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Abstract—This paper characterizes the full capacity region of
the COPE principle for 2-flow wireless butterfly networks with
broadcast packet erasure channels (PECs). The capacity results
in this work allow for random overhearing with arbitrary ove r-
hearing probabilities, arbitrary scheduling policies, network-wide
channel state information (CSI) feedback after each transmission,
and potential use of non-linear network codes. An information-
theoretic outer bound is derived that takes into account the
delayed CSI feedback of the underlying broadcast packet erasure
channels.For the achievability, this paper proposes anew class
of linear network codes, named as the Space-Based Linear
Network Coding (SBLNC), that achieves the capacity outer
bound. Further, the proposed outer and inner bounds are later
generalized for the setting in which a transmission may be
heard by its 2-hop neighbor(s), the so-calledopportunistic routing
scenario. When allowing the possibility of opportunistic routing,
the proposed inner and outer bounds do not always meet.
Numerical experiments, however, show that the relative gapof the
two bounds is less than 0.08% in average. The proposed bounds
thus tightly bracket the capacity region even when combining
the COPE principle with opportunistic routing.

I. I NTRODUCTION

The seminal work by Liet al. in 2003 [1] shows that, linear
network coding (LNC) achieves the single-flow multicast net-
work capacity. However, most flows are unicast. For the setting
of multiple unicast flows, the capacity region of network
coding (and/or LNC) remains largely unknown. In 2006, Katti
et al. proposed a new multiple-unicast LNC protocol, called
“COPE” [2], which realizes the network coding gain by ex-
ploiting the wireless network diversity created by overhearing
packets of other coexisting flows. Take the 5-node wireless
butterfly network in Fig. 1(a) for example. Suppose source
s1 would like to send a packetX to destinationd1; sources2
would like to send a packetY to d2; and they share a common
relay r. Also suppose that whens1 (resp.s2) sendsX (resp.
Y ) to r, destinationd2 (resp.d1) can overhear packetX (resp.
Y ). We further assume that after the first two transmissions,
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Fig. 1. The illustration of (a) The COPE principle; and (b) The scenario of
2-hop overhearing for which one can apply opportunistic routing to enhance
the throughput.

bothd1 andd2 can use feedback1 to inform r the overhearing
status atd1 andd2, respectively. Then instead of transmitting
two packetsX and Y separately, the relay noder can send
the linear combination[X + Y ]. Each destinationdi can then
decode its desired packet by subtracting the overheard packet
from the linear combination[X + Y ]. In [2], it was shown
empirically that the throughput improvement of the above
COPE principle ranges from40% to 200% in a multi-hop
testbed environment.Throughout this paper, we use the term
“COPE principle” to denote the above scenario that involvesat
least two sessions and periodic reception status feedback.The
COPE principle exploits the following two types of coding
gain to improve the overall throughput. The first one is “the
side information” coding gain, for which the destinationdj
overhears the transmission fromsi [3], [4]. The second one
is “the feedback coding gain in broadcast channels,” which
follows from the unmatched reception status when relayr is
broadcasting packets tod1 andd2, respectively [5]–[7].

Despite its simple nature, the exact capacity region of the
COPE principle remains an open problem even for the simplest
case of two coexisting flows. Several attempts have since been
made to quantify some suboptimal achievable rate regions of
the COPE principle [8]–[17]. One difficulty of deriving the
capacity region is due to the use of feedback in the COPE prin-
ciple. It is shown in [5] that although feedback could strictly
enhance the capacity in a multi-unicast environment, the

1The use of feedback is critical in the COPE principle. Without feedback,
the relayr will not know that sending the linear combination[X + Y ] can
serve two flows simultaneously.
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exact amount of throughput improvement is hard to quantify.
Compared with the capacity-based approaches, the results in
[4] proposes a queue-based approach for the general wireline
and wireless networks while considering both inter-session
and intra-session network coding. The proposed queue-based
scheme explores the possible inter-session network coding
chance by tracking the side information received from the
opposite source. However, the results in [4] mainly focus on
the side information benefits and on deciding whether to apply
inter-session or intra-session network coding.Similarly, [3]
circumvents the difficulty of feedback-based analysis by con-
sidering a special class of 2-staged coding schemes. Although
the results in [3] fully quantify the benefits of message side
information [4], [5], [18]–[22] , they capture only partially the
feedback benefits, which leads again to a strictly suboptimal
achievable rate region.

Recently, [6] and [7] successfully characterized the full
capacity region of the 1-hop broadcast packet erasure channel
with ≤ 3 coexisting flows. The results in [6] and [7] prompt
the possibility of fully characterizing the capacity of theCOPE
principle over the wirelessbutterfly network in Fig. 1(a).
For comparison, our work focuses on thewireless butterfly
network in Fig. 1(a) while [6] and [7] focus on the 1-
hop broadcast channel. For thewireless butterflynetwork
in Fig. 1(a), the network designer faces both thescheduling
problem: which node (out of the two source nodess1, s2, and
the relay noder) to transmit at the current time slot, and the
network coding problem: how to combine the heard/overheard
packets and generate the network coded packets. For the 1-
hop broadcast channel considered in [6] and [7], there is no
scheduling problem since there is only one base station and the
base station transmits all the time. As will be seen shortly,for a
wireless butterflynetwork, the feedback/control messages may
propagate through the entire network and affect dynamically
the scheduling and coding decisions for all three nodess1, s2,
andr, which further complicates the analysis.

In this paper, we first characterize the full capacity region
of the above COPE principle for2-flow wireless butterfly
networks with broadcast PECs. The setting considered in this
work allows for memoryless random overhearing with arbi-
trary overhearing probabilities, arbitrary scheduling policies2,
network-wide channel state information (CSI) feedback after
each transmission, and potential use of non-linear network
codes. An information-theoretic outer bound is derived that
fully takes into account the delayed CSI feedback of the
underlying broadcast packet erasure channels.This paper then
proposes anew class of linear network codes,named asthe
Space-Based Linear Network Coding (SBLNC), for which the
throughput can be quantified by solving a linear programming
problem. We prove that the SBLNC scheme achieves the
capacity region of the COPE principle.

Recently, new opportunistic routing (OpR) protocols, such
as the MORE protocol [23]–[25], take advantage of the
observation that in Fig. 1(a) the packet sent by sourcesi can
sometimes be heard directly by its two-hop-away destination

2In general, a scheduling policy exchanges control messagesbetween the
network nodes and then decides which node to transmit in the current time
slot.

Fig. 2. The 2-flow wireless butterfly network with broadcast PECs.

di. (The 2-hop overhearing probability is generally much less
than the success probability of the 1-hop direct transmission
from si to r.) See Fig. 1(b) for illustration. [23] and [25] show
that such 2-hop overhearing can also be used to significantly
improve the throughput by the concept ofopportunistic routing
without relying on the COPE principle (i.e., no coding across
multiple unicast flows).Throughout this paper, we will use
“OpR” to denote the scenario in whichdi can directly hear
the transmission ofsi with non-zero probability3 for i = 1, 2.
An interesting question is thus what is the capacity region
when we combine both the COPE principle and opportunistic
routing. To that end, the proposed outer and inner bounds are
further generalized for the setting in which a transmissionmay
be heard by its 2-hop neighbor(s). In contrast with the case
when only the COPE principle is considered, the proposed
inner and outer bounds are no longer tight after taking into
account the possibility of performing opportunistic routing.
Extensive numerical experiments are used to quantify the gap
between the two bounds. The results show that for practical
settings, the relative gap of the two bounds is less than 0.08%
in average. The proposed bounds thus tightly bracket the
capacity region even when combining the COPE principle with
opportunistic routing.

The rest of the paper is organized as follows. Section II
formulates the problem. Section III describes the main result
of this paper, the full capacity region of the COPE principle
for 2-flow wireless butterfly networks with broadcast PECs.
Section IV introduces anew class of LNC,named asthe
Space-Based Linear Network Code (SBLNC), and provides
some examples and motivations for designing the SBLNC
code. Section V quantifies the performance of SBLNC and
shows that when focusing exclusively on the COPE principle
without considering opportunistic routing, SBLNC achieves
the capacity. Section VI reports the results of serveral numer-
ical experiments. Section VII concludes the paper.

II. PROBLEM FORMULATION

A. Memoryless Broadcast Packet Erasure Channels

For any positive integerM , define [M ]
∆
= {1, · · · ,M}.

A 1-to-M packet erasure channel takes an inputx from a

3The concept of “opportunistic routing” is different from the term “intra-
session random linear network coding (RLNC).” For example, one way of
realizing the OpR throughput improvement is by RLNC [23]. However, there
are other ways of realizing the OpR benefits [26]. Also, when periodic
feedback is not available [3], [4], [17], it is shown that even without direct
links, one still needs to use intra-session network coding to fully realize the
side information benefits of the COPE principle.
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finite field GF(q) and outputs anM -dimensional vectory =
(y1, y2, ..., yM ), whereyi ∈ {x, ∗} for all i ∈ [M ]. Here ∗
denotes the erasure symbol.yi = ∗ means that thei-th receiver
does not receive the inputx. We also assume that there is no
other type of noise, i.e., the receivedyi is eitherx or ∗.

We consider onlymemoryless PECs, i.e., the erasure pattern
is independently and identically distributed (i.i.d.) foreach
channel usage. The characteristics of a memoryless1-to-
M PEC can be fully described by2M successful reception
probabilitiesp

s→T [M ]\T indexed by any subsetT ⊂ [M ]. That
is, p

s→T [M ]\T denote the probability that a packetx sent from
sources is heard by and only by thei-th destination for all
i ∈ T .

B. The COPE Principle for2-Flow Wireless Butterfly Net-
works with Broadcast PECs

The COPE principle for the2-flow wireless butterfly
networks with broadcast PECsis modeled as follows. We
consider a 5-node 2-hop relay network with two source-
destination pairs(s1, d1) and (s2, d2) and a common relay
r interconnected by three broadcast PECs. See Fig. 2 for
illustration. Specifically, sourcesi can use a 1-to-3 broadcast
PEC to communicate with{d1, d2, r} for i = 1, 2, and
relay r can use a 1-to-2 broadcast PEC to communicate with
{d1, d2}. To accommodate the discussion of opportunistic
routing, we allowsi to directly communicate withdi, see
Fig. 2. When opportunistic routing is not permitted (as in the
case when focusing exclusively on the COPE principle), we
simply choose the PEC channel success probabilitiespsi→·

such that the probability thatdi can hear the transmission from
si is zero.

We assume slotted transmission. Within an overall time
budget ofn time slots, sourcesi would like to conveynRi

packetsWi
∆
= (Wi,1, · · · ,Wi,nRi

) to destinationdi for all
i ∈ {1, 2} whereRi is the rate for flowi. For all i ∈ {1, 2},
j ∈ [nRi], the information packetWi,j is assumed to be
independently and uniformly randomly distributed overGF(q).

For any timet, we use an 8-dimensionalchannel status
vector Z(t) to represent the channel reception status of the
entire network:

Z(t) = (Zs1→d1(t), Zs1→d2(t), Zs1→r(t), Zs2→d1(t),

Zs2→d2(t), Zs2→r(t), Zr→d1(t), Zr→d2(t)) ∈ {∗, 1}8

where “∗” and “1” represent erasure and successful recep-
tion, respectively. For example, whens1 transmits a packet
Xs1(t) ∈ GF(q) in time t, relayr receivesYs1→r(t) = Xs1(t)
if Zs1→r(t) = 1 and receivesYs1→r(t) = ∗ if Zs1→r(t) = ∗.
For simplicity, we useYs1→r(t) = Xs1(t) ◦ Zs1→r(t) as
shorthand.

In this work, we consider the node-exclusive interference
model. That is, we allow only one node to be scheduled in
each time slot. The scheduling decision at timet is denoted
by σ(t), which takes value in the set{s1, s2, r}. For example,
σ(t) = s1 means that nodes1 is scheduled for time slott. For
convenience, whens1 is not scheduled at timet, we simply
setYs1→r(t) = ∗. As a result, the scheduling decision can be

incorporated into the following expression ofYs1→r(t):

Ys1→r(t) = Xs1(t) ◦ Zs1→r(t) ◦ 1{σ(t)=s1}.

Similar notation is used for all other received signals. For
example,Yr→d2(t) = Xr(t) ◦ Zr→d2(t) ◦ 1{σ(t)=r} is what
d2 receives fromr in time t, whereXr(t) is the packet sent
by r in time t.

We assume that the 3 PECs are memoryless and stationary.
Namely, we allow arbitrary joint distribution for the 8 coordi-
nates ofZ(t) but assume thatZ(t) is i.i.d. over the time axis
t. For example, the individual random variablesZs2→d1(t)
andZs2→r(t) may be dependent but the two random vectors
Z(t1) andZ(t2) are independent as long ast1 6= t2. We also
assume that the random process{Z(t) : ∀t} is independent of
the information messagesW1 andW2.

For simplicity, we use brackets[·]t1 to denote the col-

lection from time 1 to t. For example,[σ,Z, Ys1→d2 ]
t
1

∆
=

{σ(τ),Z(τ), Ys1→d2(τ) : ∀τ ∈ {1, 2, ..., t}}. Also, for any
S ⊆ {s1, s2, r} andT ⊆ {r, d1, d2}, we define

YS→T (t)
∆
= {Ys→d(t) : ∀s ∈ S, ∀d ∈ T }.

For example, Y{s1,r}→{d1,d2}(t) is the collection of
Ys1→d1(t), Ys1→d2(t), Yr→d1(t), andYr→d2(t).

Given the rate vector(R1, R2), a joint scheduling and
network coding (NC) scheme is defined byn scheduling
decision functions

∀t ∈ [n], σ(t) = fσ,t([Z]
t−1
1 ), (1)

3n encoding functions ats1, s2, and r, respectively: For all
t ∈ [n]

Xsi(t) = fsi,t(Wi, [Z]
t−1
1 ), ∀i ∈ {1, 2}, (2)

Xr(t) = fr,t([Y{s1,s2}→r,Z]
t−1
1 ), (3)

and2 decoding functions atd1 andd2, respectively:

Ŵi = fdi
([Y{s1,s2,r}→di

,Z]n1 ), ∀i ∈ {1, 2}. (4)

By (1), we allowσ(t), the scheduling decision at timet,
to be a function of the network-wide reception status vectors
before timet. By (2), the encoding decision atsi is a function
depending on the information messages and past channel
status. Encoding atr depends on whatr received in the
past and the past channel status vector, see (3). In the end,
di decodesWi based on whatdi has received and the past
channel status of the entire network4. We allow the encoding
and decoding functionsfsi,t, fr,t, and fdi

to be linear or
nonlinear.

This setting models the scenario in which there is a dedi-
cated, error-free, low-rate control channel that can broadcast
the previous network channel statusZ(t − 1) causally to all
network nodes. The total amount of control information is
no larger than8 bits per time slot, which is much smaller
than the actual payload of each packet≈ 104 bits. As a
result, the perfect feedback channel could be implemented by

4Since the scheduling decisionσ(t) is a function of [Z]t−1

1
, all the

encoding functions in (2) and (3), and the decoding functions in (4) also
know implicitly the scheduling decisionσ(t).
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piggybacking5 on the data packets.The scheduling decision
σ(t) can be computed centrally (by a central controller) or
distributively by each individual node since we allow all nodes
to have the knowledge of the reception status of the entire
network. This work mainly focuses on the theoretical capacity
analysis of the feedback-enabled butterfly networks. Hencewe
omit the discussion of any practical implementation issues
like buffer management and time synchronization, the latter
of which is critical when implementing the schedulerσ(t).

Definition 1: Fix the distribution ofZ(t) and finite field
GF(q). A rate vector(R1, R2) is achievable if for anyε > 0,
there exists a joint scheduling and NC scheme with sufficiently
largen such that

max
∀i∈{1,2}

Prob(Wi 6= Ŵi) < ε.

The capacity region is defined as the closure of all achievable
rate vectors(R1, R2).

Remark: In (1), the scheduling decisionσ(t) does not
depend on the information messagesWi, which means that
we prohibit the use of timing channels [27], [28]. Even when
we allow the usage of timing channels, we conjecture that
the overall capacity improvement with the timing channel
techniques is negligible. A heuristic argument is that each
successful packet transmission giveslog2(q) bits of informa-
tion while the timing information (to transmit or not) gives
roughly 1 bit of information. When focusing on sufficiently
large GF(q), additional gain of timing information is thus
likely to be absorbed in our timing-information-free capacity
characterization. In our setting,r is the only node that can
mix packets from two different data flows. Further relaxation
such thats1 and s2 can hear each other and perform coding
accordingly is beyond the scope of this work.

