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Abstract—This paper characterizes the full capacity region of
the COPE principle for 2-flow wireless butterfly networks with
broadcast packet erasure channels (PECs)The capacity results
in this work allow for random overhearing with arbitrary ove r-
hearing probabilities, arbitrary scheduling policies, nework-wide
channel state information (CSl) feedback after each transrission,
and potential use of non-linear network codes. An informaton-
theoretic outer bound is derived that takes into account the
delayed CSI feedback of the underlying broadcast packet esure
channels.For the achievability, this paper proposes anew class
of linear network codes, named as the Space-Based Linear
Network Coding (SBLNC), that achieves the capacity outer

bound. Further, the proposed outer and inner bounds are late Fig- 1. The illustration of (a) The COPE principle; and (b)eT$cenario of
generalized for the setting in which a transmission may be 2-hop overhearing for which one can apply opportunisticinguto enhance

heard by its 2-hop neighbor(s), the so-calle@pportunistic routing the throughput.
scenario. When allowing the possibility of opportunistic iouting,
the proposed inner and outer bounds do not always meet.

Numerical experiments, however, show that the relative gapfthe  pothd; andd, can use feedbaéko informr the overhearing
two bounds is less than 0.08% in average. The proposed boundsgias agl, andds, respectively. Then instead of transmitting
thus tightly bracket the capacity region even when combinig ¢ ketsX ;jY telv. th | de d
the COPE principle with opportunistic routing. WO pac e a_n . Separately, the re "’_‘y n_o can sen
the linear combinatiofX + Y]. Each destinatiod; can then
decode its desired packet by subtracting the overheardepack
[. INTRODUCTION from the linear combinationX + Y. In [2], it was shown

The seminal work by Lt al.in 2003 [1] shows that, linear €MPirically that the throughput improvement of the above
network coding (LNC) achieves the single-flow multicast-neCOPE principle ranges from0% to 200% in a multi-hop
work capacity. However, most flows are unicast. For thersgtti (€Stoed environmenthroughout this paper, we use the term
of multiple unicast flows, the capacity region of networkCOPE principle” to denote the above scenario that invobtes
coding (and/or LNC) remains largely unknown. In 2006, Katlf@st two sessions and periodic reception status feedbaex.
et al. proposed a new multiple-unicast LNC protocol, calle@©PE Pprinciple exploits the following two types of coding
“COPE” [2], which realizes the network coding gain by exd@in to improve the overall throughput. The first one tise"
ploiting the wireless network diversity created by overire  Side informatiofi coding gain, for which the destinatiod,
packets of other coexisting flows. Take the 5-node wirele@¥€rhears the transmission from [3], [4]. The second one
butterfly network in Fig. 1(a) for example. Suppose sourds ‘the feedback coding gain in broadcast chanfiefehich
s; would like to send a packeY to destinationd; ; sources, ~follows from the unmatched reception status when relay
would like to send a packaf to d»; and they share a commonProadcasting packets @ andd,, respectively [S]-{7].
relay r. Also suppose that whesy (resp.s,) sendsX (resp. Despite its simple nature, the exact capacity region of the
Y) to r, destinationl, (resp.d;) can overhear packeft (resp. COPE principle remains an open problem even for the simplest

Y). We further assume that after the first two transmissiorfa@se of two coexisting flows. Several attempts have since bee
made to quantify some suboptimal achievable rate regions of

Manuscript received October 29, 2012; revised May 19, 2Gt8epted the COPE principle [8]-[17]. One difficulty of deriving the
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exact amount of throughput improvement is hard to quantify.
Compared with the capacity-based approaches, the resaults i
[4] proposes a queue-based approach for the general verelin
and wireless networks while considering both inter-sessio
and intra-session network coding. The proposed queueatbase
scheme explores the possible inter-session network coding
chance by tracking the side information received from the
opposite source. However, the results in [4] mainly focus on
the side information benefits and on deciding whether toyappl
inter-session or intra-session network codiggmilarly, [3]
circumvents the difficulty of feedback-based analysis by-coFig. 2. The 2-flow wireless butterfly network with broadca&ds.
sidering a special class of 2-staged coding schemes. Ajthou
the results in [3] fully quantify the benefits of message sit{l"
information [4], [5], [18]-[22] , they capture only partiglthe a

(The 2-hop overhearing probability is generally much less
n the success probability of the 1-hop direct transinissi

- ; . ; . from s; tor.) See Fig. 1(b) for illustration. [23] and [25] show
feedback benefits, which leads again to a strictly SUbOmm}ﬁat such 2-hop overhearing can also be used to significantly

achievable rate region. . the th hout by th unisti i
Recently, [6] and [7] successfully characterized the fuffnProve the througnhput by ecc.)nc-epmlfpor unistic routing
thhout relying on the COPE principle (i.e., no coding asros

capacity region of the 1-hop broadcast packet erasure ehann . . ‘

with < 3 coexisting flows. The results in [6] and [7] promp ultiple unicast flows).Throughout this paper, we will use
Y ) - . ‘OpR” to denote the scenario in whidaly can directly hear

the possibility of fully characterizing the capacity of t8®PE the transmission of; with non-zero probabilify for i — 1, 2.

o s ek oo o nloos ity A TEISSIng QUeston 15 0> Wit 15 th capacy rer
network in Fig.’ 1(a) while [6] and [7] focus on the 1_whe_n we combine both the COPE principle a_nd opportunistic
hop broadcast channel. For thwreless butterflynetwork routing. To thaF end, the propc_)se(_j outgr and inner _bo_unds are
in Fig. 1(a), the network designer faces both geheduling Lurtr;]er g;nberallzezdrforthe sitémg( ';1 VIVh'Ch atransmlhssqgay

. e heard by its 2-hop neighbor(s). In contrast with the case
problem which node (out of the two source nodes s,, and é/vhen only the COPE principle is considered, the proposed

the relay node’) to transmit at the current time slot, and th ner and outer bounds are no lonaer tiaht after takind into
network coding problemhow to combine the heard/overheard’ u our 'ger tg S taking |
account the possibility of performing opportunistic ragti

packets and generate the network coded packets. For th%i-

hop broadcast channel considered in [6] and [7], there is glensive numerical experiments are used to quantify tipe ga
etween the two bounds. The results show that for practical

scheduling problem since there is only one base stationtend . . .
. . : . settings, the relative gap of the two bounds is less thar?9.08
base station transmits all the time. As will be seen shddha . average. The proposed bounds thus tightly bracket the

wireless butterfliynetwork, the feedback/control messages m " . h binina the COPE princiole with
propagate through the entire network and affect dynanyica apacity region even when combining the principie wi
opportunistic routing.

the scheduling and coding decisions for all three nodes,, The rest of the paper is organized as follows. Section Il

andr, which further complicates the analysis. . . .
In this paper, we first characterize the full capacity regiofr?rmUIates the problem. Section Ill describes the mainltesu

of the above COPE principle fo2-flow wireless butterfly ?f tglsﬂ baper, tlhe futl)l (t:tapf? city {\(lavglin Of_ttr:] ebCOg’E ptrlgtélgle
networks with broadcast PECEhe setting considered in this or 2-flow wireless butlerlly networks wi roadcas S

work allows for memoryless random overhearing with arbgeCt'onBlv |3tr|f?ducesNa;ew flzssd of Iéngr?meddaahe_d
trary overhearing probabilities, arbitrary schedulindigies?, pace-Based Linear Network Code ( ), and provides

o : . some examples and motivations for designing the SBLNC
network-wide channel state information (CSI) feedbackraft Ede' Section V quantifies the performance of SBLNC and

each transmission, and potential use of non-linear netwof that when f . lusivel the COPE princil
codes. An information-theoretic outer bound is derived tha o> that When Tocusing exciusively on the principie

fully takes into account the delayed CSI feedback of th ithout cc_)nsiderin_g opportunistic routing, SBLNC achisve
underlying broadcast packet erasure chanfidis paper then t € capac_lty. Section \./l reports the results of serveral emm
proposes aew class of linear network codesamed ashe ical experiments. Section VIl concludes the paper.
Space-Based Linear Network Coding (SBLNC), for which the
throughput can be quantified by solving a linear programmin
problem. We prove that the SBLNC scheme achieves t
capacity region of the COPE principle. For any positive integed/, define [M] 2 {1,---,M}.

Recently, new opportunistic routing (OpR) protocols, such 1-to-M packet erasure channel takes an inpufrom a
as the MORE protocol [23]-{25], take advantage of the, o o

The concept of 6pportunistic routing is different from the term ihtra-

Obser\_/atlon that in Flg.. 1(a) the PaCket sent by sougcegn _session random linear network coding (RLNGjor example, one way of
sometimes be heard directly by its two-hop-away destinatigealizing the OpR throughput improvement is by RLNC [23]wwer, there
are other ways of realizing the OpR benefits [26]. Also, wheamigalic
2In general, a scheduling policy exchanges control messhg®geen the feedback is not available [3], [4], [17], it is shown that eveithout direct
network nodes and then decides which node to transmit in theert time  links, one still needs to use intra-session network codinfully realize the
slot. side information benefits of the COPE principle.

Il. PROBLEM FORMULATION
Memoryless Broadcast Packet Erasure Channels



finite field GF(¢) and outputs arl/-dimensional vectoy = incorporated into the following expression Bf, _,(t):
(y1,92, ., ynm), Wherey; € {x,«} for all i € [M]. Here x

denotes the erasure symbgl.= * means that théth receiver Yoroon(t) = Xy (8) © Zsyr(t) 0 Lo ()=o)
does not receive the input We also assume that there is nGimilar notation is used for all other received signals. For
other type of noise, i.e., the receivegis eitherz or x. example,Y, _q,(t) = X,(t) 0 Za,(t) © Lis()=r} IS What

We consider onlynemoryless PECse., the erasure pattern, receives fromr in time ¢, where X,.(¢) is the packet sent
is independently and identically distributed (i.i.d.) feach py r in time ¢.
channel usage. The characteristics of a memoryless- We assume that the 3 PECs are memoryless and stationary.
M PEC can be fully described by successful reception Namely, we allow arbitrary joint distribution for the 8 catir
probabilitiesp, _, ;77 indexed by any subsét C [M]. That nates ofZ(t) but assume tha(t) is i.i.d. over the time axis
is, p,_, 7z denote the probability that a packesent from ¢ For example, the individual random variablés, 4, (t)
sources is heard by and only by théth destination for all gng Zs,—(t) may be dependent but the two random vectors
ieT. Z(t1) andZ(t2) are independent as long &s+# t.. We also
assume that the random procé&t) : vt} is independent of
the information messagé®/; and W.

For simplicity, we use bracket§]! to denote the col-

. . A
lection from time1 to ¢t. For example,[o,Z,Ys, 4,]} =

The COF_’E principle for the2-flow wireless butterfly (0(7), Z(7), Yo, 50, (1) : V7 € {1,2,....1}}. Also, for any
netw_orks with broadcast PEGs modeled as follows. We ¢ C {s1,50,7} andT C {r,dy,ds}, we define
consider a 5-node 2-hop relay network with two source-
destination pairgsi,d;) and (s2,dz) and a common relay Ysr(t) 2 {Y,_q(t): Vs € S,Vd € T}.
r interconnected by three broadcast PECs. See Fig. 2 for _ _
illustration. Specifically, source; can use a 1-to-3 broadcasf©" example, Y., 13 .14,.4,3(t) is the collection of
PEC to communicate with{d,,dy, 7} for i = 1,2, and Ysi=di (1), Yei—as (1), Yra, (1), andY;—q, (1). _
relay r can use a 1-to-2 broadcast PEC to communicate withGiven the rate vecto(R:, i), a joint scheduling and
{dy,d>}. To accommodate the discussion of opportunistRe€twork coding (NC) scheme is defined by scheduling
routing, we allows; to directly communicate withi;, see decision functions
Fig. 2. When oppprtumsnc r_outmg is not permltteq (a_ls ia th Vi € [n], o(t) = fa,t([Z]ifl), (1)
case when focusing exclusively on the COPE principle), we
simply choose the PEC channel success probabilities. 3n encoding functions at;, so, andr, respectively: For all
such that the probability that; can hear the transmission fromt € [n]
s; is zero.

B. The COPE Principle fo2-Flow Wireless Butterfly Net-
works with Broadcast PECs

We assume slotted transmission. Within an overall time Xai(t) = foit (Wi, [2117), ji € {1.2}, (2)
budget ofn time slots, source; would like to conveynR; Xo(t) = fra([Yisi o013 Zl1T ), 3)
A o
packetsW; = (Wi1,---,Wing;) to destinationd; for all - 5,49 decoding functions at; andds, respectively:
i € {1,2} whereR; is the rate for flowi. For all i € {1, 2}, .
j € [nRy], the information packe#V; ; is assumed to be Wi = fa,([Ysi,00ry—ain Z1), Vi€ {1,2}. (4)

independently and uniformly randomly distributed 0@f(q). By (1), we allow o (t), the scheduling decision at time

For any timet, we use an 8-dimensionghannel status . . .
. to be a function of the network-wide reception status vector
vector Z(t) to represent the channel reception status of the . . g . X
. ) béfore timet. By (2), the encoding decision af is a function
entire network: ) . .
depending on the information messages and past channel
Z(t) = (Zg,—a, (), Zoy sy (£), Zoy (), Zsy—a, (1), status. Encoding at depends on what received in the
7 ), Z ), Z ), Z ) € {x, 1}8 past and the past channel status vector, see (3). In the end,
s2dz2 (1)) sz t)y Ar—di\B)s Sr—rds ’ d; decodesW; based on whatl; has received and the past

where %" and “1” represent erasure and successful receﬁhannel status of the entire netwtrkVe allow the encoding

tion, respectively. For example, when transmits a packet and decoding functiong, ;, fr:, and f4, to be linear or
X,, (t) € GF(q) in time t, relayr receivesY,, _,,.(t) = X,, (t) honlinear.

if Z, . (t) =1 and receives;, . (t) = x if Zy, . (t) = *. This setting models the scenario in which there is a dedi-
For simplicity, we useY;,_,,(t) = X, (t) o Zs,,(t) as cated, error-free, low-rate control channel that can braat
shorthand. the previous network channel statédgt — 1) causally to all

In this work, we consider the node-exclusive interferend®twork nodes. The total amount of control information is
model. That is, we allow only one node to be scheduled i larger thans bits per time slot, which |s4chh smaller
each time slot. The scheduling decision at timis denoted than the actual payload of each packet10® bits. As a
by o(¢), which takes value in the sét1, so,7}. For example, "esult, the perfect feedback channel could be implemenyed b
o(t) = s; means that node, is scheduled for time slat For _ - _ _ i

Since the scheduling decision(t) is a function of [Z];" ", all the

convenience, when;, is not scheduled at-time W_e_simply encoding functions in (2) and (3), and the decoding funetiam (4) also
setYs, . (t) = x. As a result, the scheduling decision can bieow implicitly the scheduling decision (t).



piggybacking on the data packet3he scheduling decision
o(t) can be computed centrally (by a central controller) or

TABLE |

THE COMPARISONS TO THE EXISTING WORK3]

Features in [3]

Features in this work

distributively by each individual node since we allow aldes

to have the knowledge of the reception status of the ent
network. This work mainly focuses on the theoretical capaci
analysis of the feedback-enabled butterfly networks. Herece
omit the discussion of any practical implementation issu

I"%etting

(1) Allow only sequential
scheduling,

(2) Allow only batch feed-
back,

(3) Arbitrary number of

(1) Allow dynamic schedul-
ing,

(2) Allow per-packet feed-
back,

like buffer management and time synchronization, the fatte /"¢ outer

(3) 2 flows.
N flows.
Side-information-based in] Full feedback and schedul
bound dex coding analysis. ing analysis.

