
1

On The Capacity of 1-to-K Broadcast Packet
Erasure Channels with Channel Output Feedback

Chih-Chun Wang Member, IEEE,

Abstract—This paper focuses on the 1-to-K broadcast packet
erasure channel (PEC), a generalization of the broadcast binary
erasure channel from the binary symbol to a finite field GF(q)
with sufficiently large q. We consider the setting in which the
source node has instant feedback of the channel outputs of the K
receivers after each transmission. The main results of this paper
are: (i) The capacity region for general 1-to-3 broadcast PECs,
and (ii) The capacity region for two types of 1-to-K broadcast
PECs: the symmetric PECs, and the spatially independent PECs
with one-sided fairness constraints. This paper also develops (iii)
A pair of outer and inner bounds of the capacity region for
arbitrary 1-to-K broadcast PECs, which can be easily evaluated
by any linear programming solver. The proposed inner bound is
proven by a new class of intersession network coding schemes,
termed the packet evolution schemes, which is based on the
concept of code alignment in GF(q) that is in parallel with
the interference alignment techniques for the Euclidean space.
Extensive numerical experiments show that the outer and inner
bounds meet for almost all broadcast PECs encountered in
practical scenarios and thus effectively bracket the capacity of
general 1-to-K broadcast PECs with COF.

Index Terms—Broadcast capacity, channel output feedback,
network coding, network code alignment, packet erasure chan-
nels.

I. INTRODUCTION

Broadcast channels have been actively studied since the in-
ception of network information theory. Although the broadcast
capacity region remains unknown for general channel models,
significant progress has been made in various sub-directions
(see [4] for a tutorial paper), including but not limited to the
degraded broadcast channel models [1], the 2-user capacity
with degraded message sets [13] or with message side infor-
mation [27]. Motivated by wireless broadcast communications,
the Gaussian broadcast channel (GBC) [26] is among the most
widely studied broadcast channel models.

In the last decade, the concept of network coding has
emerged [16], which focuses on achieving the capacity of a
communication network. More explicitly, the network-coding-
based approaches generally model each hop of a packet-based
communication network by a packet erasure channel (PEC)
instead of the classic Gaussian channel. Such simple abstrac-
tion allows us to explore the information-theoretic capacity
of a much larger network with mathematical rigor and also
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sheds new insights on the network effects of a communication
system. One such example is that when all destinations are
interested in the same set of packets, the capacity of any arbi-
trarily large, multi-hop PEC network can be characterized by
the corresponding min-cut/max-flow values [5], [16]. Another
example is the broadcast channel capacity with message side
information. Unlike the existing GBC-based results that are
limited to the simplest 2-user scenario [27], the capacity region
for 1-to-K broadcast PECs with message side information has
been derived for K = 3 and tightly bounded for general K
values [23], [24].1 In addition to providing new insights on
network communications, this simple PEC-based abstraction
of network coding also accelerates the transition from theory
to practice. Many capacity-achieving network codes [10] have
since been implemented for either the wireline [3] or the
wireless multi-hop networks [12], [14].

Motivated by the state-of-the-art wireless network cod-
ing protocols and the corresponding applications, this paper
studies the memoryless 1-to-K broadcast PEC with Channel
Output Feedback (COF). Namely, a single source node sends
out a stream of packets wirelessly, which carries information of
K independent downlink data sessions, one for each receiver
dk, k = 1, · · · ,K, respectively. Due to the randomness
of the underlying wireless channel, each transmitted packet
may or may not be heard by a receiver dk. After packet
transmission, each dk then informs the source its own channel
output by sending back the ACKnowledgement (ACK) packets
periodically (batch feedback) or after each time slot (per-
packet instant feedback) [28]. [9] derives the capacity region
of the memoryless 1-to-2 broadcast PEC with COF. The
results show that COF strictly improves the capacity of the
memoryless 1-to-2 broadcast PEC, which is in sharp contrast
with the classic result that feedback does not increase the
capacity for any memoryless 1-to-1 channel. [9] can also be
viewed as a mirroring result to the GBCs with COF [19].
It is worth noting that other than increasing the achievable
throughput, COF can also be used for queue and delay
management [17], [22], for rate-control in a wireless network
coded system [14], and for complexity reduction of network
code design [11], [21]. For example, it is proven in [21] that
with feedback, random non-coding transmission can achieve
the capacity when there is only one source and destination pair
in the network. On the other hand, in spite of the closed-form
capacity expression for the case of one source/destinatin pair,
the capacity characterization problem becomes much more