C. A Useful Notation

In our network model, there are 3 broadcast PECs associated
with s1, s2, and r, respectively. We sometimescall those
PECs thesi-PEC, i = 1, 2, and ther-PEC. Since only one
node can be scheduled in each time slot, we can assume
that the reception events of each PEC are independent from
that of the other PECs. As a result, the distribution of the
network-wide channel status vectorZ(t) can be described by
the probabilitiesp

si→T{r,d1,d2}\T
for all i ∈ {1, 2} and for

all T ⊆ {r, d1, d2}, andp
r→U{d1,d2}\U

for all U ⊆ {d1, d2}.
Totally there are8 + 8 + 4 = 20 parameters. By allowing
some of the coordinates ofZ(t) to be correlated(i.e., spatially
correlated as the correlation is between coordinates, not over
the time axis), our setting can also model the scenario in which
destinationsd1 andd2 are situated in the same physical node
and thus have perfectly correlated channel success events.

For notational simplicity, we also define the following three
probability functions psi(·) , i = 1, 2, and pr(·), one for
each of the PECs. The input argument of each functionps
(s being one of{s1, s2, r}) is a collection of the elements

5Some pipelining may be necessary to mitigate the propagation delay of
the feedback control messages.

TABLE I
THE COMPARISONS TO THE EXISTING WORK[3]

Features in [3] Features in this work

Setting

(1) Allow only sequential
scheduling,

(1) Allow dynamic schedul-
ing,

(2) Allow only batch feed-
back,

(2) Allow per-packet feed-
back,

(3) Arbitrary number of
flows.

(3) 2 flows.

The outer
bound

Side-information-based in-
dex coding analysis.

Full feedback and schedul-
ing analysis.

The inner
bound

(1) Sequential scheduling, (1) Sequential scheduling,
(2) Linear coding functions. (2) Linear coding functions.

Contribution
Suboptimal achievability
scheme for an arbitrary
number of flows.

Exact 2-flow capacity re-
gion of the COPE principle
with per packet scheduling.

in {d1, d2, r, d1, d2, r}. The functionps(·) outputs the prob-
ability that the reception event iscompatibleto the specified
collection of{d1, d2, r, d1, d2, r}. For example,

ps1(d2r) = ps1→d2d1r
+ ps1→d1d2r (5)

is the probability that the input of thes1-PEC is successfully
received byd2 but not byr. Herein,d1 is adon’t-carereceiver
and ps1(d2r) thus sums two joint probabilities together (d1
receives it or not) as described in (5). Another example
is pr(d2) = pr→d1d2 + pr→d1d2

, which is the probability
that a packet sent byr is heard byd2. To slightly abuse
the notation, we further allowps(·) to take multiple input
arguments separated by the comma sign “,”. With this new
notation,ps(·) then represents the probability that the reception
event is compatible toat leastone of the input arguments. For
example,

ps1(d1d2, r) = ps1→d1d2r
+ ps1→d1d2r

+ ps1→d1d2r

+ ps1→d1d2r
+ ps1→d1d2r

.

That is, ps1(d1d2, r) represents the probability that
(Zs1→d1 , Zs1→d2 , Zs1→r) equals one of the following 5
vectors (1, ∗, ∗), (1, ∗, 1), (1, 1, 1), (∗, 1, 1), and (∗, ∗, 1).
Note that these 5 vectors are compatible to eitherd1d2 or r or
both. Another example of thisps(·) notation isps1(d1, d2, r),
which represents the probability that a packet sent bys1
is received byat least one of the three nodesd1, d2, and
r. In the following context, we slightly abuse the notation

pi(·)
4
= psi(·) for i = 1, 2 when there is no ambiguity.

D. Comparison to Existing Works and Practical COPE Pro-
tocol

In this subsection, we compare the network model of this
paper with the existing message-side-information-based results
[3] and the practical COPE-based schemes.

There are three major differences between the setting of this
work and in [3]. First, the setting of the outer bound in [3]
is restricted to considering only the deterministic sequential
scheduling policy, which schedules nodess1, s2, and r in
a strict order. Namely,s1 transmits first. Afters1 stops,s2
can begin to transmit. Only afters2 stops transmission can
r start its own transmission. For comparison, the setting of
our outer bound derivation allows for dynamically choosing
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the scheduleσ(t) for each time slott depending on the past
reception status[Z]t−1

1 , which includes any store-&-forward-
based scheduling policies as special cases, such as the back-
pressure and the maximal weighted matching schemes (see
[25] for references). Our outer bound result thus quantifiesthe
best possible achievable rates with jointly designed scheduling
and coding policies.

Secondly, in [3] no feedback is allowed whens1 and s2
transmit. More specifically, suppose jointlys1 and s2 take
ts1 + ts2 time slots to finish transmission. Then only in the
beginning of time(ts1 + ts2 + 1) are we allowed to send the
channel status[Z]

ts1+ts2
1 to r. No further feedback is allowed

until time n, the end of overall transmission. For comparison,
our setting allows constantly broadcasting network-wide chan-
nel status[Z]t−1

1 to s1, s2, andr, as discussed in Section II-B.
This setting thus includes the Automatic Repeat reQuest
(ARQ) mechanism as a special case [3], [6]. Broadcasting
the control information[Z]t−1

1 to all the network nodes also
eliminates the need of estimating/learning the reception status
of the neighbors. Thirdly, [3] focuses on an arbitrary number
of coexisting flows while this work focuses exclusively on the
2-flow scenario.

In addition to different settings, the outer bound analysis
of [3] focuses on the side-information-based index-coding-
like analysis, while this work focuses on full feedback and
scheduling analysis. Although both the achievability schemes
in [3] and in this work are based on linear network coding with
sequential scheduling, the latter has to take into account the
per-slot causal feedback in the LNC design. The differences
between [3] and this work are summarized in Table I.

We also compare the analytical results in this work to the
practical COPE implementation in [2]. The COPE protocol
in [2] contains three major components: (i) Opportunistic
listening: Each destination is in a promiscuous monitoring
mode and stores all the overheard packets; (ii) Opportunistic
coding: The relay node decides which packets to be coded
together opportunistically, based on the overhearing patterns
of its neighbors; and (iii) Learning the states of the neighbors:
Although in the practical COPE implementation reception re-
ports are periodically sent to advertise the overhearing patterns
of the next-hop neighbors of the relay, the relay node still
needs to extrapolate the overhearing status of its neighbors
since there is always a time lag due to the infrequent periodic
feedback.

Our setting closely captures the opportunistic listening com-
ponent of COPE by modeling the wireless packet transmission
as a random broadcast PEC. In (1)–(3), the channel status
vector is used to make the coding and scheduling decisions,
which captures the opportunistic coding component of COPE.
In COPE, the reception reports are broadcast periodically,
which is captured by the control information[Z]t−1

1 . In sum,
our capacity region is a superset of any achievable rates of
any COPE-principle-based schemes [2] when focusing on the
2-flow wireless butterfly networks with broadcast PECsin
Fig. 1(a) and the node exclusive interference model.

Remark: The setting in Section II-B also includes the
wireless erasure 2-way relay channel model (Fig. 3(a) and
3(b)) as a special case. Specifically, if we set the overhearing

(a) (b)

Fig. 3. The illustration of the two–way relay channel for which nodea
would like to sendX to nodeb and b would like to sendY to a. In (b),
the common relay can send a linear combination[X + Y ] that benefits both
destinations simultaneously.

probabilities:pi(dj) = 1 for all i 6= j, then the capacity region
of the setting in Section II-B is also the capacity region of the
wireless erasure 2-way relay channel in Fig. 3.

III. M AIN RESULTS

In this section, we provide our results based on two cases:
The case of considering only the COPE principle and the case
of combining COPE with the opportunistic routing technique.
The main difference is that for the former setting, we assume
that no transmission can be heard by its 2-hop neighbors, i.e.,
pi(di) = 0 for all i = 1, 2. For the latter setting, we allow
pi(di) to be non-zero.

For the case of using exclusively the COPE principle, the
full capacity region has been characterized in Section III-A
while for the case of COPE plus opportunistic routing, a
pair of outer and inner bounds are provided in Sections III-B
and III-C, respectively.

A. The COPE-Principle 2-Flow Wireless Butterfly Network
Capacity

Proposition 1: Consider any2-flow wireless butterfly net-
work with broadcast PECswith pi(di) = 0 for all i = 1, 2
and consider any finite fieldGF(q). The rate pair(R1, R2) is
in the capacity region if and only if there exist three non-
negative time sharing parametersts1 , ts2 and tr such that
jointly (R1, R2) and (ts1 , ts2 , tr) satisfy

ts1 + ts2 + tr ≤ 1 (6)

∀i ∈ {1, 2}, Ri ≤ tsipi(r) (7)

R1

pr(d1)
+

(R2 − ts2p2(d1))
+

pr(d1, d2)
≤ tr (8)

(R1 − ts1p1(d2))
+

pr(d1, d2)
+

R2

pr(d2)
≤ tr (9)

where(·)+
∆
= max(0, ·) is the projection to non-negative reals.

The proof of the achievability part of Proposition 1 is
relegated to Section V-B and the converse proof is relegated
to Appendix A.

The intuition behind (6) to (9) is as follows. (6) is a time
sharing bound, which follows from the total time budget being
n and the node-exclusive interference model.

Inequality (7) is a simple cut-set bound. That is, the message
Wi has to be sent fromsi to the common relayr first.
Therefore, the rate is upper bounded by the link capacity from
si to r.
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Inequalities (8) and (9) combine the capacity results on
message-side-information [3] and the capacity results on chan-
nel output feedback for broadcast channels [6], [7]. A very
heuristic, not rigorous explanation of (8) is as follows.R1

pr(d1)
represents how many time slots it takes to send all the flow-1
packets tod1 as if there is no flow-2.ts2p2(d1) characterizes
how much flow-2 information can be “overheard” byd1, and
(R2 − ts2p2(d1))

+ thus represents how much flow-2 informa-
tion that has not been heard byd1 but still needs to be sent
to d2. Since those flow-2 packets cannot be “coded” together
with any flow-1 packets, they need to be sent separately by
themselves in addition to theR1

pr(d1)
time slots used to send

flow-1 packets. In general, it takes
(R2−ts2p2(d1))

+

pr(d2)
for those

packets to arrive atd2. However, [6] shows that the use of

feedback can further reduce the time to(
R2−ts2p2(d1))

+

pr(d1,d2)
. We

then have (8) since the total transmission time of relayr is
ntr time slots. (9) is symmetric to (8).

B. Capacity Outer Bound for COPE plus OpR

The capacity results in Proposition 1 can be generalized
as an outer bound for the case when the destinationdi may
overhear directly the transmission ofsi, i.e., pi(di) > 0.

Proposition 2: Consider any2-flow wireless butterfly net-
work with broadcast PECsin Fig. 2 with arbitrary channel
characteristics and consider any finite fieldGF(q). If a rate
vector (R1, R2) is achievable, there exist three non-negative
scalarsts1 , ts2 , andtr satisfying

ts1 + ts2 + tr ≤ 1 (10)

∀i ∈ {1, 2}, Ri ≤ tsipi(di, r) (11)

(R1 − ts1p1(d1))
+

pr(d1)
+

(R2 − ts2p2(d1, d2))
+

pr(d1, d2)
≤ tr (12)

(R1 − ts1p1(d1, d2))
+

pr(d1, d2)
+

(R2 − ts2p2(d2))
+

pr(d2)
≤ tr. (13)

This outer bound considers channel status feedback, dy-
namic scheduling, and possibly non-linear encoding functions,
and is derived by entropy-based analysis. One major challenge
of the outer bound derivation is to incorporate the effects of
dynamic scheduling, which was not presented in the existing
sequential-scheme-based outer bound analysis [3]. To circum-
vent this issue, we further analyze the time average of the
mutual information over all possible realizations. The detailed
proof is relegated to Appendix A.

Remark:One can easily see that when the channel proba-
bilities satisfypi(di) = 0 for all i = 1, 2, the outer bound in
Proposition 2 collapses to the capacity region in Proposition 1.
Proposition 2 is thus a strict generalization of the converse part
of Proposition 1.

C. Capacity Inner Bound for COPE plus OpR

An inner bound for the general case ofpi(di) ≥ 0 is
described as follows.

Proposition 3: A rate vector(R1, R2) is achievable by a
linear network code if there exist 3 non-negative variablests1 ,
ts2 , tr, 10 non-negative variables,ωk

si
, wherei ∈ {1, 2} and

k ∈ {0, 1, 2, 3, 4}, 4 non-negative variablesωk
r,N, ωk

r,C for k =

1, 2, such that jointly the 17 variables6 and (R1, R2) satisfy
the following four groups of inequalities:

Group 1 has 5 inequalities,named asthe time budget
constraints.

∀i = 1, 2,
4
∑

k=0

ωk
si

≤ tsi (14)

∀i = 1, 2, ω1
r,N + ω2

r,N + ωi
r,C ≤ tr (15)

ts1 + ts2 + tr < 1 (16)

Group 2 has12 inequalities,named asthe packet conser-
vation laws at the source nodes. Consider anyi, j ∈ {1, 2}
satisfyingi 6= j. For each(i, j) pair (out of the two choices
(1, 2) and (2, 1)), we have the following 6 inequalities.

ω0
si
pi(di, dj , r) ≤ Ri (17)

ω1
si
pi(di, r) ≤ ω0

si
pi(djdir) (18)

ω1
si
pi(di, dj) ≤ ω0

si
pi(rdidj) (19)

ω2
si
pi(di, r) ≤ ω0

si
pi(djdir)− ω1

si
pi(di, r) (20)

ω3
si
pi(di, dj) ≤ ω0

si
pi(rdidj)− ω1

si
pi(dj , dir) (21)

ω4
si
pi(di) ≤ ω0

si
pi(djrdi)

+ ω1
si
(pi(dj) + pi(r) − pi(didjr))

+ ω2
si
pi(rdi) + ω3

si
pi(djdi) (22)

Group 3 has 4 inequalities,named asthe packet conserva-
tion laws at the relay node. For each(i, j) pair with i 6= j,
we have the following 2 inequalities.

ωi
r,Npr(di, dj) ≤ ω0

si
pi(rdidj)− ω1

si
pi(dj , dir)

− ω3
si
pi(di, dj) (23)

ωi
r,Cpr(di) ≤ ω0

si
pi(djrdi)

+ ω1
si
(pi(dj) + pi(r) − pi(didjr))

+ ω2
si
pi(rdi) + ω3

si
pi(djdi)

− ω4
si
pi(di) + ωi

r,Npr(djdi) (24)

Group 4 has 2 inequalities,named asthe decodability
conditions. Consider i = 1, 2. For each i, we have the
following inequality.

(

4
∑

k=0

ωk
si

)

pi(di) +
(

ωi
r,N + ωi

r,C

)

pr(di) ≥ Ri (25)

The inner bound inequalities are based on the SBLNC
scheme constructed in Section IV. A heuristic but not rigorous
explanation is as follows. The time budget constraints (14)–
(16) describe the fact that each time slot can be assigned to
one of the transmitting nodess1, s2, or r and the overall
normalized time budget is one. The conservation laws (17)–
(24) correspond to the fact that to select any one of the
SBLNC policies, the correspondingcoding setof the policy
must be non-empty. The non-emptiness of the coding set can

6In the achieving algorithm in Section V, thet variables correspond to the
numbers of time slots that each of the sources and the relay isused; and the
ω variables correspond to the numbers of time slots each policy is used.



7

be described by (17)–(24), which determine the size of the
coding sets. The decodability conditions describe how many
packets need to be received at each destination before they
can decode the desired messages.

Proposition 3 will be proved by explicit construction of an
achievability scheme based on the SBLNC scheme described
in the next section. The detailed proof of Proposition 3 is
relegated to Section V-A.