I

of which is critical when implementing the scheduls(t).

(1) Sequential scheduling,
(2) Linear coding functions.

(1) Sequential scheduling,
(2) Linear coding functions.

The inner
Definition 1: Fix the distribution ofZ(¢) and finite field | bound
GF(q). A rate vector(R;, Ry) is achievable if for any > 0, Contribution

there exists a joint scheduling and NC scheme with suffigien

Suboptimal  achievability
scheme for an arbitrary

number of flows.

Exact 2-flow capacity re-
gion of the COPE principle
with per packet scheduling

largen such that

Prob(W; # W, .
vz‘Iél{al);} rob( 7 )<e

in {dy,ds,r di,ds,7}. The functionp,(-) outputs the prob-

The capacity region is defined as the closure of all achieva@Pility that the reception event ompatibleto the specified

rate vector§ Ry, R»).
Remark: In (1), the scheduling decisiom(¢) does not
depend on the information messadds;, which means that

Psy (dQF) - pslﬁd2m + Ps1—dida7

collection of {dy,ds,r,dy,d2,7}. For example,

®)

we prohibit the use of timing channels [27], [28]. Even whel$ the probability that the input of the,-PEC is successfully
we allow the usage of timing channels, we conjecture thégceived byd, but not byr. Herein,d, is adon't-carereceiver
the overall capacity improvement with the timing channénd ps, (d27) thus sums two joint probabilities togethet, (
techniques is negligible. A heuristic argument is that ea¢fceives it or not) as described in (5). Another example
successful packet transmission gives,(¢) bits of informa- S Pr(d2) = Pr—dids + P,_g;4,» Which is the probability
tion while the timing information (to transmit or not) givesthat a packet sent by is heard byd,. To slightly abuse
roughly 1 bit of information. When focusing on sufficientlythe notation, we further allow,(-) to take multiple input
large GF(q), additional gain of timing information is thusarguments separated by the comma sign With this new
likely to be absorbed in our timing-information-free cajpac notation,ps(-) then represents the probability that the reception
characterization. In our setting, is the only node that can €ventis compatible tat leastone of the input arguments. For

mix packets from two different data flows. Further relaxatioexample,
such thats; and sy can hear each other and perform coding
accordingly is beyond the scope of this work.

C. A Useful Notation

Psy (dld_Qa ’f‘)

That is, ps,(dida,r)

= pS]ﬁd]E +p81—>d1d72’r +p81—>d1d27‘

+p51*>d_1d27’ +p51*>d1d27"

represents

the probability th

at

(Zsi—dys Zsy—das Zsi—r) €quals one of the following 5
In our network model, there are 3 broadcast PECs associajedtors (1,%,%), (1,%,1), (1,1,1), (,1,1), and (x,%,1).
with s1, s, andr, respectively. We sometimesall those Note that these 5 vectors are compatible to eithek or r or
PECs thes;-PEC,i = 1,2, and ther-PEC. Since only one both. Another example of thig,(-) notation isp,, (d1, da, ),
node can be scheduled in each time slot, we can assu@tich represents the probability that a packet sentsby
that the reception events of each PEC are independent frgnreceived byat leastone of the three nodes,;, d», and

that of the other PECs. As a result, the distribution of the In the following context, we slightly abuse the notation
network-wide channel status vecté(t) can be described by pi") 4 ps. () for i = 1,2 when there is no ambiguity.

the probabilitiesp, ;7 for all i € {1,2} and for
all 7 C {r,dy,ds}, andeUm for all U C {dy,ds2}.
Totally there are8 + 8 + 4 = 20 parameters. By allowing
some of the coordinates @t) to be correlatedi.e., spatially
correlated as the correlation is between coordinates, vert o

tocol

the time axis)our setting can also model the scenario in whicRapPer with the existing message-side-information-bassalts

destinationsi; andd, are situated in the same physical nodB] and the practical COPE-based schemes.

and thus have perfectly correlated channel success events. 1here are three major differences between the setting of thi
For notational simplicity, we also define the following tare WOrk and in [3]. First, the setting of the outer bound in [3]

probability functions p,,(-) , ¢ = 1,2, and p.(-), one for

each of the PECs. The input argument of each function Scheduling policy, which schedules nodes s,, andr in

(s being one of{s, s2,r}) is a collection of the elements @ Strict order. Namelys; transmits first. Afters; stops, sz
can begin to transmit. Only after, stops transmission can

5Some pipelining may be necessary to mitigate the propagatiay of
the feedback control messages.

D. Comparison to Existing Works and Practical COPE Pro-

In this subsection, we compare the network model of this

is restricted to considering only the deterministic sedjaén

r start its own transmission. For comparison, the setting of
our outer bound derivation allows for dynamically choosing



the scheduler(t) for each time slot depending on the past e
reception statusZ)’~*, which includes any storé&-forward-

based scheduling policies as special cases, such as the b ’
pressure and the maximal weighted matching schemes (
[25] for references). Our outer bound result thus quanttfies

best possible achievable rates with jointly designed salivegl @ (b)
and coding policies.

i i Fig. 3. The illustration of the two—way relay channel for ahinodea
Secondly’ n [3] no feedback is allowed whem and s, would like to sendX to nodeb and b would like to sendY” to a. In (b),

transmit. More specific_al_ly, suppose j_omtl%’l and s; take the common relay can send a linear combinafih+ Y] that benefits both
ts, + ts, time slots to finish transmission. Then only in thelestinations simultaneously.

beginning of time(t,, + t;, + 1) are we allowed to send the

channel statu@]i”ﬂs2 to r. No further feedback is allowed . ) .
until time n, the end of overall transmission. For comparisofrobabilities:p;(d;) = 1 for all i  j, then the capacity region
our setting allows constantly broadcasting network-widars  Of the setting in Section 1I-B is also the capacity regionf t
nel statugZ]’ ' to sy, so, andr, as discussed in Section |I-B.Wireless erasure 2-way relay channel in Fig. 3.

This setting thus includes the Automatic Repeat reQuest

(ARQ) mechanism as a special case [3], [6]. Broadcasting 1. M AIN RESULTS

the control informationZ]; ™" to all the network nodes also |n this section, we provide our results based on two cases:
eliminates the need of estimating/learning the receptiatus The case of considering only the COPE principle and the case
of the neighbors. Thirdly, [3] focuses on an arbitrary numbgf combining COPE with the opportunistic routing technique
of coexisting flows while this work focuses exclusively o thThe main difference is that for the former setting, we assume
2-flow scenario. that no transmission can be heard by its 2-hop neighbors, i.e

In addition to different settings, the outer bound analysis ;) = 0 for all i = 1,2. For the latter setting, we allow
of [3] focuses on the side-information-based index-codingi(di) to be non-zero.
like anaIySiS, while this work focuses on full feedback and For the case of using exc|usive|y the COPE princip|e’ the
scheduling analysis. Although both the achievability ssBe fy|| capacity region has been characterized in SectiorAlll-
in [3] and in this work are based on linear network coding witiyhile for the case of COPE plus opportunistic routing, a

sequential scheduling, the latter has to take into accdunt bajr of outer and inner bounds are provided in Sections 111-B
per-slot causal feedback in the LNC design. The differencggd |11-C, respectively.

between [3] and this work are summarized in Table I.

We also compare the analytical results in this work to th o ,
practical COPE implementation in [2]. The COPE protocdl” Thg COPE-Principle 2-Flow Wireless Butterfly Network
in [2] contains three major components: (i) Opportunistié:‘ijpaCIty
listening: Each destination is in a promiscuous monitoring Proposition 1: Consider any2-flow wireless butterfly net-
mode and stores all the overheard packets; (ii) Opporianist/ork with broadcast PECwith p;(d;) = 0 for all i = 1,2
coding: The relay node decides which packets to be cod@@d consider any finite fiel@F(q). The rate pair(Ri, I2;) is
together opportunistically, based on the overhearingepadt in the capacity region if and only if there exist three non-
of its neighbors; and (iii) Learning the states of the neigylsb negative time sharing parameters, t;, and¢, such that
Although in the practical COPE implementation reception rd0intly (221, R2) and (¢, ,ts,,t) satisfy
ports are periodically sent to advertise the overhearitig pes bt ot <1 6)

: . s1 So r >
of the next-hop neighbors of the relay, the relay node still

needs to extrapolate the overhearing status of its neighbor Vi€ {1,2}, Ry < ts,pi(r) 7
since there is always a time lag due to the infrequent pariodi Ry (R2 = ts,p2(di))*
<t (8)
feedback. pr(dr) pr(di,d2)
Our setting closely captures the opportunistic listenioge (Ry —tg,p1(d2))* Ry
ponent of COPE by modeling the wireless packet transmission pr(dy, do) + pr(d2) <ty ©)

as a random broadcast PEC. In (1)-(3), the channel status

vector is used to make the coding and scheduling decisiomgiere(-)™ £ max(0, -) is the projection to non-negative reals.
which captures the opportunistic coding component of COPE.The proof of the achievability part of Proposition 1 is
In COPE, the reception reports are broadcast periodicalfglegated to Section V-B and the converse proof is relegated
which is captured by the control informati¢#@]’~*. In sum, to Appendix A.

our capacity region is a superset of any achievable rates offhe intuition behind (6) to (9) is as follows. (6) is a time
any COPE-principle-based schemes [2] when focusing on thlgaring bound, which follows from the total time budget lgein
2-flow wireless butterfly networks with broadcast PE@s n and the node-exclusive interference model.

Fig. 1(a) and the node exclusive interference model. Inequality (7) is a simple cut-set bound. That is, the messag
Remark: The setting in Section 1I-B also includes thé¥d; has to be sent froms; to the common relayr first.
wireless erasure 2-way relay channel model (Fig. 3(a) aitierefore, the rate is upper bounded by the link capacityfro

3(b)) as a special case. Specifically, if we set the overhgaris; to r.



Inequalities (8) and (9) combine the capacity results dne {0, 1,2,3,4}, 4 non-negative vanableskN, wy ¢ fork =
message-side-information [3] and the capacity resultsham< 1, 2, such that jointly the 17 variablesind (Rl,RQ) satisfy
nel output feedback for broadcast channels [6], [7]. A venjfue following four groups of inequalities:
heuristic, not rigorous explanation of (8) is as foIIowsR— Group 1 has 5 inequalitiespamed asthe time budget
represents how many time slots it takes to send all the flonedbnstraints
packets tad; as if there is no flow-2t,,p2(d;) characterizes

how much flow-2 information can be “overheard” dy, and Vi=1,2, wa <t (14)
(Ry — ts,p2(dy)) " thus represents how much flow-2 informa-
tion that has not been heard ky but still needs to be sent Vi=1,2, wly+w?y+wic<t, (15)

to do. Since those flow-2 packets cannot be “coded” together
with any flow-1 packets, they need to be sent separately by
themselves in addition to th ) time slots used to send Group 2 hasl2 inequalities,named aghe packet conser-
Ro— tszpz(dl)) vation laws at the source node€onsider anyi,j € {1,2}

flow-1 packets. In general, it tak ﬂ for those satisfyingi # j. For each(s, j) pair (out of the two choices
packets to arrive atl,. However, [6] shows that the use of( 2) and (2, 1)), we have the following 6 inequalities.

Ro— t52p2(d1))

toy +toy +1, <1 (16)

feedback can further reduce the time . We
then have (8) since the total transmlssmn(ﬁlrhdé)of relaig wg pi(di’djvr) < R; (17)
nt, time slots. (9) is symmetric to (8). wi pi(di,r) < Wl pl( dir) (18)
Ws pZ(dzad ) < Z( i) (19)

B. Capacity Outer Bound for COPE plus OpR Wsipz( i) < w? pi(d;dir) — w;pi(di,r) (20)

The capacity results in Proposition 1 can be generalized 2 pi(di, dj) < w pi(rdidy) — wiipi(dj,dir) (21)
as an outer bound for the case when the destinatjomay
overhear directl issi f, i i(d; wsbpz( i) < wh,pildjrds)

y the transmission &f, i.e., p;(d;) > 0. )

Proposition 2: Consider any2-flow wireless butterfly net- + w, (Pz( i)+ pi(r) — pi(did;r))

work with broadcast PECB Fig. 2 with arbitrary channel + w? pi(rd;) + w3 pi(d;d;) (22)

characteristics and consider any finite figlé(¢). If a rate
vector (R1, Ry) is achievable, there exist three non-negative
scalarsty,, ts,, andt, satisfying

Group 3 has 4 inequalitiesamed aghe packet conserva-
tion laws at the relay nodeFor each(i, j) pair with i #£ j,
we have the following 2 inequalities.

b, +ts, +1, <1 (10)
Vi e {1,2}, Rif ts,pi(di,T) ) (11) wiNpr(diy dj) < Wi pi(rdidy) — wg,pi(dy, dir)
(Rl - tségl)(dl)) + (RQ - tszflh (313 d2)) S tr (12) . — wglpl(didj) (23)
(R pt 1(d do))t (Rpr - ()" wr.epr(di) < wipildyrd;)
Lt P, 2Tl <. (13) +wy, (pidy) + pi(r) — pi(did;r))
pT(d17 d2) pr(dQ) 2 — 3 —
. , + w? pi(rd;) + wg pi(d;d;)
This outer bound considers channel status feedback, dy- " Z.l —
namic scheduling, and possibly non-linear encoding fomst] — wy,pilds) +wipr(djdi) (24)
and is derived by entropy-based analysis. One major ctyglen Group 4 has 2 inequalitiespamed asthe decodability
of the outer bound derivation is to incorporate the effeéts @onditions Consideri = 1,2. For eachi, we have the

dynamic scheduling, which was not presented in the existifgllowing inequality.
sequential-scheme-based outer bound analysis [3]. Tarirc

vent this issue, we further analyze the time average of the 4

mutual information over all possible realizations. Theadletl (Z“ )
proof is relegated to Appendix A.