1The results of 1-to-K broadcast PECs with message side information
[23], [24] is related to the capacity of the “XOR-in-the-air” scheme [12]
in a wireless network.



challenging when there are multiple coexisting data sessions in
the network, also known as the inter-session coding problem
[25]. The broadcast capacity problem studied in this paper is
one instance of the inter-session coding problem.

The main contribution of this work includes: (i) The ca-
pacity region for general 1-to-3 broadcast PECs with COF;
(ii) The capacity region for two types of 1-to-K broadcast
PECs with COF: the symmetric PECs, and the spatially
independent PECs with one-sided fairness constraints; and
(iii) A pair of outer and inner bounds of the capacity region
for general 1-to-K broadcast PECs with COF, which can be
easily evaluated by any linear programming solver. Extensive
numerical experiments show that the outer and inner bounds
meet for almost all broadcast PECs encountered in practical
scenarios and thus effectively bracket the capacity region.

The capacity outer bound in this paper is derived by
generalizing the degraded channel argument first proposed in
[19], and later used by [8], [9]. For the achievability part
of (i), (ii), and (iii), we devise a new class of inter-session
network coding schemes, termed the packet evolution method.
The packet evolution method is based on a novel concept
of network code alignment, which is the PEC-counterpart
of the interference alignment method originally proposed for
Gaussian interference channels [2], [6] and Gaussian MIMO
channels with transmitter channel state information [18]. In
parallel with the packet evolution scheme proposed in this
work, [8] independently designs different queue-based network
control/coding schemes that are also capacity-achieving for
arbitrary 1-to-3 PECs and for symmetric 1-to-K PECs.2

The rest of this paper is organized as follows. Section II
contains the basic setting as well as the detailed comparison to
the existing results in [9], [15], [20] via an illustrating example.
Section III describes the main theorems of this paper and the
proof of the converse theorem. In particular, Section III-A
focuses on the capacity results for arbitrary broadcast PEC
parameters while Section III-B considers two special types of
broadcast PECs: the symmetric and the spatially independent
PECs, respectively. Section IV introduces a new class of
network coding schemes, termed the packet evolution (PE)
method. Based on the PE method, Section V proves the achiev-
ability results in Section III. Some theoretic implications and
discussions are included in Section VI. Section VII concludes
this paper.

II. PROBLEM SETTING & EXISTING RESULTS

A. The Memoryless 1-to-K Broadcast Packet Erasure Channel

For any positive integer K, we use [K] ∆= {1, 2, · · · ,K} to
denote the set of integers from 1 to K, and use 2[K] to denote
the collection of all subsets of [K]. For any S1, S2 ∈ 2[K], we
use the notation S1 * S2 to denote S1 6= (S1 ∩ S2), i.e., S1

is not a subset of S2.
Consider a 1-to-K broadcast PEC from a single source s

to K destinations dk, k ∈ [K]. For each channel usage, the
1-to-K broadcast PEC takes an input symbol Y ∈ GF(q) from

2In contrast with the packet evolution schemes used in the proof of
Propositions 3 and 5, it is an open problem how to adopt and analyze the
schemes in [8] for non-symmetric 1-to-K PECs with K ≥ 4.

s and outputs a K-dimensional vector Z ∆= (Z1, · · · , ZK) ∈
({Y }∪{∗})K , where the k-th coordinate Zk being “∗” denotes
that the transmitted symbol Y does not reach the k-th receiver
dk (thus being erased). We also assume that there is no other
type of noise, i.e., the individual output is either equal to the
input Y or an erasure “∗.” The success probabilities of a 1-to-
K PEC are described by 2K non-negative parameters: p

S[K]\S
for all S ∈ 2[K] such that

∑
S∈2[K] pS[K]\S = 1 and for all

y ∈ GF(q),

Prob ({k ∈ [K] : Zk = y} = S|Y = y) = p
S[K]\S .

