a real-valued counter qk(t), the virtual queue length. Initially,

qk(t) is set to 0. For any time t, each entry of the actual service

matrix B takes values in either 0 or 1 since we are focusing on

a (0,1) random SPN. We compute B(cq(t)) Δ
= E(B|cq(t)), the

average service matrix. We then slightly augment the average

input service rates βk,n in B(cq(t)) (those rates from queue k

to SA n) by βk,n
ε
= ε · (1 − βk,n) + βk,n. The new average

service rate matrix is denoted by B(cq(t))ε.
Then for each time t, we choose the service vector by

the back-pressure decision rule (2) except for that the back-

pressure vector d(t) is now computed by

d(t) =
(
B(cq(t))ε

)T

q(t). (4)

That is, we use the augmented average service matrix

B(cq(t))ε. We then update q(t) by

q(t+ 1) = q(t)−A · a(t)− B(cq(t))ε · x∗(t). (5)

In short, we borrow the idea of DMW so that we can make

scheduling decisions based on the virtual queue lengths qk(t)
that can take negative values. But then we update qk(t) only by

the average service rates rather than the actual service rates.

Finally, we add the ε-augmentation but only to the average

input service rates βk,n, not the output service rates β′
k,n.

The actual queue lengths Qk(t) are updated based on what

actually happens in the SPN. For example, suppose the above

qk(t)-based rule prompts us to schedule SA n but queue k is

empty Qk(t) = 0 for at least one k ∈ In. By the SPN rule, we

cannot schedule such SA n and we will simply skip this SA.

Therefore, even when the virtual queue qk(t + 1) is updated

by (5), the actual queue length Qk(t + 1) = Qk(t) remains

unchanged since SA n is skipped in the actual SPN.

C. Performance Analysis

The example in Section II-C3 shows that one challenge

of the SPN with random departure is that Qk(t) may grow

sublinearly when the deterministic SPN can still be stabilized.

However, from a throughput perspective, sublinear growth

means that the throughput penalty incurred by the growing

queues is negligible since the throughput is the average number

of the packet arrivals per second. Moreover, for any scheme A
that achieves sublinearly growing queues, we can often convert

it to a bounded queue scheme by (i) Run scheme A until any

of the sublinearly growing queue length hits some pre-defined

threshold; (ii) Stop scheme A and run a naive scheme B that

focuses on “draining” the queues of the network; (iii) When

running scheme B, put any any new arrival packets into a

separate buffer Q; (iv) After scheme B successfully drains

out all the queues, we start to run scheme A again and we

inject the packets collected in Q gradually back to the system.

The above 4 steps loose some throughput optimality but can

be made arbitrarily close to optimal when choosing a large

threshold in Step (i).

From the above reasonings, we believe that sublinearly

growing queues are as good as the bounded queues from a

practical perspective. The following analysis is based on the

concept of sublinearly growing queue lengths.

Definition 2: An actual queue length Qk(t) grows sublin-
early if for any ε > 0 and δ > 0, there exists t0 such that

Prob(|Qk(t)| > εt) < δ, ∀t > t0. (6)

An SPN is sublinearly stable if all the queues grow sublinearly.
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For any (0,1) random SPN, we have

Proposition 3: A rate vector R can be sublinearly stabilized

only if there exist sc ∈ Λ for all c ∈ CQ such that

A ·R+
∑
c∈CQ

fc · B(c) · sc = 0. (7)

Proposition 4: Consider any rate vector R such that there

exist sc ∈ Λ◦ for all c ∈ CQ satisfying (7) holds. Then there

exists an ε > 0 such that the proposed scheme in Section IV-B

can sublinearly stabilize the SPN with arrival rate R.

Proposition 3 can be derived by simple flow conservation

arguments. The main challenge of proving Proposition 4 is that

the scheduling decision is based on the virtual queue lengths

qk(t), which is updated in a way that is highly decoupled from

the update rule of the actual queue lengths Qk(t). However,

we need to prove that the scheduling based on qk(t) can

sublinearly stabilize Qk(t). Several key ingredients of our

analysis are provided as follows.

For discussion only, we temporarily ignore the ε-
augmentation by setting ε = 0. We then let each queue k keep

another real-valued counter qinter
k (t), termed the intermediate

virtual queue length. Initially, qinter
k is set to 0. Recall that we

make our scheduling decision based on qk(t) but we update

qinter
k (t) by

qinter(t+ 1) = qinter(t)−A · a(t)− B(cq(t)) · x∗(t). (8)

That is, qinter(t) is updated based on the actual realization of

the service matrix. (Recall that each entry of B(cq(t)) is either

0 or 1.) qinter(t) can strictly negative when updated via (8). We

can then prove that the three quantities qk(t), q
inter
k (t)− qk(t),

and Qk(t)− qinter
k (t) all grow sublinearly. This in turns prove

the sublinear growth of Qk(t).