Remark:One can easily see that when the channel proba
bilities satisfyp;(d;) = 0 for all : = 1,2, the outer bound in
Proposition 2 collapses to the capacity region in Propmsiti.
Proposition 2 is thus a strict generalization of the coreiat
of Proposition 1.

+ (an,N + Wi,c) pr(di) > R; (25)

“The inner bound inequalities are based on the SBLNC
scheme constructed in Section IV. A heuristic but not rigero
explanation is as follows. The time budget constraints{14)
(16) describe the fact that each time slot can be assigned to
one of the transmitting nodes;, s, or » and the overall
normalized time budget is one. The conservation laws (17)—

C. Capacity Inner Bound for COPE plus OpR (24) correspond to the fact that to select any one of the
An inner bound for the general case pf(d;) > 0 is SBLNC policies, the correspondingpding setof the policy
described as follows. must be non-empty. The non-emptiness of the coding set can

Proposition 3: A rate vector(R;, Ry) is achievable by a
linear network code if there exist 3 non-negative variables
ts,, tr, 10 Nnon-negative variables;

6In the achieving algorithm in Section V, thevariables correspond to the
numbers of time slots that each of the sources and the relased; and the
wherei € {1,2} and w variables correspond to the numbers of time slots eachypisliased.
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be described by (17)—(24), which determine the size of thee In the end of timet, Sy, (t) C €, is the linear span
coding sets. The decodability conditions describe how many of two groups ofv(!) vectors, denoted bw(l) and

s1—da

packets need to be_ received at each destination before they Vl(\ll)r—nig' The first grOUpVS)_)dQ contains thev(
can decode the desired messages. vectors corresponding to the packets sentsbyduring

Proposition 3 will be proved by explicit construction of an time 1 to ¢ and have been received successfullyday
achievability scheme based on the SBLNC scheme described The second grouw,(\ll) .. contains thev(®) vectors
rT—a2

in the next section. The detailed proof of Proposition 3 is corresponding to the ioackets sentbyuring time 1 to

relegated to Section V-A. ¢ thatare not mixed with any other flow-2 packe®he
letter “N” in the subscript stands for Not-inter-flow-coded
IV. A SPACE-BASED LINEAR NETWORK CODE(SBLNC) transmission.
CONSTRUCTION « In the end of timet, Sy, (t) C €y is the linear span
(1) (1)
In the existing network coding scheme works (e.g. [1], [3]), of three groups ofv'™ vectors, denoted by, _,,,,

designing the encoding coefficients is always a challenging Vl(\ll,)r—>d1' andV(cl,Ldl- The first groupv(!’, , contains
task. With per-time-slot causal feedback, the sourcesug@ixc the v(!) vectors corresponding to the packets sentsby
ing the relay) can continuously track what has been received during timel to ¢ and have been received successfully by
by the destinations and the best network coding strategptmig ~ di1. The second QFOUW,(“{)T_)dI contains thev(!) vectors
evolve overtime, which further exacerbates the problem of corresponding to the packets sentsbyluring time1 to

designing the right coding coefficientin this section, we t thatare not mixed with any other flod-packets The
introduce a new class of network coding schamened ashe third groupV((:l,Ld1 contains thev(!) vectorsthat can
“Space-Based Linear Network Code (SBLNC)” schethat be decoded from the inter-flow coded packetsnt byr

significantly simplifies the design of the coding coefficent during time1 to ¢. The letter “C” in the subscript stands
The SBLNC scheme will later be used to prove the capacity for inter-flow-Coded transmission.

inner bound in Proposition 3. In sum, we useS and 7" to distinguish whether we are
focusing on flow-1 or flow-2 packets, respectively, and we use
the subscripts to describe the node of interest. One caly easi
i ] ] o _ see that these six knowledge spaces evolve over time since
We first provide some basic definitions that will be usedych node may receive more and more packets that can be
when describing an SBLNC scheme. o used to obtain/decode new information. We use the following
‘Fori = 1,2, aflow-i coding vectorv(¥ is an nRi-  eyample to illustrate the definitions . to Ty, .
dimensional row vector with each coordinate being a ScalarExample 1:ConsiderGF(3) andnR; = 3 andnRs = 2.
in GF(q). Any linear combination of the messa%e Symbolgp ot is, flow-1 contains 3 message symbidis; to W, 3 and
Wi1 10 Wi, Can thus be represented oy W where o2 contains 2 message symbdis, ; and W ». Q; and
W, is the transpose oW,. We use the superscript?)” 10 (), are thus 3-dimensional and 2-dimensional linear spaces in
emphasize that we are focusing on a flowegtor. GF(3), respectively. Consider the first four time slots- 1 to
We define theflow-i message spadey € = (GF(q))"", 4 for our discussion.
annR;-dimensional linear spacén the following, we define  when ¢ = 1, suppose that, is scheduled; an uncoded
the following 6knowledge spaces,, Sa,, Sa., T, Ta,, and  flow-1 message symbdV/, ; is transmitted; and the packet is
T4, for the 5-node relay network in Fig. 2. heard by and only by, andr. See Fig. 4(a) for illustration,
The knowledge spaces;., Sq,, Sq, are linear subspaces offor which we use the solid lines to represent tiatand r
2 and represent the knowledge about the flow-1 packetsiaive received the packet. We use the dashed line to denote
nodesr, d2, andd;, respectively. Symmetrically, the knowl-that d; does not receive the packet. When= 2, suppose
edge spaces;, Ty,, andTy, are linear subspaces 6% and thats, is scheduled; an uncoded flow-2 message syriio]
represent the knowledge about the flow-2 packets at nodesransmitted; and the packet is heard by and onlydby
r, di, anddy, respectivelyIn the following, we discuss the see Fig. 4(b). When = 3, suppose that, is scheduled; an
detailed construction o§,., S4,, andS;, and the construction yncoded flow-1 symbol¥; 3 is transmitted; and the packet
of T, to T, follows symmetrically. is heard by and only by. Whent = 4, suppose that is
« Inthe end of any time, S,.(t) C Q, is thelinear spanof ~scheduled;- sends a linear combinatiofiV; ; + 2WW; 3] of
a group ofv()) vectors, denoted ngP_W_ The group the two flow-1 packets it has received thus far; and the packet
v{),, contains thes(!) vectors sent by; during time1  [W1.1 +2Wi 5] is heard by bothl, andd,.
to t and have been received successfully-byhroughout ~ We now describe the six knowledge spacgsto Ty, in
the paper, we use the convention that the linear spantBe end oft = 4. By Figs. 4(a) and 4(d)J» has received two
an empty set is a set containing the zero vector, i.dlow-1 packetdVy ; and[W; ; +2W, 3], one froms; and one
span{0} = {0}. For example, ifr has not yet received from r. Therefore, by the end df= 4, the flow-1 knowledge

any packet froms;, then by conventior$,.(t) = {0}. space atl; becomesSy, (4) = span{(1,0,0),(1,0,2)}. Also,
neitherr nor d; has received any flow-2 packets by the end

A. Linear-Space-Based Definitions

"The construction ofly, (resp.Ty,) follows the construction ob, (resp.
Sd,)- 8When the relay- sends a linear combination of both flow-1 and -2 packets.



Wii+2Wy3

(@) (b) ) (d)

Fig. 4. The illustration of the coding procedure in Examplé\e use a solid line to represent that the correspondingvezckas successfully received the
packet and use a dotted line to represent erasure.

TABLE I r :

THE RESULTING KNOWLEDGE SPACES AT THE END OEXAMPLE 1 SUbSpacesgl( ) fori=1to L(F)' named ashe exclusion
Flow-1 Flow> spaces/setsFor each time slot, the SBLNC chooses one
Sa, (4) span{(1,0,2)} Ty, (4 {(0,0)} of the specified policies and uses it to generate the coded
Sa,(4) | span{(1,0,0),(1,0,2)} | Tu,(4) | span{(1,0)} packet. For example, say nodés scheduled for transmission
S”(4) span (17070)7(07071) T”(4) {(070)}

and we decide to choose a polity for encoding. Thens
will first choose arbitrarily a coding vectoy(® from the

(1) . .
of t = 4. Therefore T, and Ty, , the flow-2 knowledge spacessetA(r)\ (UZL:I Bz(F)>’ and then transmit a linearly encoded
atr andd;, respectively, contain only the zero element. TheacketX = v(DWT. That s, the coding vector must be in the
other knowledge space,, S,, andT,, in the end oft = 4 inclusion setA™ but not in any of the exclusion sefs|" .
can be derived similarly and they are summarized in Table Dbviously, a policy can be used/chosen only when the corre-
o _ sponding se#(M\ (Uf:l) Bl(r)) is non-empty. For notational

Tlhe ?bovle definitions also lead to the following Selféimplicity, (‘9’)9 say a policy ifeasibleif the corresponding
explanatory lemma. r L @\

Lemma 1:The two destinationg; andd, can decode the A\ ( =1 ?l ) S n.on—empty. _ _
desired message symboW, and W, respectively, if and For illustration, consider the following policy for nodg,

only if by the end of timen named asolicy I';, . When _Poli_cyFShO i_s used/chosen, we
let source node; choose arbitrarily a coding vectef®) from
Sa,(n) = and Ty, (n) = Qa. 1\ (S1 ® S2 @ S,-) and send the corresponding coded packet

For simplicity, we useS;(t) and T;(t) to denote the X5, = v(l)WlT. That |s,(lthe ;I’lC|USIOn set jg('s10) = Q,
knowledge spacé,, (t) and Ty, (¢) for i = 1,2. We also omit and the exclusion set iB; " = 51 @ S> @ .
the input argument(%)” if the time index is clear from the  Continue the example in Section IV-A for which the knowl-
context. To conclude this subsection, we introduce thetioota edge spaces are summarized in Table Il. In the beginning
of the sum space(A @ B) 2 span{v : Vv € AU B}. Notice of t = 5 (or equivalently in the end of = 4), we have
that A @ B and AU B are different. For example, suppose wel:1:0) = Q; and B'10) = 5§, @ S, & S, = {(a,0,¢) :
consider a 2-dimensional linear space WiR(3) with two Va,c € GF(q)}. As a result, if we choose Policys, o for
linear subspaces! = span{(1,0)} and B = span{(1,1)}. t =15, any coding vectors of the forrfu, b, c) with b # 0 are
Then AU B = {(0,0),(1,0),(2,0),(1,1),(2,2)} is not a inthe set;\(S,®S2®S,.). There are totally8 such vectors
linear subspace anymore, hdt® B = span{(1,0), (1,1)} = sinceGF(3) is used. Source, can then choose arbitrarily from
{(0,0),(1,0),(2,0),(1,1),(2,2),(2,1),(1,2),(0,1),(0,2)}  anyone of thas8 vectors and send = aW; 1 +bW; 2+cW1 3
is a linear subspac®y simple algebra, we have the followingin time ¢ = 5.

lemma. In the following, we definel3 policies that will be used in
Lemma 2:For any two linear subspacesand B in €, the the proof of the achievability part of Propositions 1 and 3.
following equality always holds. There are 5 policies governing the coding operations at
dim(A ® B) = dim(A) + dim(B) — dim(A N B). sourcesi, which arenamed asPolicy I'y, ; for j = 0 to 4.