IV. A SPACE-BASED L INEAR NETWORK CODE(SBLNC)
CONSTRUCTION

In the existing network coding scheme works (e.g. [1], [3]),
designing the encoding coefficients is always a challenging
task. With per-time-slot causal feedback, the sources (includ-
ing the relay) can continuously track what has been received
by the destinations and the best network coding strategy might
evolve overtime, which further exacerbates the problem of
designing the right coding coefficients.In this section, we
introduce a new class of network coding schemenamed asthe
“Space-Based Linear Network Code (SBLNC)” schemethat
significantly simplifies the design of the coding coefficients.
The SBLNC scheme will later be used to prove the capacity
inner bound in Proposition 3.

A. Linear-Space-Based Definitions

We first provide some basic definitions that will be used
when describing an SBLNC scheme.

For i = 1, 2, a flow-i coding vectorv(i) is an nRi-
dimensional row vector with each coordinate being a scalar
in GF(q). Any linear combination of the message symbols
Wi,1 to Wi,nRi

can thus be represented byv(i)WT
i where

WT
i is the transpose ofWi. We use the superscript “(i)” to

emphasize that we are focusing on a flow-i vector.

We define theflow-i message spaceby Ωi
∆
= (GF(q))nRi ,

an nRi-dimensional linear space.In the following, we define
the following 6knowledge spacesSr, Sd1 , Sd2 , Tr, Td1, and
Td2 for the 5-node relay network in Fig. 2.

The knowledge spacesSr, Sd2 , Sd1 are linear subspaces of
Ω1 and represent the knowledge about the flow-1 packets at
nodesr, d2, andd1, respectively. Symmetrically, the knowl-
edge spacesTr, Td1, andTd2 are linear subspaces ofΩ2 and
represent the knowledge about the flow-2 packets at nodes
r, d1, andd2, respectively.In the following, we discuss the
detailed construction ofSr, Sd2 , andSd1 and the construction
of Tr to Td2 follows symmetrically7.

• In the end of any timet, Sr(t) ⊂ Ω1 is thelinear spanof
a group ofv(1) vectors, denoted byV(1)

s1→r. The group
V

(1)
s1→r contains thev(1) vectors sent bys1 during time1

to t and have been received successfully byr. Throughout
the paper, we use the convention that the linear span of
an empty set is a set containing the zero vector, i.e.,
span{∅} = {0}. For example, ifr has not yet received
any packet froms1, then by conventionSr(t) = {0}.

7The construction ofTd1 (resp.Td2 ) follows the construction ofSd2 (resp.
Sd1 ).

• In the end of timet, Sd2(t) ⊂ Ω1 is the linear span
of two groups ofv(1) vectors, denoted byV(1)

s1→d2
and

V
(1)
N,r→d2

. The first groupV(1)
s1→d2

contains thev(1)

vectors corresponding to the packets sent bys1 during
time 1 to t and have been received successfully byd2.
The second groupV(1)

N,r→d2
contains thev(1) vectors

corresponding to the packets sent byr during time1 to
t that are not mixed with any other flow-2 packets. The
letter “N” in the subscript stands for Not-inter-flow-coded
transmission.

• In the end of timet, Sd1(t) ⊂ Ω1 is the linear span
of three groups ofv(1) vectors, denoted byV(1)

s1→d1
,

V
(1)
N,r→d1

, andV(1)
C,r→d1

. The first groupV(1)
s1→d1

contains
thev(1) vectors corresponding to the packets sent bys1
during time1 to t and have been received successfully by
d1. The second groupV(1)

N,r→d1
contains thev(1) vectors

corresponding to the packets sent byr during time1 to
t that are not mixed with any other flow-2 packets. The
third groupV(1)

C,r→d1
contains thev(1) vectorsthat can

be decoded from the inter-flow coded packets8 sent byr
during time1 to t. The letter “C” in the subscript stands
for inter-flow-Coded transmission.

In sum, we useS and T to distinguish whether we are
focusing on flow-1 or flow-2 packets, respectively, and we use
the subscripts to describe the node of interest. One can easily
see that these six knowledge spaces evolve over time since
each node may receive more and more packets that can be
used to obtain/decode new information. We use the following
example to illustrate the definitions ofSr to Td2 .

Example 1:ConsiderGF(3) andnR1 = 3 andnR2 = 2.
That is, flow-1 contains 3 message symbolsW1,1 to W1,3 and
flow-2 contains 2 message symbolsW2,1 andW2,2. Ω1 and
Ω2 are thus 3-dimensional and 2-dimensional linear spaces in
GF(3), respectively. Consider the first four time slotst = 1 to
4 for our discussion.

When t = 1, suppose thats1 is scheduled; an uncoded
flow-1 message symbolW1,1 is transmitted; and the packet is
heard by and only byd2 andr. See Fig. 4(a) for illustration,
for which we use the solid lines to represent thatd2 and r
have received the packet. We use the dashed line to denote
that d1 does not receive the packet. Whent = 2, suppose
thats2 is scheduled; an uncoded flow-2 message symbolW2,1

is transmitted; and the packet is heard by and only byd2,
see Fig. 4(b). Whent = 3, suppose thats1 is scheduled; an
uncoded flow-1 symbolW1,3 is transmitted; and the packet
is heard by and only byr. When t = 4, suppose thatr is
scheduled;r sends a linear combination[W1,1 + 2W1,3] of
the two flow-1 packets it has received thus far; and the packet
[W1,1 + 2W1,3] is heard by bothd1 andd2.

We now describe the six knowledge spacesSr to Td2 in
the end oft = 4. By Figs. 4(a) and 4(d),d2 has received two
flow-1 packetsW1,1 and[W1,1+2W1,3], one froms1 and one
from r. Therefore, by the end oft = 4, the flow-1 knowledge
space atd2 becomesSd2(4) = span{(1, 0, 0), (1, 0, 2)}. Also,
neitherr nor d1 has received any flow-2 packets by the end

8When the relayr sends a linear combination of both flow-1 and -2 packets.
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(a) (b) (c) (d)

Fig. 4. The illustration of the coding procedure in Example 1. We use a solid line to represent that the corresponding receiver has successfully received the
packet and use a dotted line to represent erasure.

TABLE II
THE RESULTING KNOWLEDGE SPACES AT THE END OFEXAMPLE 1

Flow-1 Flow-2
Sd1(4) span{(1, 0, 2)} Td1 (4) {(0, 0)}
Sd2(4) span{(1, 0, 0), (1, 0, 2)} Td2 (4) span{(1, 0)}
Sr(4) span{(1, 0, 0), (0, 0, 1)} Tr(4) {(0, 0)}

of t = 4. Therefore,Tr andTd1, the flow-2 knowledge spaces
at r andd1, respectively, contain only the zero element. The
other knowledge spacesSd1 , Sr, andTd2 in the end oft = 4
can be derived similarly and they are summarized in Table II.

The above definitions also lead to the following self-
explanatory lemma.

Lemma 1:The two destinationsd1 andd2 can decode the
desired message symbolsW1 and W2, respectively, if and
only if by the end of timen

Sd1(n) = Ω1 and Td2(n) = Ω2.

For simplicity, we useSi(t) and Ti(t) to denote the
knowledge spaceSdi

(t) andTdi
(t) for i = 1, 2. We also omit

the input argument “(t)” if the time index is clear from the
context. To conclude this subsection, we introduce the notation
of the sum space:(A⊕B)

∆
= span{v : ∀v ∈ A ∪B}. Notice

thatA⊕B andA∪B are different. For example, suppose we
consider a 2-dimensional linear space withGF(3) with two
linear subspacesA = span{(1, 0)} and B = span{(1, 1)}.
Then A ∪ B = {(0, 0), (1, 0), (2, 0), (1, 1), (2, 2)} is not a
linear subspace anymore, butA⊕B = span{(1, 0), (1, 1)} =
{(0, 0), (1, 0), (2, 0), (1, 1), (2, 2), (2, 1), (1, 2), (0, 1), (0, 2)}
is a linear subspace.By simple algebra, we have the following
lemma.

Lemma 2:For any two linear subspacesA andB in Ω, the
following equality always holds.

dim(A⊕B) = dim(A) + dim(B)− dim(A ∩B).

B. An Instance of The SBLNC Schemes

In the following, we will introduce a new class of net-
work codes,named asthe Space-Based Linear Network Code
(SBLNC). An SBLNC scheme contains a finite number of
policies. Each policyΓ contains a linear subspaceA(Γ), named
as the inclusion space/set, and a finite collection of linear

subspacesB(Γ)
l for l = 1 to L(Γ), named asthe exclusion

spaces/sets. For each time slott, the SBLNC chooses one
of the specified policies and uses it to generate the coded
packet. For example, say nodes is scheduled for transmission
and we decide to choose a policyΓ for encoding. Thens
will first choose arbitrarily a coding vectorv(i) from the

setA(Γ)\
(

⋃L(Γ)

l=1 B
(Γ)
l

)

, and then transmit a linearly encoded

packetX = v(i)WT
i . That is, the coding vector must be in the

inclusion setA(Γ) but not in any of the exclusion setsB(Γ)
l .

Obviously, a policy can be used/chosen only when the corre-

sponding setA(Γ)\
(

⋃L(Γ)

l=1 B
(Γ)
l

)

is non-empty. For notational
simplicity, we say a policy isfeasible if the corresponding

A(Γ)\
(

⋃L(Γ)

l=1 B
(Γ)
l

)

is non-empty.

For illustration, consider the following policy for nodes1,
named asPolicy Γs1,0. When PolicyΓs1,0 is used/chosen, we
let source nodes1 choose arbitrarily a coding vectorv(1) from
Ω1\ (S1 ⊕ S2 ⊕ Sr) and send the corresponding coded packet
Xs1 = v(1)WT

1 . That is, the inclusion set isA(Γs1,0) = Ω1

and the exclusion set isB
(Γs1,0)
1 = S1 ⊕ S2 ⊕ Sr.

Continue the example in Section IV-A for which the knowl-
edge spaces are summarized in Table II. In the beginning
of t = 5 (or equivalently in the end oft = 4), we have
A(Γs1,0) = Ω1 and B(Γs1,0) = S1 ⊕ S2 ⊕ Sr = {(a, 0, c) :
∀a, c ∈ GF(q)}. As a result, if we choose PolicyΓs1,0 for
t = 5, any coding vectors of the form(a, b, c) with b 6= 0 are
in the setΩ1\(S1⊕S2⊕Sr). There are totally18 such vectors
sinceGF(3) is used. Sources1 can then choose arbitrarily from
any one of the18 vectors and sendX = aW1,1+bW1,2+cW1,3

in time t = 5.

In the following, we define13 policies that will be used in
the proof of the achievability part of Propositions 1 and 3.

There are 5 policies governing the coding operations at
sources1, which arenamed asPolicy Γs1,j for j = 0 to 4.
When PolicyΓs1,j is used,s1 sendsXs1 = v(1)WT

1 for some
v(1). That is, sources1 only mixes/encodes flow-1 packets
together.In the following, we describe how to choose the
vectorv(1) for each individual policy.

§ Policy Γs1,0: Choosev(1) arbitrarily from

Ω1\(S1 ⊕ S2 ⊕ Sr). (26)
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§ Policy Γs1,1: Choosev(1) arbitrarily from

(S2 ⊕ Sr)\ ((S1 ⊕ Sr) ∪ (S1 ⊕ S2)) . (27)

§ Policy Γs1,2: Choosev(1) arbitrarily from

S2\(S1 ⊕ Sr). (28)

§ Policy Γs1,3: Choosev(1) arbitrarily from

Sr\ (S1 ⊕ (S2 ∩ Sr)) . (29)

§ Policy Γs1,4: Choosev(1) arbitrarily from

(S2 ∩ Sr)\S1. (30)

Policy Γs2,j , j = 0 to 4 are symmetric versions ofPolicy
Γs1,j that concern sources2 and mix/encode flow-2 packets
instead. More explicitly, sources2 sendsXs2 = v(2)WT

2

for which the coding vectorv(2) is chosen according to the
following specification.
§ Policy Γs2,0: Choosev(2) arbitrarily from

Ω2\(T1 ⊕ T2 ⊕ Tr). (31)

§ Policy Γs2,1: Choosev(2) arbitrarily from

(T1 ⊕ Tr)\ ((T2 ⊕ Tr) ∪ (T1 ⊕ T2)) . (32)

§ Policy Γs2,2: Choosev(2) arbitrarily from

T1\(T2 ⊕ Tr). (33)

§ Policy Γs2,3: Choosev(2) arbitrarily from

Tr\ (T2 ⊕ (T1 ∩ Tr)) . (34)

§ Policy Γs2,4: Choosev(2) arbitrarily from

(T1 ∩ Tr)\T2. (35)

There are 3 policiesΓr,j, j = 1, 2, 3, governing the coding
operations at the relayr, which are described as follows.
§ Policy Γr,1: The relayr chooses arbitrarily a vectorv(1)

from

Sr\ ((Sr ∩ S2)⊕ S1) (36)

and sends an intra-flow-coded flow-1 packetXr = v(1)WT
1 .

§ Policy Γr,2: The relayr chooses arbitrarily a vectorv(2)

from

Tr\ ((Tr ∩ T1)⊕ T2) (37)

and sends an intra-flow-coded flow-2 packetXr = v(2)WT
2 .

§ Policy Γr,3 is for the relay noder to send an interflow-
coded packetXr = v(1)WT

1 + v(2)WT
2 , with v(1) andv(2)

chosen as follows: If(S2 ∩Sr)\S1 is non-empty, choosev(1)

arbitrarily from

(S2 ∩ Sr)\S1, (38)

otherwise choosev(1) = 0, a zero vector. If(T1 ∩ Tr)\T2 is
non-empty, choosev(2) arbitrarily from

(T1 ∩ Tr)\T2, (39)

otherwise choosev(2) = 0.

Continue from Example 1 in Section IV-A with the knowl-
edge spaces in the end oft = 4 described in Table II. Consider
PolicyΓs1,3 as defined in (29). SinceS2∩Sr = Sr in the end
of t = 4, we haveSr\ (S1 ⊕ (S2 ∩ Sr)) ⊆ Sr\(S2 ∩ Sr) = ∅
being an empty set. Thus, in contrast with the fact that Policy
Γs1,0 is feasible in the beginning oft = 5 as shown in our
previous discussion, PolicyΓs1,3 is infeasible in the beginning
of t = 5.

One can repeat the above analysis and verify that out of all
13 policies, only4 of them are feasible in the beginning of
t = 5, which areΓs1,0, Γs1,4, Γs2,0, andΓr,3. The network
code designer can thus apply one of the four policies int = 5.

Suppose the network designer chooses policyΓs1,0 for
t = 5 and sends a flow-1 coded packet with the cod-
ing vector beingv(1) = (2, 1, 0). Also suppose that the
packet is received byr but by neitherd1 nor d2. Then in
the end of timet = 5, the knowledge spaceSr evolves
from the original span{(1, 0, 0), (0, 0, 1)} to the new space
span{(1, 0, 0), (0, 0, 1), (2, 1, 0)}. We now notice that the Pol-
icy Γs1,0 is no longer feasible since with the newSr,
the exclusion space ofΓs1,0 becomesS1 ⊕ S2 ⊕ Sr =
span{(1, 0, 0), (0, 0, 1), (2, 1, 0)} and Ω1\ (S1 ⊕ S2 ⊕ Sr) is
now empty. On the other hand, the newSr also lets some
previously infeasible policies become feasible. For exam-
ple, consider PolicyΓs1,3. With the new Sr, we have
Sr = span{(1, 0, 0), (0, 0, 1), (2, 1, 0)} andS1 ⊕ (S2 ∩ Sr) =
span{(1, 0, 0), (1, 0, 2)}. Therefore,Sr\ (S1 ⊕ (S2 ∩ Sr)) 6=
∅. PolicyΓs1,3 is thus feasible and can be used for transmission
in t = 6. With similar analysis, one can verify that in the
beginning oft = 6, we have5 feasible policies:Γs1,3, Γs1,4,
Γs2,0, Γr,1, andΓr,3. This example shows that due to the evo-
lution of the knowledge spaces over time, each coding policy
may become feasible or infeasible depending on the reception
status until the present. Focusing on coding policies freesus
from designing the value of each coordinate of the coding
vectorv(1) (resp.v(2)). Instead, we only need to choosev(1)

(resp.v(2)) from one of the policies that are currently feasible,
which significantly simplifies the corresponding analysis.