That is, p
S[K]\S denotes the probability that the transmitted

symbol Y is received by and only by the receivers {dk : k ∈
S}. In addition, the following notation will be used frequently
in this work: For all S ∈ 2[K], we define

p∪S =
∑

∀T∈2[K]:T∩S 6=∅
p

T [K]\T . (1)

That is, p∪S is the probability that at least one of the receivers
dk in S successfully receives the transmitted symbol Y . For
example, when K = 2,

p∪{1,2} = p{1}{2} + p{2}{1} + p{1,2}∅

is the probability that at least one of d1 and d2 receives the
transmitted symbol Y . We sometimes use pk as shorthand for
p∪{k}, which is the marginal probability that the k-th receiver
dk receives Y successfully.

We can repeatedly use the channel for n time slots and let
Y (t) and Z(t) denote the input and output for the t-th time
slot. We assume that the 1-to-K broadcast PEC is memoryless
and time-invariant, i.e., for any given functions y(·) : [n] 7→
GF(q) and S(·) : [n] 7→ 2[K],

Prob (∀t ∈ [n], {k : Zk(t) = y(t)} = S(t)

|∀t ∈ [n], Y (t) = y(t)) =
n∏

t=1

p
S(t)[K]\S(t)

.

The above setting allows the success events among different
receivers to be dependent, also defined as spatial dependence.
For example, when two logical receivers dk1 and dk2 are
situated in the same physical node, we simply set the p

S[K]\S
parameters to allow perfect correlation between the success
events of dk1 and dk2 . Throughout this paper, we consider
memoryless 1-to-K broadcast PECs that may or may not be
spatially dependent.

B. Broadcast PEC Capacity with Channel Output Feedback

We consider the following broadcast scenario from s to
{dk : k ∈ [K]}. Assume slotted transmission. Source s is
allowed to use the 1-to-K PEC exactly n times and would
like to carry information for K independent downlink data
sessions, one for each dk, respectively. For each k ∈ [K], the
k-th session (from s to dk) contains nRk information symbols
Xk

∆= {Xk,j ∈ GF(q), j ∈ [nRk]}, where Rk is the data rate
for the (s, dk) session. All the information symbols Xk,j for
all k ∈ [K] and j ∈ [nRk] are independently and uniformly
distributed in GF(q).
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Fig. 1. Illustration of a 1-to-K broadcast PEC with COF.

We consider the setting with instant channel output feedback
(COF). That is, for the t-th time slot, source s sends out a
symbol

Y (t) = ft ({Xk : ∀k ∈ [K]}, {Z(τ) : τ ∈ [t− 1]}) ,

which is a function ft(·) based on the information symbols
{Xk,j} and the COF {Z(τ) : τ ∈ [t − 1]} of the previous
transmissions. In the end of the n-th time slot, each dk decodes
its own desired symbols

X̂k
∆= {X̂k,j : j ∈ [nRk]} = gk({Zk(t) : ∀t ∈ [n]}),

where gk(·) is the decoding function of dk based on the
corresponding observation Zk(t) for t ∈ [n]. A network code
of length n and finite field GF(q) is thus defined by the
corresponding n encoding functions ft(·), t ∈ [n], and K
decoding functions gk(·), k ∈ [K]. The functions ft(·) and
gk(·) may or may not be linear. Note that we assume that the
PEC channel parameters

{
p

S[K]\S : ∀S ∈ 2[K]
}

are available
at s before transmission. See Fig. 1 for illustration.