When PolicyT',, ; is used,s; sendsX,, = v»DWT for some
v(1), That is, sources; only mixes/encodes flow-1 packets

B. An Instance of The SBLNC Schemes together.In the following, we describe how to choose the
In the following, we will introduce a new class of netvectorv(®) for each individual policy.

work codesnamed ashe Space-Based Linear Network Cod
(SBLNC). An SBLNC scheme contains a finite number o
policies Each policyl’ contains a linear subspagé’’), named

as the inclusion space/setand a finite collection of linear n\(S51© 5@ Sy). (26)

Policy Ty, o: Choosev") arbitrarily from



§ Policy T, 1: Choosev") arbitrarily from Continue from Example 1 in Section IV-A with the knowl-
edge spaces in the endiof= 4 described in Table Il. Consider

(S2 @ 5\ ((S1© 57) U (51 52)) - (27) Policy I's, 5 as defined in (29). Sincé;N S, = S, in the end
§ Policy T's, »: Choosev(!) arbitrarily from of t =4, we haves,\ (51 ® (52N S;)) € S \(S2NS,) =0
being an empty set. Thus, in contrast with the fact that Rolic
S2\(S1® S). (28) 1, , is feasible in the beginning of = 5 as shown in our
§ Policy T',. 5. Choosev(V) arbitrarily from previous discussion, Polidys, 5 is infeasible in the beginning
51,3*
b of t =5.
S\ (S1@ (S2nSy)). (29) One can repeat the above analysis and verify that out of all

13 policies, only4 of them are feasible in the beginning of

. _ . L
§ Policy I, .4: Choosev") arbitrarily from t = 5, which arel’, o, T's, 4, [s,.0, andT,. 3. The network

(S2 N S, )\Sh. (30) code designer can thus apply one of the four policies=n5.
Suppose the network designer chooses poligy, for
Policy I's, ;, 7 = 0 to 4 are symmetric versions dolicy ¢ = 5 and sends a flow-1 coded packet with the cod-
I's, ; that concern source, and mix/encode flow-2 packetsing vector beingv(!) = (2,1,0). Also suppose that the

instead. More explicitly, source, sendsX,, = v(¥WJ packet is received by but by neitherd; nor d. Then in
for which the coding vectox(® is chosen according to thethe end of timet — 5, the knowledge spacé, evolves

following specification. o from the originalspan{(1,0,0),(0,0,1)} to the new space
§ Policy Iy, o: Choosev(®) arbitrarily from span{(1,0,0), (0,0,1),(2,1,0)}. We now notice that the Pol-
icy I's, 0 is no longer feasible since with the neW,,
AN ST T). B e exclusion space of, o becomesS; @ So © S, =
§ Policy I, 1: Choosev(®) arbitrarily from span{(1,0,0),(0,0,1),(2,1,0)} and 24\ (51 © S2 & S;) is
now empty. On the other hand, the nely also lets some
(Mo TN\ (T2 T) U(h ©T2)). (32) previously infeasible policies become feasible. For exam-
§ Policy T, »: Choosev(® arbitrarily from ple, consider PolicyTs, 5. With the new S,, we have
S = span{(1,0,0),(0,0,1),(2,1,0)} andS; & (S2 N S,.) =
\(Tx & T). (33) span{(1,0,0),(1,0,2)}. Therefore,S,\ (S; @ (S2 N S,)) #

(. PolicyT's, 5 is thus feasible and can be used for transmission

i : ©)) itrari . C T X : .
§ Policy I's, 3. Choosev'™ arbitrarily from in t = 6. With similar analysis, one can verify that in the

T\ (T ® (T NT,)). (34) beginning oft = 6, we have5 feasible policiesT's, 3, I's, 4,
Is,.0, I'r1, andl', 5. This example shows that due to the evo-
§ Policy I's, 4: Choosev(® arbitrarily from lution of the knowledge spaces over time, each coding policy
(Ty N T\ T (35) may become feasible or infeasible depending on the regeptio

status until the present. Focusing on coding policies frees
There are 3 policie$, ;, j = 1,2, 3, governing the coding from designing the value of each coordinate of the coding
operations at the relay, which are described as follows.  vectorv(!) (resp.v(?). Instead, we only need to choosé"
§ Policy T,.;: The relayr chooses arbitrarily a vector®)  (resp.v(?)) from one of the policies that are currently feasible,
from which significantly simplifies the corresponding analysis.

S\ ((Sr N S2) & Sh) (36)

and sends an intra-flow-coded flow-1 packét = v(l)WlT.
§ Policy T',.o: The relayr chooses arbitrarily a vector(?)
from

C. The Intuition Behind the Proposed SBLNC Policies

In Section V, we will prove that the proposed SBLNC
scheme can achieve the capacity in Proposition 1 and the inne
bound in Proposition 3 when we carefully decide which of
T\(T-NnTh) & T3) (37) the 13 policies to apply for each time instant. We conclude
Section IV by discussing the intuition behind the proposad 1
policies. We first consider the relay policiEs; toI'; 3 due to
its conceptual simplicity. We then discuss the source adic
FSi-,O to Fsi74.

1) The Relay Policies:We first notice that for all relay
policiesT’, 1, I'; 2, andI’, 3, the corresponding inclusion space

(S2 N S:)\S1, (38) s either a subspace &f. or a subspace df;.. The reason is
that for noder to send a coded packet, the encoded packet
otherwise choose") = 0, a zero vector. If7: N T:)\T2 IS must already be ir§, or T}, the knowledge spaces of As
non-empty, choose(*) arbitrarily from a result, the transmitted vectef®) (or v(2)) must be drawn
(T2 N T\Ts, (39) from_ a subset of5,. (or T;.).
It is clear thata good network code should try to serve two
otherwise choose(? = 0. flows simultaneously in order to maximize the through\e.

and sends an intra-flow-coded flow-2 packgt= v(2 W7 .

§ Policy I',. 5 is for the relay node- to send an interflow-
coded packet(, = v(AWWT + v@WT, with v() andv(®
chosen as follows: IS, N'S,.)\S; is non-empty, choose(")
arbitrarily from
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now focus on Policyl, 3. First notice that by (39)y(? is With the above three goals in mind, we now discuss the
drawn from(T; N T,.). This means that the value of2 W3 intuition of each source policy. Policy,, ;, 7 = 0,1,2, are

is already known by destinatiafy sincev® is in the flow-2 designed to maximizdim(S; @ S,.) sinceS; @ S, is a subset
knowledge spacd at d;. Hence whenevedl; receives the of the exclusion sets for these policies. Therefore, eviemg t
packetX, (1) = v(WWT +v(2WT | it can extract its desired one of d; andr receives a packet encoded by Policy, ;,
information and recovexw™ W7 by substractingv®®W3. j =0,1,2, the termdim(S; @ S,.) will increase by one. Policy
We then note that Polic¥, 3 ensures that whenever (38) is[', ;, 7 = 0to 3, are designed to maximidém(S:&(S2NS,))

not empty the selected) is not in Sy, the flow-1 knowledge sinceS; @ (S2 N S,.) is a subset of the exclusion sets for all
space atl;. Hence upon the reception of such a coded packé#tese policies. Policie¥s, ;, j = 0 to 4, are designed to
dim(S1) will increase by one. By Lemma 1 destinatiadh maximizedim(S;) sinceS; is a subset of the exclusion sets
is one step closer to fully decode its desired mess@ge for all these policies. As one can see that the fiygolicies
Symmetrically, by (38)d, has already known the value ofaim at simultaneously achieving the three goals.

vAOWT and thusd, can compute the value o#(2WJ To explain the heuristics why we choose the specific inclu-
upon the reception of the inter-flow coded packet generatsion and exclusion sets for these policies, we use Palicy

by Policy I, 5. Sincev(® is not in Ty, do can decode one as an example. To that end, we notice that by Lemma 2, we
extra linear combination of flow-2 packets. Polity s thus have
serves bothi; andd, simultaneously.

Although PolicyI', 5 can serve both destinations simulta- dim(S1 & (52N 5r))

neously, there is a limit on how much information can be sent ~ =dim(S51) +dim(S2 N S;) — dim(S1 N S2 N S;)
by I', 5. That is, if we use only Policy’, 3 and nothing else, =dim(S;) + dim(S2) + dim(S,.) — dim(S2 & S,.)
the information that can be received hly through Policy —dim(S1 NS> N S,). (40)

I'; 3 is at most(S, N S3) since all v are drawn from

(S, N Sy). The largest flow-1 knowledge space thitcan Since Sz & S, is the inclusion set for Policy's, 1; and Sy,

possibly attain is thus; & (S, NS,), whereS, represents the S2, and S, are subsets of the exclusion sets for Polity 1,

flow-1 information thatd, has accumulated by overhearingvery time any one of théd,, ds, r} nodes receives a policy-

the transmission directly from its two-hop neighbar, and I's,,1 packet, at least one of the three terdis (S1), dim(Ss2),

(S, N S,) represents the information that can be conveyé@nddim(S,) will increase and the terrdim(S> & S,.) remains

by T',.3. Note that it is possible tha$, is not a subspace unchanged. Assuming thaim(S1152MS,) does not change

of S1 & (S, N S3), which means that relay still possesses too mucH, Policy T's, ; increaseslim(S; & (S2 N S,)) in a

some flow-1 information that cannot be conveyedtdy T, ; Vvery efficient way since all three positive terms in (40) can

alone.I', ; is devised to address this problem. That is,xlld have a good chance of increase while one negative term in

vector chosen from (36) is (i) from the knowledge space,of (40) remains constant and the other negative term in (4@) onl

and (i) not in Sy @ (S, N S2), the largest flow-1 knowledge increases slightly.

space thatl; can attain when using exclusively Polidy. 3. To summarize, the proposed source-1 policies aim at simul-

Suchv(®) vector thus represents an information packet that {@neously maximizingim(S; @ S..), dim(S1 @ (S2NS;)), and

complementary to the inter-flow-coded PoliEy ;. dim(S1). The specific design of the inclusion and exclusions
2) The Source PoliciesHere without loss of generality we Sets is to maximize the above three different terms in an

focus on source-1 policies. efficient way. Detailed description about how the three g&rm
Before explaining the source policies (26)—(30), we firdfcrease is relegated to the throughput analysis in Sewtian

discuss several network coding goals for the transmissfon o

s1. The highest priority is to enlarg®, and S, such that V. CAPACITY APPROACHINGCODING SCHEME

(51 ® S2) = U at the end of the source-1 transmission |n this section, we will first prove the capacity inner bound
since sy — r — di ands; — dy are the only two proposition 3for the 2-flow wireless butterfly networketting

routes froms; to d;. By the cut-set bound, we must achievgonsidering both the COPE principle and opportunistic rout
(51 @ S;) = O at the end of the source-1 transmissiofhg. We will then prove that the inner bound coincides with the

otherwised; cannot decode the complete flow-1 messagesapacity characterization in Propositionwhen considering
Another priority is to maximizedim(S; @ (S2 N S;)). AS  only the COPE principle.

discussed in the previous paragraph, the largest amount of
information that can be transmitted dg through inter-session
coded messages i8im(S, & (S2 N S;)). Therefore, it is - .
important to maximize the inter-session coding benefits by We prove Proposition 3 by properly scheduling the 13
maximizingdim(S; @ (S» N S,)) during the transmission of Policies described in Section IV-B.

s1 S0 that the relay can harvest the largest amount of inter- Consider anyt,,, ty,, t,, wi, i € {12} and k €
session coding benefits during Poligy,;. Another priority {0:1,2,3,4}, wry, andwyic, k = 1,2, satisfying the inequali-
is to ensure that destinatiah overhears directly frons, as {ies (14) to (25) in Proposition 3. For any> 0, we can always
much information as possible since those information heaf@nstruct another set ¢f andw’ variables such that the new

dir.eC'Fly by C_ll does not ne_:e(_:i t(? be sent by relayanymore. 9dim(S1 N S2 N S,.) usually changes only slightly since it is relatively
This is equivalent to maximizéim(St). difficult for all nodesto acquire the same common information.

A. Achieving The Inner Bound of Proposition 3
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t" andw’ variables satisfy (14) to (24) with strict inequalitywhere the right-hand side of (42) quantifies the expected
and satisfy the following inequality number of packets received k¥ during PoliciesT's, ¢ to
4 Is, .4, 'y 1, and the firsmw},yc time slots ofl’; 5. (43) follows
k i i from (41). By the law of large numbedjm(S;) > n(R; —¢)
) i(d;) + N T W (d;) > R; — 41 ) .- . .
(kz_o w&) pi(di) (w N ’C) pr(di) ¢ (1) with close-to-one probability when is sufficiently large. The

above inequality ensures thét can decode.(R; — €) of the

instead of (25). Based on the E]lcbOVg observa;tion, we Wilhw-1 information packets at the end of the SBLNC scheme.
assume that the given,, ts,, t,, wy,, w;n, andw, ¢ satisfy gy symmetry,d, can also decode(Rs — ¢) of the flow-

(14) to (24) and (41) with strict inequalityn the following, 2 packetsW, in the end of timet = n. What remains to

we will construct an SBLNC solution such that the schemg, shown is to prove that (i) and (iii) hold with close-to-one
“properly terminates” within the allocated time slots with probability.

close-to-one pro_bab|I|ty and after the SBLNC s_cheme_ stops,NeXt we prove (i) and (i) by the first order analysis that
eachd; has received at least(R; — ¢) number of its desired . . ) .
. : assumes sufficiently large. We first consider Policyl’y, o.
information packets. For any timet, T’ is a feasible policy if (26) is non
. 1 51.,0 -

We construct the SBLNC scheme as follows. We flrsé[mpty.Suppose we have > 2, then (26) being non-empty is
schedule the;-policies sequentially front'y, o to I's, 4. Each equivalent to the following condition
policy I'y, i lasts forn - w§1 time slots. After finishingl's, '
we move on to Policy's, x41 until finishing all 5s;-policies. _ _
After finishing thes; -policies, we move on to the,-policies. dim(€21) — dim(21 N (S1 & S2 © Sr))
Again, we choose thes-policies sequentially fron’y, o to =dim(©;) —dim(S; ® S & S,) > 0. (44)
I's, 4 and each policy lasts fm-w§2 time slots. After thess-
policies, we schedule thepolicies sequentially front',. ; to
I, 3. PoliciesT,.; andT'» last forn - w, \ andn - w? time
slots, respectively. Policy’,. s lasts forn - max{w, c,w? ¢}
time slots. Feedback is critical for the SBLNC scheme as it
is used to decide the evolution of the knowledge spaties A\B#0 < |Al—|B|>0
Sa,..., Ty, which in turn decides the sets in (26)—(39). & glim(A) _ gdim(B) 5 () & dim(A) — dim(B) > 0.