C. The Intuition Behind the Proposed SBLNC Policies

In Section V, we will prove that the proposed SBLNC
scheme can achieve the capacity in Proposition 1 and the inner
bound in Proposition 3 when we carefully decide which of
the 13 policies to apply for each time instant. We conclude
Section IV by discussing the intuition behind the proposed 13
policies. We first consider the relay policiesΓr,1 to Γr,3 due to
its conceptual simplicity. We then discuss the source policies
Γsi,0 to Γsi,4.

1) The Relay Policies:We first notice that for all relay
policiesΓr,1, Γr,2, andΓr,3, the corresponding inclusion space
is either a subspace ofSr or a subspace ofTr. The reason is
that for noder to send a coded packet, the encoded packet
must already be inSr or Tr, the knowledge spaces ofr. As
a result, the transmitted vectorv(1) (or v(2)) must be drawn
from a subset ofSr (or Tr).

It is clear thata good network code should try to serve two
flows simultaneously in order to maximize the throughput.We
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now focus on PolicyΓr,3. First notice that by (39),v(2) is
drawn from(T1 ∩ Tr). This means that the value ofv(2)WT

2

is already known by destinationd1 sincev(2) is in the flow-2
knowledge spaceT1 at d1. Hence wheneverd1 receives the
packetXr(t) = v(1)WT

1 +v(2)WT
2 , it can extract its desired

information and recoverv(1)WT
1 by substractingv(2)WT

2 .
We then note that PolicyΓr,3 ensures that whenever (38) is
not empty the selectedv(1) is not inS1, the flow-1 knowledge
space atd1. Hence upon the reception of such a coded packet,
dim(S1) will increase by one. By Lemma 1 destinationd1
is one step closer to fully decode its desired messageW1.
Symmetrically, by (38)d2 has already known the value of
v(1)WT

1 and thusd2 can compute the value ofv(2)WT
2

upon the reception of the inter-flow coded packet generated
by Policy Γr,3. Sincev(2) is not in T2, d2 can decode one
extra linear combination of flow-2 packets. PolicyΓr,3 thus
serves bothd1 andd2 simultaneously.

Although PolicyΓr,3 can serve both destinations simulta-
neously, there is a limit on how much information can be sent
by Γr,3. That is, if we use only PolicyΓr,3 and nothing else,
the information that can be received byd1 through Policy
Γr,3 is at most (Sr ∩ S2) since all v(1) are drawn from
(Sr ∩ S2). The largest flow-1 knowledge space thatd1 can
possibly attain is thusS1⊕ (Sr ∩S2), whereS1 represents the
flow-1 information thatd1 has accumulated by overhearing
the transmission directly from its two-hop neighbors1, and
(Sr ∩ S2) represents the information that can be conveyed
by Γr,3. Note that it is possible thatSr is not a subspace
of S1 ⊕ (Sr ∩ S2), which means that relayr still possesses
some flow-1 information that cannot be conveyed tod1 by Γr,3

alone.Γr,1 is devised to address this problem. That is, thev(1)

vector chosen from (36) is (i) from the knowledge space ofr,
and (ii) not inS1 ⊕ (Sr ∩ S2), the largest flow-1 knowledge
space thatd1 can attain when using exclusively PolicyΓr,3.
Suchv(1) vector thus represents an information packet that is
complementary to the inter-flow-coded PolicyΓr,3.

2) The Source Policies:Here without loss of generality we
focus on source-1 policies.

Before explaining the source policies (26)–(30), we first
discuss several network coding goals for the transmission of
s1. The highest priority is to enlargeS1 and S2 such that
(S1 ⊕ S2) = Ω1 at the end of the source-1 transmission
since s1 → r → d1 and s1 → d1 are the only two
routes froms1 to d1. By the cut-set bound, we must achieve
(S1 ⊕ Sr) = Ω1 at the end of the source-1 transmission
otherwised1 cannot decode the complete flow-1 messages.
Another priority is to maximizedim(S1 ⊕ (S2 ∩ Sr)). As
discussed in the previous paragraph, the largest amount of
information that can be transmitted tod1 through inter-session
coded messages isdim(S1 ⊕ (S2 ∩ Sr)). Therefore, it is
important to maximize the inter-session coding benefits by
maximizingdim(S1 ⊕ (S2 ∩ Sr)) during the transmission of
s1 so that the relayr can harvest the largest amount of inter-
session coding benefits during PolicyΓr,3. Another priority
is to ensure that destinationd1 overhears directly froms1 as
much information as possible since those information heard
directly by d1 does not need to be sent by relayr anymore.
This is equivalent to maximizedim(S1).

With the above three goals in mind, we now discuss the
intuition of each source policy. PolicyΓs1,j, j = 0, 1, 2, are
designed to maximizedim(S1⊕Sr) sinceS1⊕Sr is a subset
of the exclusion sets for these policies. Therefore, every time
one of d1 and r receives a packet encoded by PolicyΓs1,j ,
j = 0, 1, 2, the termdim(S1⊕Sr) will increase by one. Policy
Γs1,j , j = 0 to 3, are designed to maximizedim(S1⊕(S2∩Sr))
sinceS1 ⊕ (S2 ∩ Sr) is a subset of the exclusion sets for all
these policies. PoliciesΓs1,j , j = 0 to 4, are designed to
maximizedim(S1) sinceS1 is a subset of the exclusion sets
for all these policies. As one can see that the fives1-policies
aim at simultaneously achieving the three goals.

To explain the heuristics why we choose the specific inclu-
sion and exclusion sets for these policies, we use PolicyΓs1,1

as an example. To that end, we notice that by Lemma 2, we
have

dim(S1 ⊕ (S2 ∩ Sr))

=dim(S1) + dim(S2 ∩ Sr)− dim(S1 ∩ S2 ∩ Sr)

=dim(S1) + dim(S2) + dim(Sr)− dim(S2 ⊕ Sr)

− dim(S1 ∩ S2 ∩ Sr). (40)

SinceS2 ⊕ Sr is the inclusion set for PolicyΓs1,1; andS1,
S2, andSr are subsets of the exclusion sets for PolicyΓs1,1,
every time any one of the{d1, d2, r} nodes receives a policy-
Γs1,1 packet, at least one of the three termsdim(S1), dim(S2),
anddim(Sr) will increase and the termdim(S2⊕Sr) remains
unchanged. Assuming thatdim(S1∩S2∩Sr) does not change
too much9, Policy Γs1,1 increasesdim(S1 ⊕ (S2 ∩ Sr)) in a
very efficient way since all three positive terms in (40) can
have a good chance of increase while one negative term in
(40) remains constant and the other negative term in (40) only
increases slightly.

To summarize, the proposed source-1 policies aim at simul-
taneously maximizingdim(S1⊕Sr), dim(S1⊕(S2∩Sr)), and
dim(S1). The specific design of the inclusion and exclusions
sets is to maximize the above three different terms in an
efficient way. Detailed description about how the three terms
increase is relegated to the throughput analysis in SectionV-A.

V. CAPACITY APPROACHINGCODING SCHEME

In this section, we will first prove the capacity inner bound
Proposition 3for the2-flow wireless butterfly networksetting
considering both the COPE principle and opportunistic rout-
ing. We will then prove that the inner bound coincides with the
capacity characterization in Proposition 1when considering
only the COPE principle.

A. Achieving The Inner Bound of Proposition 3

We prove Proposition 3 by properly scheduling the 13
policies described in Section IV-B.

Consider anyts1 , ts2 , tr, ωk
si

, i ∈ {1, 2} and k ∈
{0, 1, 2, 3, 4}, ωk

r,N, andωk
r,C, k = 1, 2, satisfying the inequali-

ties (14) to (25) in Proposition 3. For anyε > 0, we can always
construct another set oft′ andω′ variables such that the new

9dim(S1 ∩ S2 ∩ Sr) usually changes only slightly since it is relatively
difficult for all nodesto acquire the same common information.
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t′ andω′ variables satisfy (14) to (24) with strict inequality,
and satisfy the following inequality
(

4
∑

k=0

ωk
si

)

pi(di) +
(

ωi
r,N + ωi

r,C

)

pr(di) > Ri − ε (41)

instead of (25). Based on the above observation, we will
assume that the givents1 , ts2 , tr, ωk

si
, ωk

r,N, andωk
r,C satisfy

(14) to (24) and (41) with strict inequality.In the following,
we will construct an SBLNC solution such that the scheme
“properly terminates” within the allocatedn time slots with
close-to-one probability and after the SBLNC scheme stops,
eachdi has received at leastn(Ri − ε) number of its desired
information packets.

We construct the SBLNC scheme as follows. We first
schedule thes1-policies sequentially fromΓs1,0 to Γs1,4. Each
policy Γs1,k lasts forn · ωk

s1
time slots. After finishingΓs1,k

we move on to PolicyΓs1,k+1 until finishing all 5s1-policies.
After finishing thes1-policies, we move on to thes2-policies.
Again, we choose thes2-policies sequentially fromΓs2,0 to
Γs2,4 and each policy lasts forn ·ωk

s2
time slots. After thes2-

policies, we schedule ther-policies sequentially fromΓr,1 to
Γr,3. PoliciesΓr,1 andΓr,2 last forn · ω1

r,N andn · ω2
r,N time

slots, respectively. PolicyΓr,3 lasts forn · max{ω1
r,C, ω

2
r,C}

time slots. Feedback is critical for the SBLNC scheme as it
is used to decide the evolution of the knowledge spacesS1,
S2,..., Tr, which in turn decides the sets in (26)–(39).

To prove the correctness of the above construction, we need
to show that the following two statements hold with close-
to-one probability: (i) During each time slot, it is always
possible to construct the desired coding vectorsv(1) (or v(2)).
That is, we never schedule an infeasible policy throughout
the operation; (ii) Destinationdi can decoden(Ri − ε) of
the desired information packets when the scheme terminates10.
In addition to the above two statements, we will also prove
that (iii) during the firstn · ω1

r,C (resp.n · ω2
r,C) time slots of

schedulingΓr,3, the computed flow-1 vectorv(1) (resp. flow-2
vectorv(2)) is not zero with close-to-one probability.

We first prove (ii) while assuming both (i) and (iii) are
true. We notice that all the exclusion spaces of policiesΓs1,0

to Γs1,4, andΓr,1 containS1 as a subset. As a result, all those
packets carry some new flow-1 information that has not yet
been received byd1. If d1 receives any of those packets, the
dimension ofS1 will increase by one. Similarly, during the
first nω1

r,C time slots of PolicyΓr,3, the computedv(1) vector
does not belong toS1, see (38). As a result, ifd1 receives any
of those packets, the dimension ofS1 will increase by one.
From the above reasoning, the expected value ofdim(S1) in
the end of the SBLNC scheme must satisfy

E{dim(S1)} =p1(d1)

(

4
∑

k=0

nωk
s1

)

+ pr(d1)(nω
1
r,N + nω1

r,C) (42)

>n(R1 − ε) (43)

10Since we focus on thet andω variables satisfying inequality (14)–(25),
we can use inequality (14)–(16) to show that we can finish transmission within
the allocatedn time slots.

where the right-hand side of (42) quantifies the expected
number of packets received byd1 during PoliciesΓs1,0 to
Γs1,4, Γr,1, and the firstnω1

r,C time slots ofΓr,3. (43) follows
from (41). By the law of large number,dim(S1) > n(R1 − ε)
with close-to-one probability whenn is sufficiently large. The
above inequality ensures thatd1 can decoden(R1 − ε) of the
flow-1 information packets at the end of the SBLNC scheme.
By symmetry,d2 can also decoden(R2 − ε) of the flow-
2 packetsW2 in the end of timet = n. What remains to
be shown is to prove that (i) and (iii) hold with close-to-one
probability.

Next we prove (i) and (iii) by the first order analysis that
assumes sufficiently largen. We first consider PolicyΓs1,0.
For any time t, Γs1,0 is a feasible policy if (26) is non-
empty.Suppose we haveq ≥ 2, then (26) being non-empty is
equivalent to the following condition.

dim(Ω1)− dim(Ω1 ∩ (S1 ⊕ S2 ⊕ Sr))

= dim(Ω1)− dim(S1 ⊕ S2 ⊕ Sr) > 0. (44)

The reason is as follows. Let us temporarily defineA = Ω1

andB = Ω1 ∩ (S1 ⊕ S2 ⊕ Sr). Then we have

A\B 6= ∅ ⇔ |A| − |B| > 0

⇔ qdim(A) − qdim(B) > 0 ⇔ dim(A) − dim(B) > 0.

We then note thatdim(Ω1) = nR1 is a constant and does
not change over time. Also note thatdim(S1 ⊕ S2 ⊕ Sr)
increases monotonically over time since a node accumulates
more “knowledge” over time. As a result, if we can prove that
(44) holds in the end of the duration of (executing) Policy
Γs1,0, then throughout the entire duration ofΓs1,0, we can
always find somev(1) belong to (26).

To that end, we notice that when we chooseΓs1,0 as our
coding policy, the coding vectorv(1) is chosen from (26).
Sincev(1) does not belong to the exclusion spaceS1⊕S2⊕Sr,
dim(S1⊕S2⊕Sr) increases by one if and only if at least one of
d1, d2, andr receives the transmitted packetXs1 = v(1)WT

1 .
Also note that in the beginning of PolicyΓs1,0, dim(S1⊕S2⊕
Sr) = 0. As a result, in the end of the duration ofΓs1,0, we
have

E{dim(S1 ⊕ S2 ⊕ Sr)}

= 0 + n · ω0
s1

· p1(d1, d2, r) (45)

< nR1 = dim(Ω1), (46)

where (45) follows from quantifying the expected number of
time slots (out of totallynω0

s1
time slots) in which at least one

of d1, d2, andr receives it. (46) follows from (17).

By the law of large numbers, (46) implies that (44) holds in
the end of the duration ofΓs1,0 with close-to-one probability.
As a result, with close-to-one probability PolicyΓs1,0 remains
feasible during the assigned duration ofn · ω0

s1
time slots.

We now consider PolicyΓs1,1. For any timet, Γs1,1 is
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feasible if (27) is non-empty, which is equivalent to having

qdim(S2⊕Sr) = |S2 ⊕ Sr|

> |(S2 ⊕ Sr) ∩ ((S1 ⊕ Sr) ∪ (S1 ⊕ S2))|

= |((S2 ⊕ Sr) ∩ (S1 ⊕ Sr)) ∪ ((S2 ⊕ Sr) ∩ (S1 ⊕ S2))|

⇔ dim(S2 ⊕ Sr)

> max{dim((S2 ⊕ Sr) ∩ (S1 ⊕ Sr)),

dim((S2 ⊕ Sr) ∩ (S1 ⊕ S2))} (47)

where “⇔” holds assuming the underlying finite fieldGF(q)
satisfyingq ≥ 2. The reason is as follows. Let us temporarily
defineA = S2 ⊕ Sr, B = S1 ⊕ Sr, andC = S1 ⊕ S2. Then
we have

A\(B ∪ C) 6= ∅ ⇔ |A| − |(A ∩B) ∪ (A ∩ C)| > 0. (48)

Also, we have the following inequality

qmax{dim(A∩B),dim(A∩C)} ≤ |(A ∩B) ∪ (A ∩ C)|

≤ qdim(A∩B) + qdim(A∩C) − 1 (49)

where the last inequality follows from the idea of the union
bound and the observation that the all-zero vector is always
in bothA ∩B andA ∩C. Based on (49), we then have

(48) ⇔ dim(A) > max{dim(A ∩B), dim(A ∩ C)},

which leads to (47).
When we choose PolicyΓs1,1 as our coding policy, the

coding vectorv(1) is chosen from (27). Therefore,v(1) must
belong to the inclusion spaceS2 ⊕ Sr, which implies that
no matter how many nodes in{d1, d2, r} receive the packet,
dim(S2 ⊕ Sr) remains the same. Also note that similar to the
case ofΓs1,0, dim((S2⊕Sr)∩(S1⊕Sr)) anddim((S2⊕Sr)∩
(S1 ⊕ S2)) increase monotonically over time. As a result, if
we can prove that (47) holds in the end of the duration of
Policy Γs1,1, then throughout the entire duration ofΓs1,1, we
can always find somev(1) belong to (27). The remaining task
is thus to quantify the three different termsdim(S2 ⊕ Sr),
dim((S2⊕Sr)∩(S1⊕Sr)), anddim((S2⊕Sr)∩(S1⊕S2)) at
the end of (the duration of)Γs1,1. All the following discussions
hold with close-to-one probability when focusing on the first
order analysis ofn.