We now define the achievable rate of a 1-to-K broadcast
PEC with COF.

Definition 1: A rate vector (R1, · · · , RK) is achievable if
for any ε > 0, there exists a network code of length n and
finite field GF(q) such that

∀k ∈ [K], Prob
(
X̂k 6= Xk

)
< ε.

Definition 2: The capacity region of a 1-to-K broadcast
PEC with COF is defined as the closure of all achievable rate
vectors (R1, · · · , RK).

C. Existing Results

Theorem 1 (Theorem 3 in [9]): The capacity region
(R1, R2) of a 1-to-2 broadcast PEC with COF is described
by

{
R1
p1

+ R2
p∪{1,2}

≤ 1
R1

p∪{1,2}
+ R2

p2
≤ 1

. (2)

One scheme that achieves the above capacity region is the 2-
phase approach in [9]. That is, for any (R1, R2) in the interior
of (2), perform the following coding operations.

(a) Sending the first Phase-2 packet [X1 + X2].

(b) The optimal coding operation after sending the [X1 + X2].

Fig. 2. Example of the suboptimality of the 2-phase approach.

In Phase 1, the source s sends out uncoded information
packets X1,j1 and X2,j2 for all j1 ∈ [nR1] and j2 ∈ [nR2]
until each packet is received by at least one receiver. Those
X1,j1 packets that are received by d1 have already reached
their intended receiver and thus will not be retransmitted in
the second phase. Those X1,j1 packets that are received by d2

but not by d1 need to be retransmitted in the second phase,
and are thus stored in a separate queue Q1;21. Symmetrically,
the X2,j2 packets that are received by d1 but not by d2 are
stored in another queue Q2;12. Those “overheard” packets in
queues Q1;21 and Q2;12 will later be linearly mixed together
in Phase 2. Each single coded packet in Phase 2 can now
serve both d1 and d2 simultaneously. The intersession network
coding gain in Phase 2 allows us to achieve the capacity region
in (2).

Based on the same logic, [15] derives an achievability region
for 1-to-K broadcast PECs with COF under a perfectly sym-
metric setting. The main idea can be viewed as an extension of
the above 2-phase approach. That is, for Phase 1, the source s
sends out all Xk,j , ∀k ∈ [K], j ∈ [nRk], until each of them is
received by at least one of the receivers {dk : k ∈ [K]}. Those
Xk,j packets that are received by dk have already reached their
intended destination and will not be transmitted in Phase 2.
Those Xk,j packets that are received by some other di but not
by dk are the “overheard packets,” and could potentially be
mixed with packets of the i-th session. In Phase 2, source
s takes advantage of all the coding opportunities created
in Phase 1 and mixes the packets of different sessions to
capitalize the network coding gain. [20] implements such 2-
phase approach while taking into account of various practical
considerations, such as time-out and network synchronization.

D. The Suboptimality of The 2-Phase Approach

Although being throughput optimal for the simplest K = 2
case, the above 2-phase approach does not achieve capacity for
the cases in which K > 2. To illustrate this point, consider
the example in Fig. 2.
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In Fig. 2(a), source s would like to serve three receivers
d1 to d3. Each (s, dk) session contains a single information
packet Xk, and the goal is to convey each Xk to the intended
receiver dk for all k = 1, 2, 3. Suppose the 2-phase approach
in Section II-C is used. During Phase 1, each packet is sent
repeatedly until it is received by at least one receiver, which
either conveys the packet to the intended receiver or creates
an overheard packet that can be used in Phase 2. Suppose
after Phase 1, d1 has received X2 and X3, d2 has received
X1 and X3, and d3 has not received any packet (Fig. 2(a)).
Since each packet has reached at least one receiver, source s
moves to Phase 2.