To prove the correctness of the above construction, we need
to show that th_e fol!owmg_ two statements hoIc_:I V.V'th cIoseWe then note thatim(2;) = nR; is a constant and does
to-one probability: (i) During each time slot, it is always

. - . not change over time. Also note thdim(S; @ Sa @ S,)
(2) ) X , ; T
possible to construct the desired coding vectdfs (or v(). increases monotonically over time since a node accumulates

;I;]hat 1S, V\{e n.evfar S’Ch?dutl.e m?»n mfez&blz poitlsy throu?holg?;]tore “knowledge” over time. As a result, if we can prove that
€ operation, (i estinalion; can 0eco &R —€) O 44) holds in the end of the duration of (executing) Policy
the desired information packets when the scheme termifate . .
" . 1,0, then throughout the entire duration Bf, o, we can
In addition to the above two statements, we will also prove . (1)
. ) 1 DN always find somes'*) belong to (26).
that (iii) during the firstn - w, - (resp.n - w; ) time slots of To that end. we notice that when we cho as our
) , ) , W i w W dse u
schedulingl’, 3, the computed flow-1 vectart™) (resp. flow-2 coding policy, the coding vector®) is chosen froom (26)
vectorv(?)) is not zero with close-to-one probability. oding f Y 9 . '
! . . : . Sincev(!) does not belong to the exclusion spaies So & S,
We first prove (ii) while assuming both (i) and (ii) aredim(S @ S.@.S,.) increases by one if and only if at least one of
true. We notice that all the exclusion spaces of polidigs, Loz

to I's, 4, andl,.; containS; as a subset. As a result, all thos d1, dz, andr receives the transmitted packe, = vIOWT,
pacligts’ carryréome new flow-1 information that has not y‘%{so note that in the beginning of Polidy, o, dim(S) & 5> ®
) = 0. As a result, in the end of the duration Bf, o, we

been received byi;. If d; receives any of those packets, the’
) . - o . ave

dimension ofS; will increase by one. Similarly, during the

first nw} . time slots of Policyl",. 5, the computed-() vector

The reason is as follows. Let us temporarily defite= Q;
andB = Q, N (S1 ® S2 @ S,). Then we have

does not belong t&;, see (38). As a result, i, receives any E{dim(S1 ® S @ S,)}

of those packets, the dimension 8f will increase by one. =0+n-wd -pi(di,da,7) (45)

From the above reasoning, the expected valudi®f S, ) in Ry — dim(Q 16

the end of the SBLNC scheme must satisfy =i im(4), (46)
4 s

i B & where (45) follows from quantifying the expected number of
E{dim(51)} =p1(d1) (; "%1) time slots (out of totallyw?, time slots) in which at least one

=0

J N L 42 of dy, da, andr receives it. (46) follows from (17).
+pr(d) (nwyn + nwyc) (42) By the law of large numbers, (46) implies that (44) holds in
>n(Ry — ) (43) ' the end of the duration df, o with close-to-one probability.
0 As a result, with close-to-one probability Polity, o remains
Since we focus on thé andw variables satisfying inequality (14)—(25) i ; ; ; 0 4
we can use inequality (14)—(16) to show that we can finishstrassion within feasible during the aSSIQ.ned duratlonmfws{ time slots. .
the allocatedn time slots. We now consider Policyl’y, ;. For any timet, I'y, ; is
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feasible if (27) is non-empty, which is equivalent to having The value ofdim(S2 @ S,.) is quantified in (50). Since any
£S5 _ |5y 5 v |n1PqI|cy I's, 0 does not belong t6 & S, (see (26)) and
20 Or any v(') in Policy Ty, ; does not belong t&; @ S, either

> |(S2@S,)N((S1®Sr)U(S1@S2)) (see (27)), every time one af, andr receives a packet of
= ((S2®S,)N(S1@S))U((S2®S,)N(S1@Ss))| Tsp00rly 1, dim(S1 @ S,) will increase by one. In the end
< dim(S2 ® S,) of I'y, 1 we thus have
> max{dim((Sz ® S,) N (S1 ® S,)),
dim((S2 @ 5;) N (S1 @ 52))} 47)  E{dim(S1 @ 8,)} = nw, - pa(di,7) + neg, - pa(d, 7‘)('52)

where “=” holds assuming the underlying finite fielelF (¢)
satisfyingg > 2. The reason is as follows. Let us temporarily
defined =S, @ S,, B=5,® S,, andC = S; @ S,. Then Similarly, since anyv(!) in Policy T's, o does not belong to
we have S @S, @ S, (see (26)) and any™) in Policy T, ; belongs
to S; ® Sy ® S, (see (27)), every time one afy, do, andr
A\(BUC) #0 < [A[ - [(ANB)U(ANC)[> 0. (48) receives a packet df, o, dim(S; @ S2 @ S,) will increase

Also, we have the following inequality by one. In the end of;, , we thus have

qnlax{dim(AﬂB),dim(AﬁC)} < |(A N B) U (A N C)| . . )
< AmANB) | dim(4nC) _ 4 (49) E{dim(S1 ® S2 @ S;)} = nwy, p1(di,da, 1) + nwy, - 0(-53)

where the last inequality follows from the idea of the union

bound and the observation that the all-zero vector is alwaﬁs . . .
. y (50), (51), (52), and (53), we can verify that (18) implies
in both AN B and AN C. Based on (49), we then have thatdim (S, @ 5,) > dim((S@® S,) N (S1 @ S,)) in the end of

(48) < dim(A) > max{dim(A N B),dim(ANC)}, Policy T, 1. By swapping the roles of, andr, symmetric
_ arguments can be used to prove that (19) impties(Ss &
which leads to (47). S,) > dim((S2 @ S,) N (S1 @ Ss)) in the end of Policyl's, ;.

When we choose Policy’s, 1 as our coding policy, the Therefore,I,, ; is feasible throughout its duration ofw’,
coding vectorv(!) is chosen from (27). Therefore(!) must time slots.

belong to the inclusion spac&; & S,, which implies that Similar di . . b d
no matter how many nodes i, ds,r} receive the packet Imilar dimension-comparison arguments can be used to
b2 ' complete the proof of (i) and (iii)The remaining derivation

dim(SQﬂ? S")c;er??;ns tge)sa(rge. ,gls)(; no:jedtha(lt( ;imil;tr)to threepeats similar steps described above, @mdelegated to
case ofl'y, o, dim((S2®S,)N(S16.S,)) anddim((S2 & .S,)N . - !
(51 @ Sg)l)' increase monotonically over time. As a result, iprpendlx B. The proof of Proposition 3 is thus complete.
we can prove that (47) holds in the end of the duration of
Policy T's, 1, then throughout the entire duration Bf, ;, we
can always find some(!) belong to (27). The remaining task
is thus to quantify the three different terndém(S2 @ S,), B. Capacity of The COPE Principle O2-Flow Wireless
dim((S2® S,)N(S1®S,)), anddim((S2 ®S,)N(S1®S2)) at  Butterfly Networks with Broadcast PECs
the end of (the duration of),, ;. All the following discussions
hold with close-to-one probability when focusing on thetfirs In this subsection we will prove that the Capacity outer
order analysis of.. bound in Proposition 2 and the capacity inner bound in Propo-
We will first decide the value afim(S2®S..). We know that  sition 3 coincide when destinatiah cannot directly hear from
dim(S2®5,) remains the same during Poli€y, ;. Therefore, sources; for i = 1,2, which prohibits the use of opportunistic
the value ofdim(S> & 5,.) is decided by how much it increasesouting Proposition 1 thus describes the exeapacity region
duringT's, 0. Since anyv(™) in Policy T',, o does not belong of the COPE principle or2-flow wireless butterfly networks
to S, @ S, (see (26)), every time one af, andr receives with broadcast PECsRecall that in Proposition 2, the outer
a packet ofl'y, o, dim(S2 @ S,) will increase by one. As a bound considers channel status feedback, dynamic schgduli
result, in the end of’,, ; we have and possibly non-linear encoding functions. Meanwhile, th
. ) 1 proposed achieving scheme in Section V-A uses only linear
B{dim(S2 @ 5r)} = nws,pr(d2, 7) + ey, - 0. (50) encoding functions and a sequential-order scheduling. By
We now consider the first termiim((S, @ S,.) N (S; @ S,)) proving that the outer and inner bounds match, we have shown
in the max operation in (47). By Lemma 2, we can rewritthat the proposed linear encoding and sequential schedulin

dim((S1 @ S,) N (S2 @ S,.)) by scheme in Section V-A is as good as any other non-linear
) encoding and dynamic scheduling scheme when the use of
dim((51 © 5r) N (S2 © Sr)) opportunistic routing is prohibited.
= dim(S2 © 5,) +dim(S1 @ Sy;) —dim(S1 © S> © ;). To complete the proof, we note that wher{d;) = 0, for

(51) ; = 1,2, (17)—(25) of the inner bound in Proposition 3 is



reduced to the following forms:

wo pi(dj,r) < R, (54)
wSTpl(r) <w? pi(d;T), (55)
wy,pi(dy) < wglpi(rd_j% (56)
wsypz(r) < wg, pi(d;T) — wg,pi(r), (57)
wd pildy) < Wl pi(rdy) — wl pi(dy), (58)
vnPr(diy dy) < Wl pi(rdy) — wi pi(dy)
— wi pi(dy), (59)
wycpr(di) < wi pi(djr) + wg, (pi(dy) + pi(r))
+ w2 pi(r) + wi pi(dy) +wpnpr(djdy).
(60)
and (25) becomes
pT(di)(wj‘,N + Wf;c) > R;. (61)

The following lemma proves the tightness of the bounds wh

there is no 2-hop overhearing, i.@;(d;) =0 fori=1,2.

Lemma 3:For any 5-tuple R, Rs, t1, to, t,) satisfying the
capacity outer bound (6)—(9), we can always fiddcompany-
ing variablesw] , w; y,w;. ¢ fori = 1,2 andj = 0,1,2,3,4,
such that Jomtly thes + 14 = 19 variables satisfy (14), (15),
(54) to (61).

Proof: Given any(Ry, Ra, ts,,s,, t,) satisfying (6)—(9),

we construct{w] ,wi \,wic:ie{1,2},j€{0,1,2,3,4}}
in the following way. For each paifi,j) = (1,2) or (2,1),

we define

o R
s i) ©2

T 1 11
(il aam) ©
w2-<1 - 1)+ (64)

T \pi(r) pady))

5 . 11 * R
o.)si—mln{RZ (pi(dj) pi(T)) o s, pi(T)}7 (65)
wi =0, (66)
i (R —ts,pi(dy)”*

wr,N - pr(di7 dj )j ’ (67)
i B (Ri—tapidy))"
o) T pldady) (©9)

Onecan verify that the above assignméiit;, Rs, ts, , ts,, t,
wi wiy,wic:ie{1,2},j€{0,1,2,3,4}} is always non-
negative and satisfies (14), (15), (54) to (6The detailed

verification is relegated to Appendix Che proof of Lemma 3 pi(dy)

is thus complete. |

VI. NUMERICAL RESULTS

Fig. 5. An instance of the 2-flowvireless butterfly network with broadcast
PECswith the success probabilities being indicated next to threesponding
arrows (a) The COPE principle only; and (b) The COPE principle plus
opportunistic routing.We also assume that the success events between
different node pairs are independent.

—SBLNC with OpR
SBLNC w/o OpR |
RLNC with OpR
RLNC w/o OpR
- -[3] with OpR
--[3] w/o OpR

035,

0.3~

0.25-

o o2+ |
0.1+ g
0.05- Y i
SBLNC = Space-Based Linear Network Coding s,
RLNC = Random Lmear Network Codmg
% 005 01 015 02 025 03 035 04 0.45
1
Fig. 6. Theachievableregions of the scenario iRig. 5(a) andFig. 5(b).

The solid lines indicate thachievable regions of the SBLNC scheme under
the scenarios of COPE only (the orange line) or COPE plus Gp& red
line). The dash lines indicate the achievable regions ofettisting result [3]
under the scenarios of COPE only (the green line) or COPE @hR (the
blue line). The dotted lines indicate the achievable regioh intra-session
network coding only (random linear network coding) undes ftenarios of
OpR (the gray line) or not (the black line).

Consider one particular channel parameter assignment of
the 2-flow wireless butterfly network with broadcast PECs
Fig. 5(a) describes the transmissienccess probabilitype-
tween each node pair as the number next to the corresponding
arrow without opportunistic routing. And Fig. 5(b) desash
the same set of channel parameter assignment, except for
that now we allow OpR. We also assume that the success
events between different node pairs are independent. For
example, when allowing opportunistic routing in Fig. 5(b),
the probability that a packet sent by is heard byd; is
= .2 and the probability that a packet sent byis
received byd, is p,(d2) = .6. We then computé different
achievable regions and plot them in Fig. 6.

The solid lines in Fig. 6 represent the achievable redoois

In this section, we apply the capacity results to some numeriinequality (22) becomes trivial since the left-hand sidg2) becomes

ically generated scenarios so that we can explicitly gfianti
the throughput/capacity improvement of tBBLNC scheme
under the COPE principlewith and without opportunistic
routing The detailed simulation setting is described as follow:

zero and the right-hand side of (22) is always non-negative.

120ur main results provide a pair of outer and inner boundshiisrdapacity
region. Since the gap between the inner and outer boundgligibée (with
relative gap less than 0.08%), we plot only the inner bouhé échievable
&te) in Fig. 6.
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TABLE Il
D ) @ AVERAGE SUM-RATES OVER10000RANDOM NODE PLACEMENTS
G @)

Fairness Constraint OpR SBLNC [3] RLNC
\@ No allowed .6599/.6594 | .6472 | .6180
@ not allowed 4820 4779 | 4116

allowed .6294/.6286| .6101 | .5484
not allowed ATT5 4726 | .3854
allowed .6031/.6026| .5892 | .5406
not allowed 4671 4626 | .3856

@) (b) Proportional

Min-cut

Fig. 7. (a) The relative location ofs;,d;). (b) Topology of two(s;,d;)
pairs.

place four nodes s, s2,d1,ds) inside the unit circle. To
simulate the need of the relay for each session pair, we force
the placement of each pair to be in the opposite 90 degree area
That is,d; must be located in the opposite 90 degree area of
s;'s location fori = 1, 2. See Fig. 7(a) for illustration. Fig. 7(b)
illustrates one realization of our random node placement.