We will first decide the value ofdim(S2⊕Sr). We know that
dim(S2⊕Sr) remains the same during PolicyΓs1,1. Therefore,
the value ofdim(S2⊕Sr) is decided by how much it increases
duringΓs1,0. Since anyv(1) in Policy Γs1,0 does not belong
to S2 ⊕ Sr (see (26)), every time one ofd2 and r receives
a packet ofΓs1,0, dim(S2 ⊕ Sr) will increase by one. As a
result, in the end ofΓs1,1 we have

E{dim(S2 ⊕ Sr)} = nω0
s1
p1(d2, r) + nω1

s1
· 0. (50)

We now consider the first termdim((S2 ⊕ Sr) ∩ (S1 ⊕ Sr))
in the max operation in (47). By Lemma 2, we can rewrite
dim((S1 ⊕ Sr) ∩ (S2 ⊕ Sr)) by

dim((S1 ⊕ Sr) ∩ (S2 ⊕ Sr))

= dim(S2 ⊕ Sr) + dim(S1 ⊕ Sr)− dim(S1 ⊕ S2 ⊕ Sr).
(51)

The value ofdim(S2 ⊕ Sr) is quantified in (50). Since any
v(1) in PolicyΓs1,0 does not belong toS1⊕Sr (see (26)) and
any v(1) in Policy Γs1,1 does not belong toS1 ⊕ Sr either
(see (27)), every time one ofd1 and r receives a packet of
Γs1,0 or Γs1,1, dim(S1 ⊕ Sr) will increase by one. In the end
of Γs1,1 we thus have

E{dim(S1 ⊕ Sr)} = nω0
s1

· p1(d1, r) + nω1
s1

· p1(d1, r).
(52)

Similarly, since anyv(1) in Policy Γs1,0 does not belong to
S1 ⊕ S2 ⊕ Sr (see (26)) and anyv(1) in Policy Γs1,1 belongs
to S1 ⊕ S2 ⊕ Sr (see (27)), every time one ofd1, d2, andr
receives a packet ofΓs1,0, dim(S1 ⊕ S2 ⊕ Sr) will increase
by one. In the end ofΓs1,1 we thus have

E{dim(S1 ⊕ S2 ⊕ Sr)} = nω0
s1
p1(d1, d2, r) + nω1

s1
· 0.

(53)

By (50), (51), (52), and (53), we can verify that (18) implies
thatdim(S2⊕Sr) > dim((S2⊕Sr)∩ (S1⊕Sr)) in the end of
Policy Γs1,1. By swapping the roles ofd2 and r, symmetric
arguments can be used to prove that (19) impliesdim(S2 ⊕
Sr) > dim((S2 ⊕Sr)∩ (S1 ⊕S2)) in the end of PolicyΓs1,1.
Therefore,Γs1,1 is feasible throughout its duration ofnω1

s1

time slots.

Similar dimension-comparison arguments can be used to
complete the proof of (i) and (iii).The remaining derivation
repeats similar steps described above, andis relegated to
Appendix B. The proof of Proposition 3 is thus complete.

B. Capacity of The COPE Principle On2-Flow Wireless
Butterfly Networks with Broadcast PECs

In this subsection we will prove that the capacity outer
bound in Proposition 2 and the capacity inner bound in Propo-
sition 3 coincide when destinationdi cannot directly hear from
sourcesi for i = 1, 2, which prohibits the use of opportunistic
routing. Proposition 1 thus describes the exactcapacity region
of the COPE principle on2-flow wireless butterfly networks
with broadcast PECs. Recall that in Proposition 2, the outer
bound considers channel status feedback, dynamic scheduling,
and possibly non-linear encoding functions. Meanwhile, the
proposed achieving scheme in Section V-A uses only linear
encoding functions and a sequential-order scheduling. By
proving that the outer and inner bounds match, we have shown
that the proposed linear encoding and sequential scheduling
scheme in Section V-A is as good as any other non-linear
encoding and dynamic scheduling scheme when the use of
opportunistic routing is prohibited.

To complete the proof, we note that whenpi(di) = 0, for
i = 1, 2, (17)–(25) of the inner bound in Proposition 3 is
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reduced to the following forms:11

ω0
si
pi(dj , r) ≤ Ri, (54)

ω1
si
pi(r) ≤ ω0

si
pi(djr), (55)

ω1
si
pi(dj) ≤ ω0

si
pi(rdj), (56)

ω2
si
pi(r) ≤ ω0

si
pi(djr)− ω1

si
pi(r), (57)

ω3
si
pi(dj) ≤ ω0

si
pi(rdj)− ω1

si
pi(dj), (58)

ωi
r,Npr(di, dj) ≤ ω0

si
pi(rdj)− ω1

si
pi(dj)

− ω3
si
pi(dj), (59)

ωi
r,Cpr(di) ≤ ω0

si
pi(djr) + ω1

si
(pi(dj) + pi(r))

+ ω2
si
pi(r) + ω3

si
pi(dj) + ωi

r,Npr(djdi).
(60)

and (25) becomes

pr(di)(ω
i
r,N + ωi

r,C) ≥ Ri. (61)

The following lemma proves the tightness of the bounds when
there is no 2-hop overhearing, i.e.,pi(di) = 0 for i = 1, 2.

Lemma 3:For any 5-tuple(R1, R2, t1, t2, tr) satisfying the
capacity outer bound (6)–(9), we can always find14 company-
ing variablesωj

si
, ωi

r,N, ω
i
r,C for i = 1, 2 and j = 0, 1, 2, 3, 4,

such that jointly the5 + 14 = 19 variables satisfy (14), (15),
(54) to (61).

Proof: Given any(R1, R2, ts1 , ts2 , tr) satisfying (6)–(9),
we construct

{

ωj
si
, ωi

r,N, ω
i
r,C : i ∈ {1, 2}, j ∈ {0, 1, 2, 3, 4}

}

in the following way. For each pair(i, j) = (1, 2) or (2, 1),
we define

ω0
si

=
Ri

pi(dj , r)
, (62)

ω1
si

=Ri

(

min

{

1

pi(r)
,

1

pi(dj)

}

−
1

pi(dj , r)

)

, (63)

ω2
si

=Ri

(

1

pi(r)
−

1

pi(dj)

)+

, (64)

ω3
si

=min

{

Ri

(

1

pi(dj)
−

1

pi(r)

)+

, tsi −
Ri

pi(r)

}

, (65)

ω4
si

=0, (66)

ωi
r,N =

(Ri − tsipi(dj))
+

pr(di, dj)
, (67)

ωi
r,C =

Ri

pr(di)
−

(Ri − tsipi(dj))
+

pr(di, dj)
. (68)

Onecan verify that the above assignment{R1, R2, ts1 , ts2 , tr,
ωj
si
, ωi

r,N, ω
i
r,C : i ∈ {1, 2}, j ∈ {0, 1, 2, 3, 4}

}

is always non-
negative and satisfies (14), (15), (54) to (61).The detailed
verification is relegated to Appendix C. The proof of Lemma 3
is thus complete.

VI. N UMERICAL RESULTS

In this section, we apply the capacity results to some numer-
ically generated scenarios so that we can explicitly quantify
the throughput/capacity improvement of theSBLNC scheme
under theCOPE principlewith and without opportunistic
routing. The detailed simulation setting is described as follows.

(a) (b)

Fig. 5. An instance of the 2-flowwireless butterfly network with broadcast
PECswith the success probabilities being indicated next to the corresponding
arrows: (a) The COPE principle only; and (b) The COPE principle plus
opportunistic routing.We also assume that the success events between
different node pairs are independent.
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SBLNC with OpR
SBLNC w/o OpR
RLNC with OpR
RLNC w/o OpR
[3] with OpR
[3] w/o OpR

SBLNC = Space−Based Linear Network Coding
RLNC = Random Linear Network Coding

Fig. 6. Theachievableregions of the scenario inFig. 5(a) andFig. 5(b).
The solid lines indicate theachievable regions of the SBLNC scheme under
the scenarios of COPE only (the orange line) or COPE plus OpR (the red
line). The dash lines indicate the achievable regions of theexisting result [3]
under the scenarios of COPE only (the green line) or COPE plusOpR (the
blue line). The dotted lines indicate the achievable regions of intra-session
network coding only (random linear network coding) under the scenarios of
OpR (the gray line) or not (the black line).

Consider one particular channel parameter assignment of
the 2-flow wireless butterfly network with broadcast PECs.
Fig. 5(a) describes the transmissionsuccess probabilitybe-
tween each node pair as the number next to the corresponding
arrow without opportunistic routing. And Fig. 5(b) describes
the same set of channel parameter assignment, except for
that now we allow OpR. We also assume that the success
events between different node pairs are independent. For
example, when allowing opportunistic routing in Fig. 5(b),
the probability that a packet sent bys1 is heard byd1 is
p1(d1) = .2 and the probability that a packet sent byr is
received byd2 is pr(d2) = .6. We then compute6 different
achievable regions and plot them in Fig. 6.

The solid lines in Fig. 6 represent the achievable regions12 of

11Inequality (22) becomes trivial since the left-hand side of(22) becomes
zero and the right-hand side of (22) is always non-negative.

12Our main results provide a pair of outer and inner bounds for this capacity
region. Since the gap between the inner and outer bounds is negligible (with
relative gap less than 0.08%), we plot only the inner bound (the achievable
rate) in Fig. 6.



14

(a) (b)

Fig. 7. (a) The relative location of(si, di). (b) Topology of two(si, di)
pairs.
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Fig. 8. The cumulative distribution of the relative gap between the outer and
the inner boundswith proportional fairness. The outer and the inner bounds
are described in Propositions 2 and 3, respectively.

the SBLNC scheme with and without OpR, respectively. The
dash lines represent the achievable regions of the existingside-
information-based feedback-free result [3] with and without
OpR. The dotted lines represent the achievable regions of
intra-session network coding while performing time-sharing
between different sessions. When OpR is allowed, the dotted
line corresponds to the intra-session RLNC discussed in [29].
When OpR is not allowed, the dotted line is the scheduling-
based capacity (stability) of the store-&-forward solutions.

As can be seen, when there is only one flow in the network
(sayR2 = 0), then OpR(the gray dotted line)is optimal as was
first established in [29]. However, when there are two coex-
isting flows (when bothR1 andR2 > 0), the COPE principle
without OpR(the orange solid line)can sometimes outperform
OpR due to the stronger overhearing betweens2 → d1 and
s1 → d2, p2(d1) = 0.4 and p1(d2) = 0.5, than the two-hop
direct overhearing froms1 → d1 ands2 → d2, p1(d1) = 0.2
and p2(d2) = 0.15. On the other hand, the throughput can
be further enhanced by the proposed joint COPE and OpR
solution (the red solid line).Last but not least, the proposed
SBLNC scheme (the solid lines) always outperforms all the
existing schemes since it achieves/approaches the capacity
region.

We are also interested in quantifying the average throughput
benefits of COPE and OpR in a randomly placed network. To
generate a typical XOR-in-the-air scenario, we first place the
relay node in the center of a unit circle. Then we randomly

TABLE III
AVERAGE SUM-RATES OVER10000RANDOM NODE PLACEMENTS.

Fairness Constraints OpR SBLNC [3] RLNC

No allowed .6599/.6594 .6472 .6180
not allowed .4820 .4779 .4116

Proportional allowed .6294/.6286 .6101 .5484
not allowed .4775 .4726 .3854

Min-cut allowed .6031/.6026 .5892 .5406
not allowed .4671 .4626 .3856

place four nodes (s1, s2, d1, d2) inside the unit circle. To
simulate the need of the relay for each session pair, we force
the placement of each pair to be in the opposite 90 degree area.
That is,di must be located in the opposite 90 degree area of
si’s location fori = 1, 2. See Fig. 7(a) for illustration. Fig. 7(b)
illustrates one realization of our random node placement.

We use the Euclidean distanceD between any two nodes
to decide the overhearing probability when apacketis trans-
mitted. More explicitly, we use the Rayleigh model

Prob(success) =
∫ ∞

T∗

2x

γ
e−

x2

γ dx whereγ ,
1

(4π)2Dα
,

whereα is the path loss factor, andT ∗ is the decodable SNR
threshold. To reflect the packet delivery ratio measured in
practical environments, we chooseα = 2.5 andT ∗ = 0.006 so
that the overhearing probability for a 1-hop neighbor is around
0.7–0.8 while overhearing probability for a 2-hop neighbor is
around0.2–0.3. If no direct overhearing is allowed, we simply
hardwire the probability thatdi overhearssi to be zero. We
again assume that the success events between different node
pairs are independent.

We consider three different fairness requirements: (a) No
fairness requirement; (b) Proportional fairness; and (c) Min-
cut-based fairness requirement. When there is no fairness
constraint, we use a linear programming solver to find the
largest sum rateR1 + R2 that satisfies the capacity outer
bound in Proposition 2, which is denoted byRsum.outer. Sim-
ilarly, we find the largest sum rateR1 + R2 that satisfies
the capacity inner bound in Proposition 3 and denote it
by Rsum.inner. After computing the sum ratesRsum.outer and
Rsum.inner, we repeat the above experiment with different
randomly chosen node placements for10000 times. For the
setting of (b) proportional fairness, we replace the sum rate
objective functionR1 + R2 by the logarithmic objective
function log(R1) + log(R2). We again compute theRsum.outer

andRsum.innerusing the new objective function.For the setting
of (c) min-cut-based requirement, we impose an additional
constraintRi = βmin (pi(di, r), pi(di) + pr(di)) for i = 1, 2
with a commonβ, which enforces the individual rateRi being
proportional to the min-cut value fromsi to di assuming no
other sessions are transmitting andsi andr are scheduled with
the same frequency. The results are summarized in Table III
and Fig. 8.

Table III lists the sum-rate averaged over10000 simulations.
When opportunistic routing is allowed(pi(di) > 0), then the
inner and outer bounds do not always meet. Therefore, for
the entries withSBLNC and OpR, the number on the left is
the average ofRsum.outerwhile the number on the right is the
average ofRsum.inner. When there is no OpR (pi(di) = 0),
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as was proven Section V-B, the sum-rate outer and inner
bounds always coincide and hence only one number is shown
in each correspondingentry. The achievable rates in [3] for
different scenarios are also listed for comparison.The capacity
of pure routing and pure OpR is provided in [29] and we
also compute the capacity of the intra-session-coding-only
RLNC-based achievability scheme in [29] for comparison. In
Table III, we first note that in terms of the averaged throughput,
the difference between the outer and the inner bounds is
around0.08%. Among all 10000 instances, the largest absolute
difference is withRsum.outer= 0.6409 andRsum.inner= 0.6375.
The proposed bounds thus effectively bracket the capacity
when combining the COPE and the OpR principles.With
the proportional fairness constraint, the proposed SBLNC
scheme that combines the benefits of COPE and OpR provides
roughly14.6% throughput improvement when compared to the
scheme using only intra-session RLNC and OpR without the
inter-session COPE-based network coding operations. Again
assuming proportional fairness, if we compare the SBLNC
scheme that combines COPE and OpR (sum rate = 0.6286)
with the benchmark store-&-forward scheme without inter-
session coding and without OpR (sum rate = 0.3854), it shows
that COPE and OpR can provide in average63% throughput
improvement over the traditional TCP/IP solutions. We also
observe that the throughput improvement of COPE is greater
when there is some kind of fairness constraints. The intuition is
that inter-session network coding helps resolve the bottleneck
experienced by theweakeruser since the weaker user’s packets
can now be coded together with the stronger user’s packets.

Fig. 8 focuses on the relative gap per experiment when
allowing for both COPE and OpRwith proportional fairness.
Specifically,considering the setting of proportional fairness,
we compute the relative gap per each experiment,
(Rsum.outer−Rsum.inner) /Rsum.outer, and then plot the cumulative
distribution function (cdf) for the relative gaps. We can see
that with more than80% of the experiments, the relative gap
between the outer and inner bounds is smaller than0.25%.

VII. C ONCLUSION

This paper has introduced a new network coding archi-
tecture, named asthe “Space-Based Linear Network Code
(SBLNC).” The SBLNC scheme has been used to find the
exact capacity regionof the COPE principle2-flow wireless
butterfly networks with broadcast PECs. The result has also
been extended to bracket the capacity when combining the
COPE principle and the concept of opportunistic routing.
Numerical results show that the proposed outer and inner
bounds effectively quantify the capacity for almost all practical
scenarios.