V. THE COMBINED SOLUTION

We are now ready to combine the discussions in Sections III

and IV. As discussed in Section III, the 7 operations form a vr-

network as described in Fig. 5. Specifically, there are K = 5
queues, M = 2 IAs, and N = 7 SAs. The input matrix A
contains 2 (negative) ones, since the packets arrive at either

Q1
∅ or Q2

∅. Given the channel quality cq(t) = c, the average

service matrix B(c) can be derived from Table II. We can then

compute B(c)ε. Since there are 7 coding operations (SAs),

each vector in X is a 7-dimensional binary vector. Since we

are allowed to choose any one of the 7 operations or choose to

transmit nothing, 7 of the 8 vectors are the dirac delta vectors

and the rest is an all-zero vector. We can now use (2), (4), and

(5) to make the scheduling decision.

Proposition 5: When ε → 0, the sublinear stability region

of the proposed INC-plus-SPN-scheduling scheme matches the

block-code capacity of time-varying channels.

Sketch of the proof: Proposition 4 allows us to explicitly

write the sublinear stability region by the linear equalities

specified in by A and B(c). We then compare the sublinear

stability region polytope with the block-code capacity region

polytope specified in Proposition 1. We can show that both

polytopes are identical, which completes the proof.
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Fig. 6. The backlog of three different schemes for a time-varying channel
with cq(t) uniformly distributed on {1, 2}, and the packet delivery probability
being �p(1) = (0, 0.5, 0.5, 0) and �p(2) = (0, 0, 0, 1). The solid line represents
the proposed 7-operation INC solution, the dotted-dash line represents the
existing 5-operation solution [9], and the dash line represents the back-
pressure-based pure-routing solution

Remark: When conducting simulations, we notice that we

can make the following revisions to further reduce the actual

queue lengths Qk(t) by ≈ 50% even though we do not

have any rigorous proofs for the performance of the revised

scheme. The revision includes (i) We can simply set ε = 0 in

practice since the use of ε is mainly for circumventing some

mathematical difficulties. (ii) When making the scheduling

decision by (2), we can compute d(t) by

d(t) =
(
B(cq(t))

)T

qinter(t). (9)

where qinter(t) is the intermediate virtual queue length defined

in Section IV-C. This allows the scheme to directly control

qinter
k (t), which is closely related to the actual queue length

Qk(t).

VI. SIMULATION RESULTS

In this section, we simulate the 7-INC-operation solution

proposed in Section III with the DMW-based scheduling algo-

rithm in Section IV-B and V, and compare the stability results

with the existing INC solutions and the (back-pressure) pure-

routing solution to evaluate the performance improvement.

In Fig. 6, we simulate a simple time-varying channel

situation first described in Section II-B1. Specifically, the

channel quality cq(t) is i.i.d. distributed and for any t, cq(t)
is uniformly distributed on {1, 2}. When cq(t) = 1, the

success probabilities are �p(1) = (0, 0.5, 0.5, 0) and and when

cq(t) = 2, the success probabilities are �p(2) = (0, 0, 0, 1),
respectively. By the results in [12], the theoretical rate bound

in this setting is 1 packet/slot for the optimal 7-operation

INC scheme and 0.875 packet/slot for the suboptimal 5-

operation scheme. One can also show that when using routing-

based solutions (no network coding), the stability region is

bounded by 0.75 packet/slot. The simulation results confirm
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(a) i.i.d. channel quality.
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(b) periodic channel quality.

Fig. 7. The backlog comparison for 4 different channel qualitiess. The
solid line represents the proposed 7-operation INC solution, the dotted-dash
line represents the priority-based 5-operation scheme [4], and the dash line
represents the pure-routing solution.

our analysis. The proposed 7-operation dynamic INC design

provides 14.7% throughput improvement over the 5-operation

INC, and 33.3% over the pure-routing solution.

Next we simulate the scenario of 4 different channel qual-

ities: CQ = {1, 2, 3, 4}. The varying channel qualities could

model the situations like the different packet transmission rates

and loss rates due to adaptive coding and modulation; or the

time-varying interference caused by the primary traffic in a

cognitive radio environment. As will be seen, the proposed

solution robustly and optimally adapt the time-varying channel

quality and consistently outperforms all the existing solutions.

In Fig. 7. We assume four possible channel qualities with

the probability distributions are �p(1) = (0.14, 0.06, 0.56, 0.24),
�p(2) = (0.14, 0.56, 0.06, 0.24), �p(3) = (0.04, 0.16, 0.16, 0.64),
and �p(4) = (0.49, 0.21, 0.21, 0.09). In Figure 7(a), the channel

quality cq(t) is i.i.d. distributed with the expected long-

term frequency (f1, f2, f3, f4) being (0.15, 0.15, 0.35, 0.35).
In Figure 7(b) we consider the same �p(1) to �p(4) but choose

cq(t) to be periodic with period 12 and the first period being

1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4. As depicted by Figure 7(a) and

7(b), the pure-routing solution outperforms the 5-operation

scheme for the periodic cq(t) while the order is reversed

for i.i.d. cq(t). The proposed 7-operation scheme consistently

outperforms all the existing solutions and achieves the optimal

throughput.

VII. CONCLUSION

We have proposed a new 7-operation INC scheme together

with the corresponding scheduling algorithm to achieve the

optimal throughput of downlink 2-flow with time varying

channels. Based on binary XOR operations, the proposed

solution admits ultra-low encoding/decoding complexity. A

byproduct of this paper is a throughput-optimal scheduling so-

lution for SPNs with random departure, which further broadens

the applications of SPNs to other real-world applications.
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