We use the Euclidean distanée between any two nodes
to decide the overhearing probability wherpacketis trans-
mitted. More explicitly, we use the Rayleigh model

02 a2 N 1

Prob(success= - e  vdx wherey = S
whereq« is the path loss factor, arifi* is the decodable SNR
— (sum.outer—sum.inner)/sum.outer * 100% threshold. To reflect the packet delivery ratio measured in

e practical environments, we choose= 2.5 andT* = 0.006 so
Relative Gap(%) that the overhearing probability for a 1-hop neighbor isuaich
0.7-0.8 while overhearing probability for a 2-hop neighbor is
Fig. 8. The cumulative distribution of the relative gap besw the outer and 8round0.2—0.3. If no direct overhearing is allowed, we simply
the inner boundsvith proportional fairnessThe outer and the inner bounds hardwire the probability thatl; overhearss; to be zero. We
are described in Propositions 2 and 3, respectively. again assume that the success events between different node
pairs are independent.
We consider three different fairness requirements: (a) No
the SBLNC scheme with and without OpR, respectively. Thgirness requirement; (b) Proportional fairness; and (i)-M
dash lines represent the achievable regions of the exisitiiey cut-based fairness requirement. When there is no fairness
information-based feedback-free result [3] with and witho constraint, we use a linear programming solver to find the
OpR. The dotted lines represent the achievable regions|gfgest sum rate?, + R, that satisfies the capacity outer
intra-session network coding while performing time-sh@ri pound in Proposition 2, which is denoted Bum.outer Sim-
between different sessions. When OpR is allowed, the dotqqgghy, we find the largest sum rat&®, + R, that satisfies
line corresponds to the intra-session RLNC discussed ih [2the capacity inner bound in Proposition 3 and denote it
When OpR is not allowed, the dotted line is the schedulingy Rsuminnes After computing the sum rate&sum.outer and
based capacity (stability) of the store-&-forward solago Resuminnes We repeat the above experiment with different

As can be seen, when there is only one flow in the networkndomly chosen node placements 10000 times. For the
(sayRy = 0), then OpR(the gray dotted lines optimal as was setting of (b) proportional fairness, we replace the sure rat
first established in [29]. However, when there are two coegbjective function R, + R, by the logarithmic objective
isting flows (when both?; and i?; > 0), the COPE principle functionlog(R1) + log(R»). We again compute th&sum.outer
without OpR(the orange solid linejan sometimes outperformand Rsum.innerusing the new objective functiofor the setting
OpR due to the stronger overhearing betwegn— d; and of (c) min-cut-based requirement, we impose an additional
51 — da, p2(d1) = 0.4 and p1(dz2) = 0.5, than the two-hop constraintR; = 3 min (p;(d;,7), pi(d;) + pr(d;)) fori = 1,2
direct overhearing froms; — d; andsy — da, p1(di) = 0.2 with a common3, which enforces the individual rai@; being
and pa(dz) = 0.15. On the other hand, the throughput caproportional to the min-cut value from; to d; assuming no
be further enhanced by the proposed joint COPE and Oplther sessions are transmitting andindr are scheduled with
solution (the red solid line)Last but not least, the proposedhe same frequency. The results are summarized in Table IlI
SBLNC scheme (the solid lines) always outperforms all thend Fig. 8.
existing schemes since it achieves/approaches the cgpacitTable Il lists the sum-rate averaged ot@€000 simulations.
region. When opportunistic routing is allowedp;(d;) > 0), then the

We are also interested in quantifying the average throughpaner and outer bounds do not always meet. Therefore, for
benefits of COPE and OpR in a randomly placed network. The entries withSBLNC and OpRthe number on the left is
generate a typical XOR-in-the-air scenario, we first pldee tthe average oRsym.outerWhile the number on the right is the
relay node in the center of a unit circle. Then we randombverage ofRsum.nner When there is no OpRp{(d;) = 0),

o o
o o

Cumulative Probability
2

I I
0 0.1 0.2
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as was proven Section V-B, the sum-rate outer and inrBy definition,t,, ts,, andt, must satisfy (10).

bounds always coincide and hence only one number is shownn the subsequent proofs, the logarithm is taken with base
in each correspondingntry. The achievable rates in [3] for ;. We prove (11) first. To that end, we notice that

different scenarios are also listed for comparisime capacity

of pure routing and pure OpR is provided in [29] and we [(w,; W) < I(W 13 [Y (a1 onr) sar Z)7) (69)
also compute the capacity of the intra-session-coding-onl S

RLNC-based achievability scheme in [29] for comparison. In =HW3 [Z]7) + HW 3 [Y (s s0.ry»ar [TT2]T) (70)
Table 11, we first note that in terms of the averaged throughp </ (W15 [Y (s, s} (arm ITIZ]7) (71)
the difference between the outer and the inner bounds is=1(W1;[Y,, ¢4,~]71[Z]7) (72)
a_round0.08.%. Among all 10000 instances, the largest absolute <H([Ye, (a2 1[Z]7)

difference is withRsym.outer= 0.6409 and Rsym inner= 0.6375. "

The proposed bounds thus effectively bracket the capacityzzH(Ysﬁ{dl,r}(t)HZ]?v [Ysﬁ{dm}]ﬁ—l) (73)
when combining the COPE and the OpR principlgdth =1 '

the proportional fairness constraint, the proposed SBLNC _»
scheme that combines the benefits of COPE and OpR provides< Z E {1{251%1 ()=1 0F Za, p(t)=1} © 1{0@):51}} (74)
roughly14.6% throughput improvement when compared to the ~ ¢=1
scheme using only intra-session RLNC and OpR without the =nts, p1(di,7) (75)
inter-session COPE-based network coding operations.nAgai
assuming proportional fairness, if we compare the SBLN@here (69) follow from (4); (70) follows from the chain rule;
scheme that combines COPE and OpR (sum rate = 0.628B)) follows from (3), the data processing inequality, and
with the benchmark store-&-forward scheme without intethe fact thatZ is independent ofW,; (72) follows from
session coding and without OpR (sum rate = 0.3854), it show®t conditioning onZ (and o sinceo is a function of Z)
that COPE and OpR can provide in averd$&: throughput Y, .4, ,} is a deterministic function oW, and is thus
improvement over the traditional TCP/IP solutions. We alsadependent ofW; (73) follows from the chain rule; (74)
observe that the throughput improvement of COPE is greateiows from that only whenl z _, =10rz., ., (t)=1} =
when there is some kind of fairness constraints. The imtuis 1 and 1;,)—,,; = 1 will we have a non-zero entropy
that inter-session network coding helps resolve the btk value H(Y,, 4, . (0)|[Z]7, [Yslﬁ{dm}]t{l), and when
experienced by theveakeruser since the weaker user’s packetsl (Y, (4, -} (1)|[Z]7, [Ysﬁ{dm}]t{l) > 0, it is upper
can now be coded together with the stronger user's packetsounded byl since the base of the logarithmds(75) follows
Fig. 8 focuses on the relative gap per experiment whémom Wald’'s lemma.
allowing for both COPE and OpRith proportional fairness  On the other hand, Fano’s inequality gives us
Specifically, considering the setting of proportional fairness,
we compute the relative gap per each experiment, I(Wl;Wl) > nRi(1— ) — H(e). (76)
(Rsum.outer— Rsum.inne) / Rsum.outer @nd then plot the cumulative o
distribution function (cdf) for the relative gaps. We caresex
that with more tharg0% of the experiments, the relative gap
between the outer and inner bounds is smaller thaa%. Bl H(e)
1L —€)—

ombining (75) and (76), we have

<ts d ,T). 77
VIl. CONCLUSION < ts,pi(dy,r) (77)

This paper has introduced a new network coding arch_iétting ¢ — 0, (77) implies (11) for the case af= 1. With
tecture,named asthe “Space-Based Linear Network COd%ymmetric arguments, we can derive (11) fot 2.

(SBLNC).” The SBLNC scheme has been used to find thé
exact capacity regionf the COPE principle-flow wireless
butterfly networks with broadcast PECEhe result has also

been extended to bracket the capacity when combining t ailable atd, directly to d;. Later we will show that even

COPE_pr|nC|pIe and the concept of opportunistic rom_m%‘/ith the additional information, the achievable rates and
Numerical results show that the proposed outer and inn

bounds effectivel tifv th it for al  allaizal ﬁg are still upper bounded by (13). As a result, the achievable
ounds efiectively quantify the capacity for almost allgirea R, and R, for the original network must satisfy (13) as well.

We prove (13) by similar techniques as used in [5], [30].
Specifically, we create a new network from the original
etwork by adding an auxiliary pipe that sends all informmati

scenarios. (12) is a symmetric version of (13).
APPENDIX With the additional information at;, the decoding function
A. Proof of Proposition 2 (see (4)) atd; for the new network becomes

For any joint scheduling and NC scheme, we chotse

(resp.t,) as the normalizedxpected number of time slots for Wi = fau ([Ysr,5,m 1, da} Z1T)- (78)
which s; (resp.r) is scheduledNamely, ]
" N For anyt € [n], define
Al Al
ts, = —E 1{0(.,.)_&}} andt, = —E { 1{0(7’)—r}} . B
n {; n 7; U(t) £ (WQ’ [Y{51,52-,7‘}H{d1-,d2}7 Z]i 1)' (79)
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We then have We define three binary random variables £ Lo(Qu)=r}»
Oz = Lz, i @)=1), AdOz, = Lz, (g)=1), Which

nfy = H(W1[W2) are functions ofQ), and [Z]¥*. Then we can rewrite (88) as

< I(W1; W1 |[W3) + ney (80) the following.
< I(Wh [Y{sl so,r}—{d1,d2}>s Z]?|W2) + nep (81)
2 ’ Ry — to,p1(dy,ds) — 1)
=I(W;[Z]7|W3) (#a n 11p1( L) =)
=+ I(Wl; [Y{s1,sz,r}—){d1,d2}]711|w25 [Z]?) + ne (82) < Z EH(Yrﬂ{dhdﬂ (Qt)
n qr=1
= ZI(Wl;Y{51752’T}H{d1"d2}(t) |U(qt)a [Z](lha Qt = qt7@U7®Z1? ®Z2) (89)
t=1 n
W 2 [Y (o it ) nes 69 L
n
qi=1
= ne; + (W1 Y, a4 (DU (D), [Z]7) .
Z i, da} ! Yo PG 6,0 .05 W T 05,02, 62,)
WY i N0, Yy (01, 27) e
P e Y @)U @) = (2] = ],
|U(t)7 Y{r,sl}—>{d1,d2}(t)7 [Z]l )) (84) @U = 907 621 = 9Z1 R 922 = 9Z2) (90)
< nep + <Z I(W 1Y a,,a03 (U (1), [Z]’f)> =Y 1 > p(u, [2]%,1,602,,02,)
t=1 qt=1 " Vu,[z] .6z, ,02,
+ nts, p1 (dl, dg) +0 (85) s.t. max{0z, ,0z, }=1
< ney + ntg,p1(dy, da) CH(Xr(g)U (@) = u, [Z)]" = [2] ],
" " Or =1,0z =02,0z2, =0z) (91)
Y I (1 Yo qaray (DU (), [Z]7), (86) ' v ’
t=1

where (89) follows from the fact tha®'s are functions
where (80) follows from Fano's inequality where goes too  Of Q¢ and [Z]*; (90) follows from the definition of the
whene — 0; (81) follows from the data processing inequalitgonditional entropy; and (91) follows from the fact that
and (78); (82), (83), and (84) follow from the chain rule andr—{d,.d.}(¢:) is not erasure only ifo(g;) = r and at
the fact that the distribution o is independent oW, and least one ofZ,_,4, and Z,_,4, equals to one and further-
W.; (85) follows from the observation that the second terfore Y, (4, 4,(¢:) = X,-(q:) under such a condition,
of the summation can be upper bounded by Wald's lemnigiere we usep(u, [2]{,1,0z,,0z,) as the shorthand of
(similar to (75)) andY., (4, 4,)(t) is independent oW,  Pu(q,),1%,6,.62,.02, (W [2]1,1,02,,02,).

given Z (similar to (72)); and (86) follows from the data We can further SImpllfy (91) by the following steps. We

processing inequality. first note that conditioning ob/ (¢;) = u, [Z]% " = [2]* 7",
To continue, we define the time sharmg random variabf$d ©; = 1, the random variableX, (¢;) is independent of
Q: € {1,2,...,n} with Prob(Q; = i) = L for all i € Z(a), Oz, andOy,. Notice that{Z]{*~" is a subset of/ ().

{1,2,...,n} andQ; being independent d&|7, "W, andW,. Therefore, we have

Since the mutual information is always non-negative, we can

rewrite (86) as H(XT(qt)|U(qt) = u, [Z]gt = [Z]gtvga’ = 13 ®Z1 = 9Z1a
+ 622 = 9Z2)
(B~ pr(dh, d2) — 1) = H(X(a)|U(a) = u.0, = 1). (92)

I(Xr(t); Yoo qay,ay (OIU (1), [Z]7)

IN
NE
S

Also the joint probability can be rewritten as

~
Il
-

H(Y, (4,0, (DIU (8). [Z]7) (87) D PU(@).2]1.0,.02,.05, (4 1", 1. 02,,02,)

Vau,[z]{t .02z, .02,
s.t. max{0z,,0z, }=1

Prob(Q: = q:) - ZPU(%)_’(% (u,1)
=1 Yu
H(Y 5 dy.d03 (@)U (a2), [Z]T", Q1 = 1) (88) 3

IN
1M
SRR

PZ(4:).02,.02,|U(:).0, (2,02, 02, |u, 1)

where (87) follows from the definition of the mutual infor- ¢, mzf(’szll’?j%}:l

mation; (88) follows from replacing the time indexby the (93)
time sharing random variabl@; and the distribution ot/ (¢;)

and Y, _,4,.4,1(q:) does not depend on the future channeL ZPU (a0) - pr(dy, do), (94)
realization[Z]} ;.
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where (93) follows from the basic probability definitionhon-negative, we now have
and (94) follows from the assumption that the channel is

memoryless.
(92) and (94) help us rewrite (91) as

(91) ty pr(dladQ)

S S bl 1) H (X ()

2%

)

(95)

3

where p(u,1) and H(X
PU(q),0, (u, 1) and H(X
tively.