APPENDIX

A. Proof of Proposition 2

For any joint scheduling and NC scheme, we choosetsi
(resp.tr) as the normalizedexpected number of time slots for
which si (resp.r) is scheduled. Namely,

tsi
∆
=

1

n
E

{

n
∑

τ=1

1{σ(τ)=si}

}

and tr
∆
=

1

n
E

{

n
∑

τ=1

1{σ(τ)=r}

}

.

By definition, ts1 , ts2 , andtr must satisfy (10).
In the subsequent proofs, the logarithm is taken with base

q. We prove (11) first. To that end, we notice that

I(W1;Ŵ1) ≤ I(W1; [Y{s1,s2,r}→d1
,Z]n1 ) (69)

=I(W1; [Z]
n
1 ) + I(W1; [Y{s1,s2,r}→d1

]n1 |[Z]
n
1 ) (70)

≤I(W1; [Y{s1,s2}→{d1,r}]
n
1 |[Z]

n
1 ) (71)

=I(W1; [Ys1→{d1,r}]
n
1 |[Z]

n
1 ) (72)

≤H([Ys1→{d1,r}]
n
1 |[Z]

n
1 )

=

n
∑

t=1

H(Ys1→{d1,r}(t)|[Z]
n
1 , [Ys1→{d1,r}]

t−1
1 ) (73)

≤
n
∑

t=1

E
{

1{Zs1→d1
(t)=1 or Zs1→r(t)=1} ◦ 1{σ(t)=s1}

}

(74)

=nts1p1(d1, r) (75)

where (69) follow from (4); (70) follows from the chain rule;
(71) follows from (3), the data processing inequality, and
the fact thatZ is independent ofW1; (72) follows from
that conditioning onZ (and σ since σ is a function ofZ)
Ys2→{d1,r} is a deterministic function ofW2 and is thus
independent ofW1; (73) follows from the chain rule; (74)
follows from that only when1{Zs1→d1

(t)=1 or Zs1→r(t)=1} =
1 and 1{σ(t)=s1} = 1 will we have a non-zero entropy
value H(Ys1→{d1,r}(t)|[Z]

n
1 , [Ys1→{d1,r}]

t−1
1 ), and when

H(Ys1→{d1,r}(t)|[Z]
n
1 , [Ys1→{d1,r}]

t−1
1 ) > 0, it is upper

bounded by1 since the base of the logarithm isq; (75) follows
from Wald’s lemma.

On the other hand, Fano’s inequality gives us

I(W1;Ŵ1) ≥ nR1(1− ε)−H(ε). (76)

Combining (75) and (76), we have

R1(1 − ε)−
H(ε)

n
≤ ts1p1(d1, r). (77)

Letting ε → 0, (77) implies (11) for the case ofi = 1. With
symmetric arguments, we can derive (11) fori = 2.

We prove (13) by similar techniques as used in [5], [30].
Specifically, we create a new network from the original
network by adding an auxiliary pipe that sends all information
available atd2 directly to d1. Later we will show that even
with the additional information, the achievable ratesR1 and
R2 are still upper bounded by (13). As a result, the achievable
R1 andR2 for the original network must satisfy (13) as well.
(12) is a symmetric version of (13).

With the additional information atd1, the decoding function
(see (4)) atd1 for the new network becomes

Ŵ1 = fd1([Y{s1,s2,r}→{d1,d2},Z]
n
1 ). (78)

For anyt ∈ [n], define

U(t) , (W2, [Y{s1,s2,r}→{d1,d2},Z]
t−1
1 ). (79)
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We then have

nR1 = H(W1|W2)

≤ I(W1;Ŵ1|W2) + nε1 (80)

≤ I(W1; [Y{s1,s2,r}→{d1,d2},Z]
n
1 |W2) + nε1 (81)

= I(W1; [Z]
n
1 |W2)

+ I(W1; [Y{s1,s2,r}→{d1,d2}]
n
1 |W2, [Z]

n
1 ) + nε1 (82)

=
n
∑

t=1

I(W1;Y{s1,s2,r}→{d1,d2}(t)

|W2, [Z]
n
1 , [Y{s1,s2,r}→{d1,d2}]

t−1
1 ) + nε1 (83)

= nε1 +
n
∑

t=1

(

I(W1;Yr→{d1,d2}(t)|U(t), [Z]n1 )

+ I(W1;Ys1→{d1,d2}(t)|U(t),Yr→{d1,d2}(t), [Z]
n
1 )

+ I(W1;Ys2→{d1,d2}(t)

|U(t),Y{r,s1}→{d1,d2}(t), [Z]
n
1 )
)

(84)

≤ nε1 +

(

n
∑

t=1

I(W1;Yr→{d1,d2}(t)|U(t), [Z]n1 )

)

+ nts1p1(d1, d2) + 0 (85)

≤ nε1 + nts1p1(d1, d2)

+

n
∑

t=1

I(Xr(t);Yr→{d1,d2}(t)|U(t), [Z]n1 ), (86)

where (80) follows from Fano’s inequality whereε1 goes to0
whenε → 0; (81) follows from the data processing inequality
and (78); (82), (83), and (84) follow from the chain rule and
the fact that the distribution ofZ is independent ofW1 and
W2; (85) follows from the observation that the second term
of the summation can be upper bounded by Wald’s lemma
(similar to (75)) andYs2→{d1,d2}(t) is independent ofW1

given Z (similar to (72)); and (86) follows from the data
processing inequality.

To continue, we define the time sharing random variable
Qt ∈ {1, 2, ..., n} with Prob(Qt = i) = 1

n
for all i ∈

{1, 2, ..., n} andQt being independent of[Z]n1 , W1, andW2.
Since the mutual information is always non-negative, we can
rewrite (86) as

(R1 − ts1p1(d1, d2)− ε1)
+

≤
n
∑

t=1

1

n
I(Xr(t);Yr→{d1,d2}(t)|U(t), [Z]n1 )

≤
n
∑

t=1

1

n
H(Yr→{d1,d2}(t)|U(t), [Z]n1 ) (87)

=

n
∑

qt=1

Prob(Qt = qt)

·H(Yr→{d1,d2}(qt)|U(qt), [Z]
qt
1 , Qt = qt) (88)

where (87) follows from the definition of the mutual infor-
mation; (88) follows from replacing the time indext by the
time sharing random variableQt and the distribution ofU(qt)
and Yr→{d1,d2}(qt) does not depend on the future channel
realization[Z]nqt+1.

We define three binary random variablesΘσ , 1{σ(Qt)=r},
ΘZ1 , 1{Zr→d1

(Qt)=1}, andΘZ2 , 1{Zr→d2
(Qt)=1}, which

are functions ofQt and [Z]Qt

1 . Then we can rewrite (88) as
the following.

(R1 − ts1p1(d1, d2)− ε1)
+

≤
n
∑

qt=1

1

n
H(Yr→{d1,d2}(qt)

|U(qt), [Z]
qt
1 , Qt = qt,Θσ,ΘZ1 ,ΘZ2) (89)

=

n
∑

qt=1

1

n
∑

∀u,[z]
qt
1 ,

θσ,θZ1 ,θZ2

pU(qt),[Z]
qt
1 ,Θσ,ΘZ1 ,ΘZ2

(u, [z]qt1 , θσ, θZ1 , θZ2)

·H(Yr→{d1,d2}(qt)|U(qt) = u, [Z]qt1 = [z]qt1 ,

Θσ = θσ,ΘZ1 = θZ1 ,ΘZ2 = θZ2) (90)

=

n
∑

qt=1

1

n

∑

∀u,[z]
qt
1 ,θZ1 ,θZ2

s.t. max{θZ1 ,θZ2}=1

p(u, [z]qt1 , 1, θZ1 , θZ2)

·H(Xr(qt)|U(qt) = u, [Z]qt1 = [z]qt1 ,

Θσ = 1,ΘZ1 = θZ1 ,ΘZ2 = θZ2) (91)

where (89) follows from the fact thatΘ’s are functions
of Qt and [Z]Qt

1 ; (90) follows from the definition of the
conditional entropy; and (91) follows from the fact that
Yr→{d1,d2}(qt) is not erasure only ifσ(qt) = r and at
least one ofZr→d1 and Zr→d2 equals to one and further-
more Yr→{d1,d2}(qt) = Xr(qt) under such a condition,
where we usep(u, [z]qt1 , 1, θZ1 , θZ2) as the shorthand of
pU(qt),[Z]

qt
1 ,Θσ,ΘZ1 ,ΘZ2

(u, [z]qt1 , 1, θZ1 , θZ2).
We can further simplify (91) by the following steps. We

first note that conditioning onU(qt) = u, [Z]qt−1
1 = [z]qt−1

1 ,
andΘσ = 1, the random variableXr(qt) is independent of
Z(qt), ΘZ1 , andΘZ2 . Notice that[Z]qt−1

1 is a subset ofU(qt).
Therefore, we have

H(Xr(qt)|U(qt) = u, [Z]qt1 = [z]qt1 ,Θσ = 1,ΘZ1 = θZ1 ,

ΘZ2 = θZ2)

= H(Xr(qt)|U(qt) = u,Θσ = 1). (92)

Also the joint probability can be rewritten as
∑

∀u,[z]
qt
1 ,θZ1 ,θZ2

s.t. max{θZ1 ,θZ2}=1

pU(qt),[Z]
qt
1 ,Θσ,ΘZ1 ,ΘZ2

(u, [z]qt1 , 1, θZ1 , θZ2)

=
∑

∀u

pU(qt),Θσ
(u, 1)

∑

∀z,θZ1 ,θZ2

s.t. max{θZ1 ,θZ2}=1

pZ(qt),ΘZ1 ,ΘZ2 |U(qt),Θσ
(z, θZ1 , θZ2 |u, 1)

(93)

=

(

∑

∀u

pU(qt),Θσ
(u, 1)

)

· pr(d1, d2), (94)
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where (93) follows from the basic probability definition,
and (94) follows from the assumption that the channel is
memoryless.

(92) and (94) help us rewrite (91) as

(91) =tr · pr(d1, d2)

·

∑n
qt=1

1
n

∑

∀u p(u, 1) ·H(Xr(qt)|u, 1)

tr
, (95)

where p(u, 1) and H(Xr(qt)|u, 1) are the shorthand for
pU(qt),Θσ

(u, 1) andH(Xr(qt)|U(qt) = u,Θσ = 1), respec-
tively.

We now focus on flow 2. By Fano’s inequality, for some
ε2 > 0 that goes to 0 asε → 0, with similar steps as in
(80)–(86), we can also show that

nR2 = H(W2)

≤I(W2; [Y{s1,s2,r}→d2
,Z]n1 ) + nε2

=I(W2; [Z]
n
1 ) + I(W2; [Y{s1,s2,r}→d2

]n1 |[Z]
n
1 ) + nε2 (96)

=

n
∑

t=1

I(W2;Y{s1,s2,r}→d2
(t)|[Y{s1,s2,r}→d2

]t−1
1 , [Z]n1 )

+ nε2 (97)

=nε2 +

n
∑

t=1

(

I(W2;Yr→d2(t)|[Y{s1,s2,r}→d2
]t−1
1 , [Z]n1 )

+ I(W2;Ys2→d2(t)|[Y{s1,s2}→d2
]t−1
1 , [Yr→d2 ]

t
1, [Z]

n
1 )

+I(W2;Ys1→d2(t)|[Ys1→d2 ]
t−1
1 , [Y{s2,r}→d2

]t1, [Z]
n
1 )
)

(98)

≤nε2 +
n
∑

t=1

I(W2;Yr→d2(t)|[Y{s1,s2,r}→d2
]t−1
1 , [Z]n1 )

+ nts2p2(d2) + 0 (99)

where (96), (97), and (98) follows from the chain rule and the
independence betweenW2 and [Z]n1 ; and (99) follows from
similar derivation as in (85). We then have

(99)=nε2 + nts2p2(d2)

+

n
∑

t=1

(

H(Yr→d2(t)|[Y{s1,s2,r}→d2
]t−1
1 , [Z]n1 )

− H(Yr→d2(t)|W2, [Y{s1,s2,r}→d2
]t−1
1 , [Z]n1 )

)

(100)

≤ nε2 + nts2p2(d2)

+

n
∑

t=1

(H(Yr→d2(t)|[Z]
n
1 )−H(Yr→d2(t)|U(t), [Z]n1 ))

(101)

= nε2 + nts2p2(d2) +

n
∑

t=1

I(U(t);Yr→d2(t)|[Z]
n
1 ), (102)

where (100) and (102) follows from the definition of the
mutual information; and (101) follows fromthe fact thatcon-
ditioning does not increase the entropyand[Y{s1,s2,r}→d2

]t−1
1

is a subset ofU(t). Since the mutual information is always

non-negative, we now have

(R2 − ts2ps2(d2)− ε2)
+

≤
1

n

n
∑

t=1

I(U(t);Yr→d2(t)|[σ,Z]
n
1 )

=

n
∑

qt=1

Prob(Qt = qt) · I(U(qt);Yr→d2(qt)|[Z]
qt
1 , Qt = qt)

(103)

=

n
∑

qt=1

1

n
·H(Yr→d2(qt)|[Z]

qt
1 , Qt = qt)

−
n
∑

qt=1

1

n
·H(Yr→d2(qt)|U(qt), [Z]

qt
1 , Qt = qt), (104)

where (103) follows from the definition of the conditional mu-
tual information and the fact that the distribution ofU(qt) and
Yr→d2(qt) does not depend on the future channel realization
[Z]nqt+1; and (104) follows from the definition of the mutual
information.We now discuss the first summation in (104)

n
∑

qt=1

1

n
·H(Yr→d2(qt)|[Z]

qt
1 , Qt = qt)

=

n
∑

qt=1

1

n
·H(Yr→d2(qt)|[Z]

qt
1 , Qt = qt,Θσ,ΘZ2) (105)

=

n
∑

qt=1

1

n

∑

∀[z]
qt
1 ,

θσ,θZ2

p[Z]
qt
1 ,Θσ,ΘZ2

([z]qt1 , θσ, θZ2)

·H(Yr→d2(qt)|[Z]
qt
1 = [z]qt1 ,Θσ = θσ,ΘZ2 = θZ2)

(106)

=

n
∑

qt=1

1

n

∑

∀[z]
qt
1

p[Z]
qt
1 ,Θσ,ΘZ2

([z]qt1 , 1, 1)

·H(Xr(qt)|[Z]
qt
1 = [z]qt1 ,Θσ = 1,ΘZ2 = 1) (107)

where (105) follows from the fact thatΘ’s are functions ofQt

and[Z]Qt

1 ; (106) follows from the definition of the conditional
entropy; and (107) follows from the fact thatYr→d2(qt) is
not erasure only ifσ(qt) = r and Zr→d2 equals to one.
FurthermoreYr→d2(qt) = Xr(qt) under such a condition.

We can further simplify (107) by the following steps. We
first note that conditioning on[Z]qt−1

1 = [z]qt−1
1 andΘσ = 1,

the random variableXr(qt) is independent ofZ(qt) andΘZ2 .
Therefore, we have

H(Xr(qt)|[Z]
qt
1 = [z]qt1 ,Θσ = 1,ΘZ2 = 1)

= H(Xr(qt)|[Z]
qt−1
1 = [z]qt−1

1 ,Θσ = 1). (108)
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Also the joint probability can be rewritten as
∑

∀[z]
qt
1

p[Z]
qt
1 ,Θσ,ΘZ2

([z]qt1 , 1, 1)

=
∑

∀[z]
qt−1
1

p
[Z]

qt−1
1 ,Θσ

([z]qt−1
1 , 1)

∑

∀z

p
Z(qt),ΘZ2 |[Z]

qt−1
1 ,Θσ

(z, 1|[z]qt−1
1 , 1) (109)

=





∑

∀[z]
qt−1
1

p
[Z]

qt−1
1 ,Θσ

([z]qt−1
1 , 1)



 · pr(d2). (110)

where (109) follows from the basic probability definition,
and (110) follows from the assumption that the channel is
memoryless.

(108) and (110) help us rewrite (107) as

(107) = tr · pr(d2)

·

∑n

qt=1
1
n

∑

∀[z]
qt−1
1

p([z]qt−1
1 , 1) ·H(Xr(qt)|[z]

qt−1
1 , 1)

tr
(111)

where p([z]qt−1
1 , 1) and H(Xr(qt)|[z]

qt−1
1 , 1) are the short-

hand for p
[Z]

qt−1
1 ,Θσ

([z]qt−1
1 , 1) and H(Xr(qt)|[Z]

qt−1
1 =

[z]qt−1
1 ,Θσ = 1), respectively.
Similarly, for the second summation in (104),
n
∑

qt=1

1

n
·H(Yr→d2(qt)|U(qt), [Z]

qt
1 , Qt = qt)

=

n
∑

qt=1

1

n
·H(Yr→d2(qt)|U(qt), [Z]

qt
1 , Qt = qt,Θσ,ΘZ2)

(112)

=
n
∑

qt=1

1

n

∑

∀u,[z]
qt
1 ,

θσ,θZ2

pU(qt),[Z]
qt
1 ,Θσ ,ΘZ2

(u, [z]qt1 , θσ, θZ2)

·H(Yr→d2(qt)|U(qt) = u, [Z]qt1 = [z]qt1 ,

Θσ = θσ,ΘZ2 = θZ2) (113)

=

n
∑

qt=1

1

n

∑

∀u,[z]
qt
1

pU(qt),[Z]
qt
1 ,Θσ,ΘZ2

(u, [z]qt1 , 1, 1)

·H(Xr(qt)|U(qt) = u, [Z]qt1 = [z]qt1 ,Θσ = 1,ΘZ2 = 1)
(114)

where (112) follows from the fact thatΘ’s are functions ofQ
and[Z]Qt

1 ; (113) follows from the definition of the conditional
entropy; and (114) follows from the fact thatYr→d2(qt) is
not erasure only ifσ(qt) = r and Zr→d2 equals to one.
FurthermoreYr→d2(qt) = Xr(qt) under such a condition.

We can further simplify (114) by the following steps. We
first note that conditioning onU(qt) = u, [Z]qt−1

1 = [z]qt−1
1 ,

andΘσ = 1, the random variableXr(qt) is independent of
Z(qt) and ΘZ2 . Notice that [Z]qt−1

1 is a subset ofU(qt).
Therefore, we have

H(Xr(qt)|U(qt) = u, [Z]qt1 = [z]qt1 ,Θσ = 1,ΘZ2 = 1)

= H(Xr(qt)|U(qt) = u,Θσ = 1). (115)

Also the joint probability can be rewritten as
∑

∀u,[z]
qt
1

pU(qt),[Z]
qt
1 ,Θσ ,ΘZ2

(u, [z]qt1 , 1, 1)

=
∑

∀u

pU(qt),Θσ
(u, 1)

∑

∀z

pZ(qt),ΘZ2 |U(qt),Θσ
(z, 1|u, 1) (116)

=

(

∑

∀u

pU(qt),Θσ
(u, 1)

)

· pr(d2). (117)

where (116) follows from the basic probability definition,
and (117) follows from the assumption that the channel is
memoryless.

(115) and (117) help us rewrite (114) as

(107) = tr · pr(d2)

·

∑n

qt=1
1
n

∑

∀u p(u, 1) ·H(Xr(qt)|u, 1)

tr
(118)

where p(u, 1) and H(Xr(qt)|u, 1) are the shorthand for
pU(qt),Θσ

(u, 1) andH(Xr(qt)|U(qt) = u,Θσ = 1), respec-
tively.

Combining (111) and (118),we can rewrite (104) in the
following form.

(R2 − ts2ps2(d2)− ε2)
+

≤ tr · pr(d2)

·

(∑n
qt=1

1
n

∑

∀[z]
qt−1
1

p([z]qt−1
1 , 1) ·H(Xr(qt)|[z]

qt−1
1 , 1)

tr
−

∑n

qt=1
1
n

∑

∀u p(u, 1) ·H(Xr(q)|u, 1)

tr

)

. (119)

Summing up (95)
pr(d1,d2)

and (119)
pr(d2)

, we thus have

(R1 − ts1p1(d1, d2)− ε1)
+

pr(d1, d2)
+

(R2 − ts2p2(d2)− ε2)
+

pr(d2)

≤ tr ·

∑n

qt=1
1
n

∑

∀[z]
qt−1
1

p([z]qt−1
1 , 1) ·H(Xr(qt)|[z]

qt−1
1 , 1)

tr
(120)

≤ tr, (121)

where (121) is based on the following observations. We first
note that by definition

tr =

n
∑

qt=1

1

n
Prob(σ(qt) = r)

=

n
∑

qt=1

1

n

∑

∀[z]
qt−1
1

p([z]qt−1
1 , 1).

Therefore, the fraction term in (120) can be viewed as the
normalization of the conditional entropyH(Xr(qt)|[z]

qt−1
1 , 1).

Since each conditional entropy is no larger than1 (with the
base of the logarithm beingq), we thus have (121).
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(121) holds for arbitraryε > 0. Letting ε → 013, we thus
have the following final inequality.

(R1 − ts1p1(d1, d2))
+

pr(d1, d2)
+

(R2 − ts2p2(d2))
+

pr(d2)
≤ tr,

which gives us (13). (12) can be proven by symmetry. The
proof of the outer bound is thus complete.

B. Detailed Achievability Analysis

In this appendix, we finish the discussion about the policy
feasibility in Section V-A. The feasibility for PolicyΓs1,0

and Policy Γs1,1 has been proven in Section V-A. In the
following discussion about the space dimensions, we again
rely on the first order, expectation-based analysis and assume
the application of the law of large numbers implicitly.

Policy Γs1,2: Similar to the analysis for PolicyΓs1,1,
assumingq ≥ 2, the condition that (28) being non-empty is
equivalent to whether the following dimension-based inequal-
ity is satisfied.

dim(S2)− dim(S2 ∩ (S1 ⊕ Sr))

=dim(S1 ⊕ S2 ⊕ Sr)− dim(S1 ⊕ Sr) > 0, (122)

where (122) follows from Lemma 2.
Similar to the discussion inΓs1,0 andΓs1,1, we will quantify

individual dimension at the end ofΓs1,2, the policy of interest,
and prove that even in the end ofΓs1,2, the dimension differ-
ence in (122) is strictly larger than0. Therefore, throughout
the entire duration ofΓs1,2, (122) is larger than0 andΓs1,2

is always feasible.
We first focus ondim(S1⊕S2⊕Sr). SinceS1⊕S2⊕Sr is a

subset of the exclusion set inΓs1,0, every time aΓs1,0 packet
is received by one ofd1, d2, andr, dim(S1 ⊕ S2 ⊕ Sr) will
increase by one. On the other hand, notice thatS1 ⊕ S2 ⊕ Sr

is a superset of the inclusion set inΓs1,1 and Γs1,2. Hence
dim(S1 ⊕ S2 ⊕ Sr) remains the same throughoutΓs1,1 and
Γs1,2. As a result, in the end of policyΓs1,2, we have

E{dim(S1 ⊕ S2 ⊕ Sr)} = nω0
s1
p1(d1, d2, r). (123)

We now focus ondim(S1 ⊕ Sr). SinceS1 ⊕ Sr is a subset
of the exclusion sets ofΓs1,0, Γs1,1 andΓs1,2, every time a
packet ofΓs1,0, Γs1,1, or Γs1,2 is received by one ofd1 and
r, dim(S1 ⊕ Sr) will increase by one. As a result, in the end
of policy Γs1,2, we have

E{dim(S1 ⊕ Sr)} = n(ω0
s1

+ ω1
s1

+ ω2
s1
)p1(d1, r). (124)

Jointly, (123), (124), and (20) imply (122) in the end of
Γs1,2.

Policy Γs1,3: Similar to the analysis of the previous policies,
assumingq ≥ 2, the condition that (29) being non-empty is

13As a result,ε1 → 0 and ε2 → 0.

equivalent to whether the following dimension-based inequal-
ity is satisfied.

dim(Sr)− dim(((S2 ∩ Sr)⊕ S1) ∩ Sr)

=dim((S2 ∩ Sr)⊕ S1 ⊕ Sr)− dim((S2 ∩ Sr)⊕ S1) (125)

=dim(S1 ⊕ Sr)− (dim(S1) + dim(S2 ∩ Sr)

− dim(S1 ∩ S2 ∩ Sr)) (126)

=dim(S1 ⊕ Sr)− dim(S1)− (dim(S2) + dim(Sr)

− dim(S2 ⊕ Sr)) + dim(S1 ∩ S2 ∩ Sr) > 0, (127)

where (125) follows from Lemma 2; (126) follows from simple
set operations and from Lemma 2; and (127) follows from
Lemma 2.

Similar to the previous discussion, we will quantify individ-
ual dimension at the end ofΓs1,3, the policy of interest and
prove that even in the end ofΓs1,3, the dimension difference in
(127) is strictly larger than0. Therefore, throughout the entire
duration ofΓs1,3, (127) is larger than0 andΓs1,3 is always
feasible.

By similar analysis,14 in the end ofΓs1,3 we have

E{dim(S1)} = n(ω0
s1

+ ω1
s1

+ ω2
s1

+ ω3
s1
)p1(d1), (128)

E{dim(S2)} = n(ω0
s1

+ ω1
s1

+ ω3
s1
)p1(d2), (129)

E{dim(Sr)} = n(ω0
s1

+ ω1
s1

+ ω2
s1
)p1(r), (130)

E{dim(S1 ⊕ Sr)} = n(ω0
s1

+ ω1
s1

+ ω2
s1
)p1(d1, r), (131)

E{dim(S2 ⊕ Sr)} = nω0
s1
p1(d2, r). (132)

What remains to be decided is the value ofdim(S1 ∩ S2 ∩
Sr) at the end of PolicyΓs1,3. To proceed, we introduce an
auxiliary nodea in the following way. Whenever a vectorv
sent bys1 is received by bothd1 and r, we let the auxiliary
nodea observe suchv as well. The knowledge space ofa,
denoted bySa is thus the linear span of all vectors received
by bothd1 andr.

We first argue thatSa = S1∩Sr in the end of policyΓs1,2.
Since a only observes those vectors commonly available at
bothd1 andr, the knowledge space ofSa is a subset ofS1∩Sr.
Knowing Sa ⊆ S1 ∩ Sr, we can quickly check thatSa is a
subset of the exclusion sets in PoliciesΓs1,0, Γs1,1, andΓs1,2.
Therefore, every time nodea receives a packet during policies
Γs1,0, Γs1,1, andΓs1,2, the dimension ofSa will increase by
one. Therefore, we have

E{dim(Sa)} = n(ω0
s1

+ ω1
s1

+ ω2
s1
)p1(d1r) (133)

in the end ofΓs1,2. On the other hand, by similar analysis as
before, we have

E{dim(S1)} = n(ω0
s1

+ ω1
s1

+ ω2
s1
)p1(d1),

E{dim(Sr)} = n(ω0
s1

+ ω1
s1

+ ω2
s1
)p1(r),

E{dim(S1 ⊕ Sr)} = n(ω0
s1

+ ω1
s1

+ ω2
s1
)p1(d1, r),

14The derivation of (129) for the case of PolicyΓs1,3 uses the following
inequality as well.

(29) ⊆ (Sr\(S2 ∩ Sr)) = (Sr\S2).
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in the end of policyΓs1,2. By Lemma 2, we thus have
dim(Sa) = dim(S1 ∩ Sr). As a result, we have proven
Sa = (S1 ∩ Sr) in the end ofΓs1,2.

By the above analysis, we thus have(S1 ∩ S2 ∩ Sr) =
Sa ∩S2. By similarly dimension-based analysis, in the end of
Γs1,2 we have

E{dim(S2)} = n(ω0
s1

+ ω1
s1
)p1(d2), (134)

E{dim(S2 ⊕ Sa)} = n(ω0
s1

+ ω1
s1
)p1(d2, d1r), (135)

wherep1(d2, d1r) in (135) is the probability that at least one
of noded2 and nodea receives the packet and (135) follows
from the observation thatS2 ⊕Sa is a subset of the exclusion
sets ofΓs1,0, Γs1,1 and is a superset of the inclusion set of
Γs1,2. By (133), (134), and (135), we have thus proven that

E{dim(S1 ∩ S2 ∩ Sr)} = E{dim(Sa ∩ S2)}

=E{dim(S2)} + E{dim(Sa)} − E{dim(S2 ⊕ Sa)}

=n
(

ω0
s1

+ ω1
s1

)

p1(d1d2r) + nω2
s1
p1(d1r) (136)

in the end ofΓs1,2.
In the following, we will quantify the increment ofdim(S1∩

S2 ∩ Sr) during Γs1,3. To that end, we introduce two more
auxiliary nodesb andc. In the beginning ofΓs1,3, we let node
b (resp.c) be aware of the knowledge spaceS1 ∩ Sr (resp.
S2 ∩ Sr). During Γs1,3, whenever a packet is received byd1
(resp.d2), we let the auxiliary nodeb (resp.c) observe such
a packet as well. From the construction, it is clear that the
following equalities hold in the beginning ofΓs1,3.

Sb = S1 ∩ Sr, (137)

Sc = S2 ∩ Sr. (138)

We will prove that (137) and (138) hold even in the end of
Γs1,3 as well.

In the following, we will prove that (137) holds in the end
of Γs1,3. We first note that by our construction, we always
haveS1 ⊃ Sb ⊃ (S1 ∩ Sr). Knowing thatSb is always a
subset ofS1, andS1 is a subset of the exclusion sets inΓs1,3,
we can see that every timed1 receives a packet during policy
Γs1,3, dim(Sb) will increase by one. Moreover, only whend1
receives a packet during policyΓs1,3 will dim(Sb) increase.
As a result, the increment ofdim(Sb) duringΓs1,3 equals the
number of timesd1 receives a packet duringΓs1,3. On the
other hand,dim(S1∩Sr) = dim(S1)+dim(Sr)−dim(S1⊕Sr).
Since bothSr andS1⊕Sr are supersets of the inclusion set of
Γs1,3, bothdim(Sr) anddim(S1⊕Sr) remain identical during
Γs1,3. Therefore, the increment ofdim(S1 ∩ Sr) is identical
to the increment ofdim(S1) during Γs1,3. As a result, the
increment ofdim(S1 ∩Sr) duringΓs1,3 equals the number of
timesd1 receives a packet duringΓs1,3. We have thus proven
dim(Sb) = dim(S1 ∩ Sr) in the end ofΓs1,3, which implies
(137). (138) can be proven by symmetry.

To quantify the increment ofdim(S1∩S2∩Sr) duringΓs1,3,
we notice thatdim(S1∩S2∩Sr) = dim(Sb∩Sc) = dim(Sb)+
dim(Sc)−dim(Sb⊕Sc). As a result, the increment ofdim(S1∩
S2∩Sr) during policyΓs1,3 is the summation of the increments
of dim(Sb) anddim(Sc) minus the increment ofdim(Sb⊕Sc)
during Γs1,3. By our construction, the increments ofSb, Sc,

andSb⊕Sc duringΓs1,3 are simplynω3
s1
p1(d1), nω3

s1
p1(d2),

andnω3
s1
p1(d1, d2), respectively. As a result, the increment of

dim(S1 ∩ S2 ∩ Sr) duringΓs1,3 is simply nω3
s1
p1(d1d2).

Combining (136), we have thus proven that

E{dim(S1 ∩ S2 ∩ Sr)}

=n
(

ω0
s1

+ ω1
s1

)

p1(d1d2r) + nω2
s1
p1(d1r) + nω3

s1
p1(d1d2)

(139)

in the end of PolicyΓs1,3.

Jointly, (128) to (132), (139), and (21) imply (127) in the
end ofΓs1,3.

PolicyΓs1,4: Similar to the analysis of the previous policies,
the condition that (30) being non-empty is equivalent to
whether the following dimension-based inequality is satisfied
in the end ofΓs1,4.

dim(S2 ∩ Sr)− dim(S1 ∩ S2 ∩ S2)

=(dim(S2) + dim(Sr)− dim(S2 ⊕ Sr))

− dim(S1 ∩ S2 ∩ Sr) > 0. (140)

Similar to the previous discussion, we will quantify individual
dimension at the end ofΓs1,4 and prove that (140) holds in
the end ofΓs1,4.