We now focus on flow 2. By Fano’s inequality, for som
€2 > 0 that goes to 0 ag — 0, with similar steps as in
(80)—(86) we can also show that

~(qt)|u,1) are the shorthand for
(@)U (q:) = u,0, = 1), respec-

nRg = H(Wg)
SI(W27 [Y{sl,SQ,r}—ﬂiza Z]rll) + nez
=1(Wy; [Z]?) + I(Wa; [Y{81782,T}—>d2]711|[z]?) +nez (96)

= Z I(WQ? Y{Sl,Sz,T}—>d2( )|[Y{S1 ,827T}—>d2] _17 [Z]?)
t=1
+ nes (97)
=nez + Z W27 T*}dz( )|[Y{817827T}—>d2] 717 [Z]?)
+ I(W27 Y82—>d2 (t)l[Y{SLSz}%dz]tilv [YTﬁdz]iv [Z]rll)
+I(W2; Y81—>d2 (t)| [Ysl —>d2] [Y{52 T}*ﬂiz]l’ [Z]?))
(98)
<nez + Z I(W2§ }/Tﬁdz( )|[Y{31,32,r}—>d2] _17 [Z]?)
t=1
+ Tlts2p2 (dQ) + 0 (99)

where (96), (97), and (98) follows from the chain rule and the

independence betweéW, and [Z]}; and (99) follows from
similar derivation as in (85). We then have

(99):n62 + nts,p2(da)

+Z

- H(Yr—niz( )W, [Y{51 s2, T}ﬁdz] - Z]
< ney + nts,p2(ds)

+Z

n

Y{Sl ,Sz,T}—le]til’ [Z]l )

))

’l *}dg

n

") (100)

n

)IZIT

) - H(Yr—>d2 (t)lU(t)v [Z]rll))
(101)

T—>d2

= neg + nts,pa(ds) + ZI(U(t
t=1

); Yrosa, (D|[Z]7),  (102)

(Ry — ts,ps, (d2) — €2)™

1 n

_Z[

n
n

IN

Vi, ()0, ZIT)

= Z Prob(Q: = q:) - I(U(q1): Yrsao (@)|[Z]]", Q: = qv)
" (103)
2_31% Yoo ()29, Q1 = a1
e qt=
- L HY @U@, 0.0 = ). (w0s
qe=1

where (103) follows from the definition of the conditional mu
tual information and the fact that the distributionifq,) and

Y, —a,(q:) does not depend on the future channel realization
[Z]},+1; and (104) follows from the definition of the mutual
informationWe now discuss the first summation in (104)

1
— - H(Y,5a, (@)|[Z]T, Qr = qr)
qt=1 n
"1
= Z E ' H(Y;“—)dz (qt)l[z]lftht = qt, O, 622) (105)
qt=1
- 1 qt
= Z -~ Pizji 0,04, (21" 00,02,)
a=1" i,
O, 9
( Tﬂdz( )H ] [ ]({ta602907®Z2:9Z2)
(106)
- Z Z pZ]‘“ [SENCYN [ ]({tvlal)
Qt_l V(2]
CH(Xo(@)|[Z]] = [2]]", 0, = 1,02, = 1) (107)

where (105) follows from the fact th&'s are functions ofy,
and[Z]%*; (106) follows from the definition of the conditional
entropy; and (107) follows from the fact thaf._,4,(¢:) is
not erasure only ifo(¢;) = r and Z,_,4, equals to one.
FurthermoreY,._, 4, (¢:) = X,-(¢:) under such a condition.

We can further simplify (107) by the following steps. We
first note that conditioning ofZ]” ' = [2]*~ ' and@©, = 1,
the random variabl&, (¢;) is independent oF(¢;) and© z,.
Therefore, we have

where (100) and (102) follows from the definition of the

mutual information; and (101) follows frorie fact thatcon-
ditioning does not increase the entropyd [Y{sl,SZ,r}—»dz]t !

is a subset ofJ(¢). Since the mutual information is always

H (X (q0)l[Z]}
= H(XT(Qt) [Z]

[Z]lft,@,; = 17622 = 1)

t—1 t—1
If = [Z]li 0, =1).

(108)
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Also the joint probability can be rewritten as Also the joint probability can be rewritten as
> Pz ese., (FH L) Y Puta@ 6,00, W T 1)
V(2] Va,[2]1*
qt—1
Z p ]‘It 1 o, ] ;1) :ZPU(%),(“)U(U’ 1)
MER !
> Pata) e, lizre, (& UETT D) (109) szmt .02, U ()0, (25 1u; 1) (116)
Vz Vz

( S pgpto, z]qf—1,1)) po(ds).  (110) (meqt ) pr(ds). (117)
VER 1
where (116) follows from the basic probability definition,

where (109) follows from the basic probability definition, and (117) follows from the assumption that the channel is

and (110) follows from the assumption that the channel !

memoryless. memoryless. _
(108) and (110) help us rewrite (107) as (115) and (117) help us rewrite (114) as
et 3w Dyt PRI 1) - H(X (a0) 2117 1) gt ZVU ( 1) - H(X,(q)u, 1)

(118)

t br
(111)  where p(u,1) and H(X,(¢)|u,1) are the shorthand for
where p([2)%~,1) and H (X, (q)|[z]%"!,1) are the short- Pu(a.).0,(u,1) and H(X,(¢:)|U(g:) = u, O, = 1), respec-

hand fOI’pZ]qt e ([z]‘{ffl,n and H (X, (q.)|[Z]% 1 _ tively.
[2]%7 0, = 11) ;e;pectively Combining (111) and (118)e can rewrite (104) in the
1 9 o ’ .

Similarly, for the second summation in (104), following form.

_ )t
Z % CH(Yr54:(00)|U (@), (2], Qr = ar) (Bz = tealea (0) = €2)

Gm1 S tr : pr(dQ)
" Sy A et (T 1) - H (X ()2 1)
= Z n H(Y, 54, () |U(ar), [2]1, Qi = a1, 05,02,) ' t, B
qt=1
(112) 320 1 5 D, p(u, 1) - H(X,(q)]u, 1)
5y . . (119)
= Z n Z PU(qt),[z]‘{t,e(,,@ZZ(uv [Z]Iftaeovezz)
@=t V;‘g[;}j: Summing up <3">d2) and <1(15)), we thus have
. — at qt
H(Y,—a,(q)|U(qt) = u, [Z]] [2]1" (R1 —to,p1(di,da) — 1)t (Ro —to,pa(da) —€2)t
Q¢ = 05,02, = 0z,) (113) pr(dh da) pr(dz)
- . w1 p([Z]% 1) - H(X, F|
= Z Z pU(qt Z]l )90)922( [ ](11 ,1,1) < tr ) th 1n ZV[Z p([ ] ) ) ( (Qt)H ] ) )
Qr_l Vu,[z] 7t a tr 120
H(X (@)U (@) = w2 = [0, = 1,05, = 1) (120)
(114) <tr. (121)
where (112) follows from the fact th&'s are functions of  where (121) is based on the following observations. We first
and[Z ] ; (113) follows from the definition of the conditionalnote that by definition
entropy; and (114) follows from the fact thaf 4, (¢:) is
not erasure only ifo(q;) = r and Z,_4, equals to one. S 1 -
FurthermoreY, _,4,(q;) = X.(¢:) under such a condition. b= 2—:1 nPrOb(a(qt) =7)
We can further simplify (114) by the following steps. We q';
first note that conditioning od/ (¢;) = u, [Z]# ™" = [2]%7, = 1 S e
and ©, = 1, the random variableX,.(¢;) is independent of L et
Z(q;) and ©,. Notice that[Z]% ' is a subset ofl/(g,). =
Therefore, we have Therefore, the fraction term in (120) can be viewed as the
— 1,04, = 1) normalization of the conditional entrogy (X, (¢;)|[2]% ", 1).

Since each conditional entropy is no larger thawith the

H(X:(q)|U(qe) = u, [Z]]" = [£]{",
= 1) (115) pase of the logarithm being), we thus have (121).

= H(X (Qt)lU(Qt): NCE
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(121) holds for arbitrary > 0. Letting ¢ — 0%, we thus equivalent to whether the following dimension-based irqu

have the following final inequality. ity is satisfied.
(Rl —tslpl(dl,dg))+ (R2 —t52p2(d2))+ <t dlm(Sr) _dim(((SQ er)@Sl)er)
pr(dl,dQ) pr(dg) - :dlm((SQ QST)®S1 @ST) —dlm((SQ QST)@Sl) (125)

which gives us (13). (12) can be proven by symmetry. The:d'm(s1 ® ) = (dim(S1) + dim(S 1 5r)

proof of the outer bound is thus complete. —dim(51 NS> N Sy)) (126)
=dim(S; ® S,) — dim(S1) — (dim(S2) + dim(S,)
—dim(S2 @ S,)) +dim(S1 NS2NS,.) > 0, (127)

B. Detailed Achievability Analysis _
where (125) follows from Lemma 2; (126) follows from simple

In this appendix, we finish the discussion about the poliget operations and from Lemma 2; and (127) follows from
feasibility in Section V-A. The feasibility for Policy’s, o Lemma 2.
and PolicyT's, 1 has been proven in Section V-A. In the Similar to the previous discussion, we will quantify indivi
following discussion about the space dimensions, we agaial dimension at the end df,, 3, the policy of interest and
rely on the first order, expectation-based analysis andw@ssiprove that even in the end &t 5, the dimension difference in
the application of the law of large numbers implicitly. (127) is strictly larger tha0. Therefore, throughout the entire
Policy I's, 2: Similar to the analysis for Policy's, 1, duration of['s, 5, (127) is larger thar® and Ty, 5 is always
assumingg > 2, the condition that (28) being non-empty ifeasible.
equivalent to whether the following dimension-based iréqu By similar analysis in the end ofl',, 5 we have
ity is satisfied.

E{dlm(sl)} (ws1 + wsl + ws1 + wsl) (d1)7 (128)

dim(S2) —dim(S2 N (S1 & S,.)) E{dim(S2)} = n(w? + wsl + w3 )p1(da), (129)

—dim(S) @ S @ S,) —dim(S1 © S,) >0,  (122)  E{dim(S,)} = n(w’ +w! + wsl)pl( ), (130)

where (122) follows from Lemma 2. E}::SES o3 ;i B ZEJM Pt: ;wsl)pl(dl’r)’ 822
= nwg, p1(da,

Similar to the discussion ifi, o andl'y, ;, we will quantify
individual dimension at the end of;, 2, the policy of interest,  \what remains to be decided is the valuedaf (S1 N Sy N
and prove that even in the end Bf, », the dimension differ- g ) at the end of Policyl,, 5. To proceed, we introduce an
ence in (122) is strictly larger thai Therefore, throughout auxiliary nodea in the following way. Whenever a vectar
the entire duration of', 5, (122) is larger tha) andI's, > sent bys; is received by bothi; andr, we let the auxiliary
is always feasible. nodea observe suchs as well. The knowledge space of

We first focus ondim (S, @S2 @ S;). SincesS; @S2 @S, isa  denoted bys, is thus the linear span of all vectors received
subset of the exclusion set Iy, o, every time a's, o packet by bothd; andr.
is received by one ofl;, da, andr, dim(S; & Sz & S;.) will We first argue thaf, = S; NS, in the end of policyl's, .
increase by one. On the other hand, notice tha® S2 © S-  Since a only observes those vectors commonly available at
is a superset of the inclusion set iIfy, ; and ', ». Hence pothd; andr, the knowledge space 6%, is a subset 06, NS, ..
dim(S; @ S2 © S,-) remains the same throughollf, ; and Knowing S, C S; N S,, we can quickly check tha$, is a

I's, 2. As a result, in the end of policys, 2, we have subset of the exclusion sets in Policigg o, I's, 1, andT, .
Therefore, every time nodereceives a packet during policies
E{dim(S1 ® S2 ® S,)} = nw? pi(di,da, 7). (123) T, 0, T4, 1, andTy, o, the dimension ofS, will increase by

one. Therefore, we have
We now focus ordim(S; ¢ S,.). SinceS; @ S, is a subset .

of the exclusion sets of ,, o, I', ; andT,, o, every time a E{dim(Sa)} = n(wl, +wi, + w2 )p1(dir) (133)
pac_ket OfT's,0, Tsy 1, OF I's, 2 IS received by one ofy and 0 oy ofl',, ». On the other hand, by similar analysis as
r, dim(S; @ S,) will increase by one. As a result, in the endnefore we havé

of policy I';, 2, we have ’
E{dim(51)} = n(w, + wy, +w? )p1(dr),
E{dim(S,)} = n(wo —l—wl —i—w pi(r),

Jointly, (123), (124), and (20) imply (122) in the end of  E{dim(S1 @ 8:)} = n(wy, +wy, +wi)pi(di, ),

Fsl 2.
“The d i f (129) for th f Poli€y, - the followi
Policy I, 3: Similar to the analysis of the previous p0I|C|esmeqwﬁty er'vsvgfln of (129) for the case of Politk, 3 uses the following

assumingg > 2, the condition that (29) being non-empty is

E{dim(S1 ® S,)} = n(w?, +w), +w? )pi(di, 7). (124)

(29) C (Sr\(S2 N Sr)) = (Sr\S2).

13As a result,e; — 0 andez — 0.
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in the end of policyTs, ». By Lemma 2, we thus haveandS,® S, duringT’y, 5 are Simplynwg’lpl(dl),nwglpl(dg),

dim(S,) = dim(S; N S,). As a result, we have provenandnw;”lpl(dl,dg), respectively. As a result, the increment of
S, = (S1NS,) in the end ofT'y, 5. dim(S1 N S2NS;) during Ty, 5 is simply nwglpl(dldQ).
By the above analysis, we thus hagg; NS> N'S;) =  Combining (136), we have thus proven that

S, N Ss. By similarly dimension-based analysis, in the end of
I's, 2 we have
E{dlm(81 n SQ N ST)}
H 0 1
E{dlm(SQ)} = n(wsl + wSl )pl (d2)7 (134) =n (wg] —+ w;) P1 (dldQT) —+ nw;pl (dl'r) —+ nwglpl (dldQ)
E{dim(S2 ® S,)} = n(w) +w! )pi(da,dir), (135) (139)

wherep; (dz, dir) in (135) is the probability that at least one _

of noded, and nodex receives the packet and (135) followdn the end of Policyl’s, 3.

from the observation thai; & S, is a subset of the exclusion Jointly, (128) to (132), (139), and (21) imply (127) in the
sets ofl'y, o, I's, 1 and is a superset of the inclusion set oénd of[';, 3.

'y, 2. By (133), (134), and (135), we have thus proven that policy I,, ,: Similar to the analysis of the previous policies,

: - . the condition that (30) being non-empty is equivalent to
E{dim(S1 0.5 N 5,)} = E{dim(3, 0 %)} whether the following dimension-based inequality is $itis

=E{dim(S2)} + E{dim(S,)} — E{dim(S2 ® S,)} in the end ofT';, 4.
=n (WQ, + wi,) pr(didar) + nw? pi(dir) (136)
in the end ofl'y, . dim(Se N S;.) —dim(S; NS N Ss)
In the following, we will quantify the increment afim(.S1N =(dim(Ss) + dim(S,.) — dim(S2 ® S,.))
S2 N Sy) during Iy, 3. To that end, we introduce two more — dim(S1 N S5 N S,) > 0. (140)

auxiliary nodes andc. In the beginning of’,, 3, we let node

b (resp.c) be aware of the knowledge spase N S,. (resp.