By similar analysis, we have

E{dim(S2)} = n(ω0
s1

+ ω1
s1

+ ω3
s1
)p1(d2), (141)

E{dim(Sr)} = n(ω0
s1

+ ω1
s1

+ ω2
s1
)p1(r), (142)

E{dim(S2 ⊕ Sr)} = nω0
s1
p1(d2, r), (143)

in the end ofΓs1,4. What remains to be decided is the value of
dim(S1∩S2∩Sr) at the end of PolicyΓs1,4. In (139), we have
already quantifieddim(S1∩S2∩Sr) in the end ofΓs1,3. In the
following, we will quantify the increment ofdim(S1∩S2∩Sr)
duringΓs1,4. By (30), we can see that every timed1 receives
a packet duringΓs1,4, dim(S1∩S2∩Sr) will increase by one.
As a result, the increment ofdim(S1 ∩ S2 ∩ Sr) duringΓs1,4

is nω4
s1
p1(d1). Together with (139), we have proven that

E{dim(S1 ∩ S2 ∩ Sr)}

=n
(

ω0
s1

+ ω1
s1

)

p1(d1d2r) + nω2
s1
p1(d1r)

+ nω3
s1
p1(d1d2) + nω4

s1
p1(d1) (144)

in the end ofΓs1,4. Jointly, (141) to (144) and (22) imply that
(140) holds in the end ofΓs1,4.

The feasibility of policyΓs2,k, k = 0, 1, 2, 3, 4, can be
proven by symmetry.

Policy Γr,1: We first notice that the inclusion space and
exclusion space of PolicyΓr,1 are the same as of PolicyΓs1,3.
Hence to prove the feasibility of PolicyΓr,1, we need to prove
that (127) holds in the end ofΓr,1. By similar analysis, we
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have

E{dim(S1)} = n(ω0
s1

+ ω1
s1

+ ω2
s1

+ ω3
s1

+ ω4
s1
)p1(d1)

+ nω1
r,Npr(d1), (145)

E{dim(S2)} = n(ω0
s1

+ ω1
s1

+ ω3
s1
)p1(d2)

+ nω1
r,Npr(d2), (146)

E{dim(Sr)} = n(ω0
s1

+ ω1
s1

+ ω2
s1
)p1(r), (147)

E{dim(S1 ⊕ Sr)} = n(ω0
s1

+ ω1
s1

+ ω2
s1
)p1(d1, r), (148)

E{dim(S2 ⊕ Sr)} = nω0
s1
p1(d2, r), (149)

in the end ofΓr,1.
What remains to be decided is the value ofdim(S1∩S2∩Sr)

at the end of PolicyΓr,1. In (144) we have computed the value
of dim(S1 ∩S2∩Sr) in the end ofΓs1,4. As a result, we only
need to quantify the increment ofdim(S1 ∩ S2 ∩ Sr) during
Γr,1 . By the same analysis as used when we quantify the
increment ofdim(S1 ∩ S2 ∩ Sr) during Γs1,3, the increment
of dim(S1 ∩S2∩Sr) duringΓr,1 is nω1

r,Npr(d1d2). By (144),
we have shown that

E{dim(S1 ∩ S2 ∩ Sr)}

=n
(

ω0
s1

+ ω1
s1

)

p1(d1d2r) + nω2
s1
p1(d1r)

+ nω3
s1
p1(d1d2) + nω4

s1
p1(d1) + nω1

r,Npr(d1d2) (150)

in the end ofΓr,1. Jointly, (145) to (150) and (23) imply that
(127) holds in the end ofΓr,1.

The discussion of PolicyΓr,2 follows symmetrically.
Policy Γr,3 for v(1): We will prove that for the firstnω1

r,C

time slots of PolicyΓr,3, we can always choosev(1) according
to (38). To that end, we first notice that the inclusion space
and exclusion space in (38) are the same as those of Policy
Γs1,4. Hence to prove that (38) remains non-empty during the
first nω1

r,C time slots of PolicyΓr,3, we need to prove that
(140) holds in the end of the firstnω1

r,C time slots of Policy
Γr,3. By similar analysis as used in the previous policies, we
have

E{dim(S2)} = n(ω0
s1

+ ω1
s1

+ ω3
s1
)p1(d2)

+ nω1
r,Npr(d2), (151)

E{dim(Sr)} = n(ω0
s1

+ ω1
s1

+ ω2
s1
)p1(r), (152)

E{dim(S2 ⊕ Sr)} = nω0
s1
p1(d2, r), (153)

in the end of the firstnω1
r,C time slots of PolicyΓr,3. What

remains to be decided is the value ofdim(S1∩S2∩Sr) at the
end of the firstnω1

r,C time slots of PolicyΓr,3. In (150) we
have computed the value ofdim(S1 ∩ S2 ∩ Sr) in the end of
Γr,1. As a result, we only need to quantify the increment of
dim(S1 ∩ S2 ∩ Sr) during the firstnω1

r,C time slots of Policy
Γr,3. By the same analysis as used when we quantify the
increment ofdim(S1∩S2∩Sr) duringΓs1,4, the increment of
dim(S1 ∩ S2 ∩ Sr) during the firstnω1

r,C time slots of Policy
Γr,3 is nω1

r,Cpr(d1). By (150), we have shown that

E{dim(S1 ∩ S2 ∩ Sr)}

=n
(

ω0
s1

+ ω1
s1

)

p1(d1d2r) + nω2
s1
p1(d1r)

+ nω3
s1
p1(d1d2) + nω4

s1
p1(d1) + nω1

r,Npr(d1d2)

+ nω1
r,Cpr(d1) (154)

in the end of the firstnω1
r,C time slots of PolicyΓr,3. Jointly,

(151) to (154) and (24) imply that (140) holds in the end of
the firstnω1

r,C time slots ofΓr,3.
The discussion of the firstnω2

r,C time slots ofΓr,3 follows
symmetrically.

The above analysis completes the achievability proof stated
in Section V-A.

C. The Proof of Lemma 3

In this appendix, we will show that the assignment ofω0
si

to ωi
r,C in (62) to (68) is non-negative and satisfies (14), (15),

(54) to (61).
We first show that theω0

si
to ωi

r,C are non-negative. By
the definitions,ω0

si
, ω2

si
, ω4

si
, ωi

r,N are non-negative. Since
max{pi(r), pi(dj)} ≤ pi(r, dj), ω1

si
is non-negative. By (7),

we haveRi ≤ tsipi(r). Therefore,ω3
si

is non-negative. There
are two terms in the definition ofωi

r,C in (68). The numerator
of the first term is no less than the numerator of the second
term. The denominator of the first term is no larger than the
denominator of the second term. As a result,ωi

r,C is non-
negative.

By (62) to (65), we have

3
∑

k=0

ωk
si

=
Ri

pi(dj , r)

+Ri

(

min

{

1

pi(r)
,

1

pi(dj)

}

−
1

pi(dj , r)

)

+Ri

(

1

pi(r)
−

1

pi(dj)

)+

+min

{

Ri

(

1

pi(dj)
−

1

pi(r)

)+

, tsi −
Ri

pi(r)

}

(155)

=
Ri

pi(r)

+ min

{

Ri

(

1

pi(dj)
−

1

pi(r)

)+

, tsi −
Ri

pi(r)

}

(156)

≤tsi , (157)

where (156) is based on the fact thatmin(x, y)+(x−y)+ = x
for arbitrary real valuedx andy; and (157) follows from the
fact that the minimum of two values is no more than any of
two. (157) thus shows that our assignment satisfies (14).

To prove that (15) holds, we observe that our assignment
leads to

ωi
r,N + ωj

r,N + ωi
r,C

=
(Ri − tsipi(dj))

+

pr(di, dj)
+

(Rj − tsjpsj (di))
+

pr(di, dj)

+
Ri

pr(di)
−

(Ri − tsipi(dj))
+

pr(di, dj)

=
Ri

pr(di)
+

(Rj − tsjpsj (di))
+

pr(di, dj)
≤ tr.
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Hence the assignment satisfies (15). By noticing that

ω0
si
pi(dj , r) =

Ri

pi(dj , r)
pi(dj , r) = Ri,

we have shown that the assignment satisfies (54). We now
consider (55) and notice that

LHS of (55)=Ri

(

min

{

1

pi(r)
,

1

pi(dj)

}

−
1

pi(dj , r)

)

pi(r)

=Ri

(

min

{

1,
pi(r)

pi(dj)

}

−
pi(r)

pi(dj , r)

)

≤Ri −Ri

pi(r)

pi(dj , r)
, (158)

RHS of (55)=Ri

pi(djr)

pi(dj , r)
= Ri −Ri

pi(r)

pi(dj , r)
, (159)

where (158) follows from the definition of the minimum, and
(159) follows from pi(dj , r) − pi(r) = pi(djr). Since with
the assignment, the left hand side (LHS) of (55) is no larger
than the right hand side (RHS) of (55), the assignment satisfies
(55). We now consider (56) and notice that

LHS of (56)=Ri

(

min

{

1

pi(r)
,

1

pi(dj)

}

−
1

pi(dj , r)

)

pi(dj)

=Ri

(

min

{

pi(dj)

pi(r)
, 1

}

−
pi(dj)

pi(dj , r)

)

≤Ri −Ri

pi(dj)

pi(dj , r)
, (160)

RHS of (56)=Ri

pi(rdj)

pi(dj , r)
= Ri −Ri

pi(dj)

pi(dj , r)
, (161)

where (160) follows from the definition of the minimum, and
(161) follows frompi(dj , r) − pi(dj) = pi(rdj). Since with
the assignment, the LHS of (56) is no larger than the RHS of
(56), the assignment satisfies (56). We now consider (57) and
notice that

LHS of (57)=Ri

(

1

pi(r)
−

1

pi(dj)

)+

pi(r)

=Ri

(

1−
pi(r)

pi(dj)

)+

,

RHS of (57)=Ri

pi(djr)

pi(dj , r)

−Ri

(

min

{

1

pi(r)
,

1

pi(dj)

}

−
1

pi(dj , r)

)

pi(r)

=Ri

(

1−
pi(r)

pi(dj , r)

)

−Ri

(

min

{

1,
pi(r)

pi(dj)

}

−
pi(r)

pi(dj , r)

)

(162)

=Ri −Rimin

{

1,
pi(r)

pi(dj)

}

=Ri

(

1−
pi(r)

pi(dj)

)+

, (163)

where (162) follows frompi(dj , r) − pi(r) = pi(djr), and

(163) follows from 1 − min
{

pi(r)
pi(dj)

, 1
}

=
(

1− pi(r)
pi(dj)

)+

.

Since with the assignment, the LHS of (57) is no larger
than the RHS of (57), the assignment satisfies (57). We now
consider (58) and notice that

LHS of (58)=min

{

Ri

(

1−
pi(dj)

pi(r)

)+

,

tsipi(dj)−Ri

pi(dj)

pi(r)

}

,

RHS of (58)=Ri

pi(rdj)

pi(dj , r)

−Ri

(

min

{

1

pi(r)
,

1

pi(dj)

}

−
1

pi(dj , r)

)

pi(dj)

=Ri

(

1−
pi(dj)

pi(dj , r)

)

−Ri

(

min

{

pi(dj)

pi(r)
, 1

}

−
pi(dj)

pi(dj , r)

)

(164)

=Ri −Rimin

{

pi(dj)

pi(r)
, 1

}

=Ri

(

1−
pi(dj)

pi(r)

)+

. (165)

where (164) and (165) follow similar reasons as in (162) and
(163). Hence the assignment satisfies (58). We now consider
(59) and we notice that

LHS =(Ri − tsipi(dj))
+ ,

RHS=Ri

pi(rdj)

pi(dj , r)

−Ri

(

min

{

1

pi(r)
,

1

pi(dj)

}

−
1

pi(dj , r)

)

pi(dj)

−min

{

Ri

(

1−
pi(dj)

pi(r)

)+

, tsipi(dj)−Ri

pi(dj)

pi(r)

}

=Ri

(

1−
pi(dj)

pi(dj , r)

)

−Ri

(

min

{

pi(dj)

pi(r)
, 1

}

−
pi(dj)

pi(dj , r)

)

−min

{

Ri

(

1−
pi(dj)

pi(r)

)+

, tsipi(dj)−Ri

pi(dj)

pi(r)

}

(166)

=Ri −Rimin

{

pi(dj)

pi(r)
, 1

}

−min

{

Ri

(

1−
pi(dj)

pi(r)

)+

, tsipi(dj)−Ri

pi(dj)

pi(r)

}

=Ri

(

1−
pi(dj)

pi(r)

)+

−min

{

Ri

(

1−
pi(dj)

pi(r)

)+

, tsipi(dj)−Ri

pi(dj)

pi(r)

}

(167)

≥ (Ri − tsipi(dj))
+
, (168)

where (166) follows frompi(dj , r) − pi(dj) = pi(rdj); and
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(167) follows from the definition of(·)+. (168) follows from
the following arguments.

(167) =max

{

0, Ri

(

1−
pi(dj)

pi(r)

)+

− tsipi(dj) +Ri

pi(dj)

pi(r)

}

≥max

{

0, Ri

(

1−
pi(dj)

pi(r)

)

− tsipi(dj) +Ri

pi(dj)

pi(r)

}

=(168).

Since with the assignment, the LHS of (59) is no greater
than the RHS of (59), the assignment satisfies (59). We now
consider (60) and notice that

LHS =Ri − (Ri − tsipi(dj))
+ pr(di)

pr(di, dj)
,

RHS=Ri

pi(djr)

pi(dj , r)

+ (pi(dj) + pi(r))

· Ri

(

min

{

1

pi(r)
,

1

pi(dj)

}

−
1

pi(dj , r)

)

+Ri

(

1−
pi(r)

pi(dj)

)+

+min

{

Ri

(

1−
pi(dj)

pi(r)

)+

, tsipi(dj)−Ri

pi(dj)

pi(r)

}

+
(Ri − tsipi(dj))

+

pr(di, dj)
(pr(di, dj)− pr(di))

=Ri

(

pi(djr) − pi(dj)− pi(r)

pi(dj , r)

)

+Ri min

{

1 +
pi(dj)

pi(r)
, 1 +

pi(r)

pi(dj)

}

+Ri

(

1−
pi(r)

pi(dj)

)+

+min

{

Ri

(

1−
pi(dj)

pi(r)

)+

, tsipi(dj)−Ri

pi(dj)

pi(r)

}

+
(Ri − tsipi(dj))

+

pr(di, dj)
(pr(di, dj)− pr(di))

=Rimin

{

pi(dj)

pi(r)
,
pi(r)

pi(dj)

}

+Ri

(

1−
pi(r)

pi(dj)

)+

+min

{

Ri

(

1−
pi(dj)

pi(r)

)+

, tsipi(dj)−Ri

pi(dj)

pi(r)

}

+ (Ri − tsipi(dj))
+

(

1−
pr(di)

pr(di, dj)

)

, (169)

where (169) follows frompi(djr) − pi(dj) − pi(r) =
−pi(dj , r). We now consider two cases. Case 1:pi(dj) ≥
pi(r). In this case, we can rewrite (169) as follows.

(169) =Ri

pi(r)

pi(dj)
+Ri

(

1−
pi(r)

pi(dj)

)

+ 0

+ (Ri − tsipi(dj))
+

(

1−
pr(di)

pr(di, dj)

)

≥Ri − (Ri − tsipi(dj))
+ pr(di)

pr(di, dj)
. (170)

Case 2:pi(dj) < pi(r). In this case, we can rewrite (169) as
follows.

(169) =Ri

pi(dj)

pi(r)
+ 0

+min

{

Ri

(

1−
pi(dj)

pi(r)

)

, tsipi(dj)−Ri

pi(dj)

pi(r)

}

+ (Ri − tsipi(dj))
+(1−

pr(di)

pr(di, dj)
)

=min {Ri, tsipi(dj)}

+ (Ri − tsipi(dj))
+

(

1−
pr(di)

pr(di, dj)

)

=Ri − (Ri − tsipi(dj))
+ pr(di)

pr(di, dj)
, (171)

where (171) follows from the equalitymin{x, y}+(x−y)+ =
x for any real valuedx, y. Plugging (171) and (170) into (169),
we thus see that the LHS of (60) is no larger than the RHS of
(60) with the assignment. Hence the assignment satisfies (60).
We now consider (61) and notice that

pr(di)(ω
i
r,N + ωi

r,C) = Ri

which satisfies (61).
The above proof shows that the proposed assignment satis-

fies (14), (15), (54) to (61).
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