S, N S,). During Iy, 5, whenever a packet is received by ~Similar to the previous discussion, we will quantify indivil
(resp.ds), we let the auxiliary nodé (resp.c) observe such dimension at the end df, 4 and prove that (140) holds in
a packet as well. From the construction, it is clear that titee end ofl'g, 4.

following equalities hold in the beginning a@f;, 5. By similar analysis, we have
Sp=5S1NS,, (137)
Se =808, (138) E{dim(S2)} = n(w;, +wy, +wi)p(da),  (141)
E{dim(S,)} = n(wy, +w;, +w )y (r), (142)

We will prove that (137) and (138) hold even in the end of
Iy, 3 as well.

In the following, we will prove that (137) holds in the end
of I'y, 3. We first note that by our construction, we alwaysn the end ofl;, 4. What remains to be decided is the value of
have S; D S, D (51N S,). Knowing thatS, is always a dim(S;NS,NS,) atthe end of Policy's, 4. In (139), we have
subset ofS;, andS; is a subset of the exclusion setslin, 3, already quantifiedim(S;1S2NS,) in the end ofl', 5. In the
we can see that every timg receives a packet during policyfollowing, we will quantify the increment adim(S;N152NS,.)
I's, 3, dim(Sy) will increase by one. Moreover, only wheh  duringT's, 4. By (30), we can see that every tindg receives
receives a packet during polidy;, 3 will dim(S,) increase. a packet during’s, 4, dim(S; NS2NS,) will increase by one.
As a result, the increment afim(S;) duringT',, 3 equals the As a result, the increment @im(S; NS> N S,.) during Ty, 4
number of timesd; receives a packet durinbs, 3. On the is nw? pi(d;). Together with (139), we have proven that
other handdim(S1NS,) = dim(S1)+dim(S,)—dim(S1®S,).
Since bothS,. and.S; @ S, are supersets of the inclusion set of i
', 3, bothdim(S,.) anddim(S; ¢ S,) remain identical during E{dim(51 152 N 5:)}

I, 3. Therefore, the increment afim(S; N S,) is identical =n (wy, +ws, ) p1(didar) + nw pi(dir)

to the increment ofdim(S;) during ', 5. As a result, the + nw? p1(dida) + nw;, p1(dy) (144)
increment ofdim(.S; N S,) duringl's, 3 equals the number of
timesd; receives a packet duri . We have thus proven
dim(Sh) — dim(S, ﬁpS,‘) e r(:%sagoffshg,  h mfp"es in the end off", . Jointly, (141) to (144) and (22) imply that
(137). (138) can be proven by symmetry. (140) holds in the end of s, 4.

To quantify the increment afim(S;N.S2NS,.) duringTs, 3, The feasibility of policyl's, x, £ = 0,1,2,3,4, can be
we notice thatlim(S;N.52NS,.) = dim(S,NS.) = dim(S,)+ Proven by symmetry.
dim(S.)—dim(S,®S..). As a result, the increment dfm(S1N Policy I', 1: We first notice that the inclusion space and
S2NS,) during policyT's, 3 is the summation of the incrementsexclusion space of Policy, ; are the same as of Polidy, s.
of dim(S;) anddim(S.) minus the increment afim(S, ©S.) Hence to prove the feasibility of Polidy, ;, we need to prove
during I's, 5. By our construction, the increments 8%, S., that (127) holds in the end df, ;. By similar analysis, we

E{dim(S2> & S,)} = nw? p1(da,7), (143)
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have in the end of the firshuw! ;¢ time slots of Policyl’,. 5. Jointly,
(151) to (154) and (24) |mply that (140) holds in the end of

E{dim(51)} = n(w + oy, el el )p(dy) the firstnw! . time slots ofT,. 3.

+nwy, Npr(dl) (145)  The discussion of the firsiw? - time slots ofl’,. 3 follows
E{dim(S2)} = n(w? +w) +w? )pi(d2) symmetrically.

+ nw Npr(dQ) (146) The above analysis completes the achievability proof dtate
E{dim(S,)} = n(w? +w., + wS] Yo (), (147) in Section V-A.
E{dim(S1 ® S,)} = n(o.)s1 +wl +w?)pi(dy,r), (148)
E{dim(Sy ® $,)} = nw?. p1(da, ), (149) C. The Proof of Lemma 3

In this appendix, we will show that the assignment.gf
to WTC in (62) to (68) is non-negative and satisfies (14), (15),
(54) to (61).

We first show that thewO to w? ,.c are non-negative. By
the definitions,w? , w? w;*, wi. are non-negative. Since

S$;

in the end ofl’, ;.

What remains to be decided is the valuelof(S;N.S2N.S,.)
at the end of Policy’, ;. In (144) we have computed the value
of dim(S; NS2N.S,) in the end ofT's, 4. As a result, we only
need to quantify the increment dfm(.S; N Sy N.S,.) during ) )
I, . By the same analysis as uséd when we )quantify dhgetpi(r). pi(d )} < pi(r,dy), vy, ?Js_non-negatw_e. By (7),
increment ofdim(S; N S2 N S,) during Ty, 3, the increment V€ haveR; < ts,pi(r). Thereforewsi is non-negative. There

. ; : two terms in the definition ef’ - in (68). The numerator
of dim(S1 NS> N.S,) duringT,. ;1 is nw? \p,(dids). By (144), &€ WO . rC
we have shown that of the first term is no less than the numerator of the second

term. The denominator of the first term is no larger than the
E{dim(S1 NS> N S,)} denominator of the second term. As a resulf,c is non-

=n (g, +wi,) p1(didar) + nw? p1(dir) negative.
+nw? p (drda) + nw’ pi(di) + nwlyp,(dady)  (150)  BY (62) 10 (65), we have
in the end ofl", ;. Jointly, (145) to (150) and (23) imply that G Wk = R;

(127) holds in the end dff,. ;. — i pi(d;,r)
The discussion of Policy',. » follows symmetrically. h 1 1 1
Policy I 5 for v(!): We will prove that for the firstw; + R; <min{ : } - )
time slots of Policyl’,.5, we can always choos€!) according pi(r) pi(djr) pi(d;,7)
to (38). To that end, we first notice that the inclusion space s (L 1 )
and exclusion space in (38) are the same as those of Policy pi(r)  pi(dy)
s, 4. Hence to prove that (38) remains non-empty during the 1 1 \" R,
first nw, - time slots of Policyl’, 3, we need to prove that + min {R ( @) (T)> yls; — .(T)}
(140) holds in the end of the firsiw . time slots of Policy bids) i bi
I'; 3. By similar analysis as used in the previous policies, we (155)
have _ R
. pi(r)
E{dim(S2)} = n(w?, +w! +w? )pi(d2) . L\ .
e ”p’”(d” o e {RZ (pxdj) )
E{dim(S,)} = n(w + w Lt wsl)pl( r), (152) (156)
E{dim(S2® S,)} = nwslpl (da,T), (153) <t.., (157)

in the end of the fII’SthC time slots of Policyl'; 3. What
remains to be decided is the valueddin (S, N S2N.S,) at the
end of the firstnw! ».c time slots of Policyl’,. 3. In (150) we

where (156) is based on the fact thaitn (z, y) +(z—y)*" = 2
for arbitrary real valued: andy; and (157) follows from the

have computed the value dfm(S; NS> S,) in the end of fact that the minimum of two values is no more than any of

I',.. As a result, we only need to quantify the increment dyo. (157) thus shows that our assignment satisfies (.14).
dum(51 NS, N S,) during the firstw! 1 . time slots of Policy To prove that (15) holds, we observe that our assignment

I,3. By the same analysis as used when we quantify tfads to
increment ofdim(S;N.S2 N S,.) duringT’y, 4, the increment of

dim(S1 N S2 N S,) during the firstnw! . time slots of Policy WrN T WhN T Wre

I, 3 is nw; cp,(d1). By (150), we have shown that _ (Bi — tsupi(dy)) + (By — b,y ()"
. pr(diadj) pT(di’dj)
E{dim(S1 N S2 N 5,)} R (Ri—ts,pi(dj))*
=n (wgl;r ws,) pl(dldzz) + Wflpl(dllr) Tod) T pildidy)
+ nwy, p1(dide) + nwg, p1(di) + nw, npr(dida) R; (Rj —ts;ps; (di)"

= < t,.
+ nw, cpr(da) (154) pr(di) pr(di, d;) =
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Hence the assignment satisfies (15). By noticing that Since with the assignment, the LHS of (57) is no larger
R than the RHS of (57), the assignment satisfies (57). We now
wg.pi(dj,r) = —pi(dj,r) = Ri, consider (58) and notice that
p'(djv T)
we have shown that the assignment satisfies (54). We NPWMg of (58)=min { R, (1 _ pz‘(dj)>+
consider (55) and notice that ! (1)
. 1 1 1 pi(d;)
LHS of (55)=R; | min , - i (r te,pi(dj) — Ri——= ¢,
=1 (min{ S5 o) ) P D) = )
pild;) ) pildj,r) pi(d;;T)
pi(r) . 1 1 1
SRi — Rl 5 (158) — Rl (mln{ N } - ) i d;
PO 2@ n@) ) w@n )P
RHS of (55)=R, 24T _ p _p _Pil) (159) —R; (1 _ _pild))
pi(dj’r) pi(dj,’l’) pi(djﬂ")
where (158) follows from the definition of the minimum, and _ R (min pi(d;) 1} ~ pild))
(159) follows fromp;(d;,r) — pi(r) = pi(d,;7). Since with ’ pi(r)”’ pi(d;,T)
the assignment, the left hand side (LHS) of (55) is no larger (164)

than the right hand side (RHS) of (55), the assignment sedisfi
(55). We now consider (56) and notice that

. 1 1 1 (d)\ T
LHS of (56)=R; <m1n{ , } — >pi d; =R; <1 — pZ—J) . 165
o) @) ) ity ) P ni) (16%)
=R; <min {pi(dﬂ') , 1} _ _pild;) > where (164) and (165) follow similar reasons as in (162) and
pi(r) pi(d;,r) (163). Hence the assignment satisfies (58). We now consider
<R _ g Pild) (160) (59) and we notice that
— {3 3 : d‘7 I
WD) ) LHS = (R taun{d)
pila; —
RHS of (56)=R; =R, — R; , 161 ’
0= pi(dj,T) pi(d;,r) 10D ens— R; p((;dr)
where (160) follows from the definition of the minimum, and ’ 1 1
(161) follows fromp;(d;,r) — pi(d;) = p;(rd;). Since with <m1n{ ( } e )) pi(d;)
the assignment, the LHS of (56) is no larger than the RHS of pi(r)” pi(d pitdj, T
(56), the assignment satisfies (56). We now consider (57) and ‘pi(dj)
notice that —min g R 1= toupi(ds) = Ba pi(r)
1 1 \" pi(d;)
LHS of (57)=R; < —> pi(r =R; <1 — A)
2 ) P pild;. )
R <1 ~ pi(r) )+ R, <mm{ i(d;) 1} _pild)) )
' pi(d;)) pilr) pi(d;,r)
pi(d;7) pi(d;)\" pi(d;)
RHS of (57)=R; L —min{ R; (1 - - ts,pi(d;) — Ri=—-2
pi(d; ) o ( pi(r) ) ) T B
, 1 1 1 (166)
— R; | min , — pilr
< {Pz‘(T) pi(dj)} pi(djar)) ) [ pi(dy)
) =R; — R; min ,1
=R <1 __nlr) > pi(r)
' pildj,r) +
. pi(d;) ) pi(d;)
; ; — R, (11— Jts.pi(d;) — R; :
R, <mm{1, pilr) } __&iln) ) mm{ ( pilr) ) i) = Ry
pi(d;) ) pild;,r) N
(162) B _<1_pi(dj))
=R, — R; mln{ pi(r) } pitr) d + d
ZJ’: Cmind B (1 pi(d;) topil(d) _ g, Ril i)
_ (163) pi(r) ' pi(r)
(167)
where (162) follows frorrpl dj r) — pi(r) = pi(d,;F), and > (Ri — to,pi(dy)) ", (168)
pi(r)

+
(163) follows from 1 — min {,,1 } ( rneh L )) - where (166) follows fromp;(d;,r) — p;(d;) = pi(rd;); and
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(167) follows from the definition of-)*. (168) follows from Case 2:p;(d;) < pi(r). In this case, we can rewrite (169) as

the following arguments. follows.
N Tt _ .pi(dj)
(167) = max {O, R; <1 — %) —ts,pi(d;) + R; I;((d ))} (169) =F; pi(r) 0
' . pi(dj)> pi(d;)
(. 4+ min< R; <1— s, pi(d;) — R;
s o (1 BU) g 090) (150 womir - n 53
ni0) ni0) o
=(168). + (Ri — ts,pi(d;)) ™" ( —m)
Since with the assignment, the LHS of (59) is no greater — =min{R;,ts pi(d;)}
than the RHS of (59), the assignment satisfies (59). We now (d;)
, : + (R — topi(d)t (11— L%l
consider (60) and notice that i~ LsiPild d: d
pr( 05 J)
r dz) pT(dZ)
LHS =R; — (R; — t,pi(d, +L, =R; — (R; — ts,pi(d;)) " ——~, (171)
( 1p ( )) pr(d“d ) ( ( J)) p'r‘(dz,dj)
RHS—R, pi(d;r) where (171) follows from the equalitpin{z, y} + (z—y)™ =
"pi(dj,r) x for any real valued:, y. Plugging (171) and (170) into (169),
+ (pi(dj) + pi(r)) we thus see that the LHS of (60) is no larger than the RHS of
1 1 1 (60) with the assignment. Hence the assignment satisfigs (60
R; <m1n{ } - > We now consider (61) and notice that
pi(r)” pi(d;) pi(d;,r) ‘ ‘
r(di)(wy N+ wy.c) = Ry
+R; ( 1(7“)) pr(di)(wr N )
pi(d;) which satisfies (61).

. pi(d;) + pi(d;) The above proof shows that the proposed assignment satis-
+ min ¢ R (1 T ) >  ts,pi(dj) — R; fies (14), (15), (54) to (61).
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