One can easily check that if s sends out a coded packet
[X1 + X2] in Phase 2, such packet can serve both d1 and
d2. That is, d1 (resp. d2) can decode X1 (resp. X2) by
subtracting X2 (resp. X1) from [X1 +X2]. Nonetheless, since
the broadcast PEC is random, the coded packet [X1 + X2]
may or may not reach d1 or d2. Suppose that due to random
channel realization, [X1 + X2] reaches only d3, see Fig. 2(a).
The remaining question is what s should send for the next
time slot. For the following, we compare the existing 2-phase
approach and a new optimal decision.

The existing 2-phase approach: We first note that since
d3 received neither X1 nor X2 in the past, the newly received
[X1 + X2] cannot be used by d3 to decode any information
packet. In the existing results [9], [15], [20], d3 thus discards
the overheard [X1 +X2], and s would continue sending [X1 +
X2] for the next time slot in order to capitalize this coding
opportunity created in Phase 1.

The optimal decision: It turns out that the broadcast system
can actually benefit from the fact that d3 overhears the coded
packet [X1 + X2] even though neither X1 nor X2 can be
decoded by d3. More explicitly, instead of sending [X1 +X2],
s should send a new packet [X1 + X2 + X3] that mixes all
three sessions together. With the new [X1 + X2 + X3] (see
Fig. 2(b) for illustration), d1 can decode the desired X1 by
subtracting both X2 and X3 from [X1 + X2 + X3]. d2 can
decode the desired X2 by subtracting both X1 and X3 from
[X1 + X2 + X3]. For d3, even though d3 does not know the
values of X1 and X2, d3 can still use the previously overheard
[X1 +X2] packet to subtract the interference (X1 +X2) from
[X1 +X2 +X3] and decode its desired packet X3. As a result,
the new coded packet [X1 + X2 + X3] serves all destinations
d1, d2, and d3, simultaneously. This new coding decision thus
strictly outperforms the existing 2-phase approach.

Two critical observations can be made for this example.
First of all, when d3 overhears a coded [X1 + X2] packet,
even though d3 can decode neither X1 nor X2, such new
side information can still be used for future decoding. More
explicitly, as long as s sends packets that are of the form
α(X1 + X2) + βX3, the “aligned interference” α(X1 + X2)
can be completely removed by d3 without decoding individual
X1 and X2. This technique is thus termed “code alignment,”
which is in parallel with the interference alignment method
used in Gaussian interference channels [2]. Second of all, in
the existing 2-phase approach, Phase 1 has the dual roles of
sending uncoded packets to their intended receivers, and, at the
same time, creating new coding opportunities (the overheard

Fig. 3. Illustration of the proof of Proposition 1.

packets) for Phase 2. It turns out that this dual-purpose Phase-
1 operation is indeed optimal (as will be seen in Sections IV
and V). The suboptimality of the 2-phase approach for K > 2
is actually caused by the Phase-2 operation, in which source s
only capitalizes the coding opportunities created in Phase 1 but
does not create any new coding opportunities for subsequent
packet mixing. One can thus envision that for the cases K > 2,
an optimal policy should be a multi-phase policy, say an M -
phase policy, such that for all i ∈ [M − 1] the packets sent in
the i-th phase have dual roles of conveying desired information
to their intended receivers and simultaneously creating new
coding opportunities for the subsequent Phases (i + 1) to M .
These two observations will be the building blocks of our
achievability results.

III. THE MAIN RESULTS

We have two groups of results. Section III-A focuses
on general 1-to-K broadcast PECs with arbitrary values of
the PEC parameters, while Section III-B focuses on 1-to-K
broadcast PECs with some restrictive conditions on the values
of the PEC parameters.

A. Capacity Results For General 1-to-K Broadcast PECs

We define any bijective function π : [K] 7→ [K] as a K-
permutation and we sometimes use permutation as shorthand
whenever it is clear in the context that we are focusing on
[K]. There are totally K! distinct K-permutations. Given any
K-permutation π, for all j ∈ [K] we define Sπ

j
∆= {π(l) :

∀l ∈ [j]} as the set of the first j elements according to the
given permutation π. We then have the following capacity
outer bound for any 1-to-K broadcast PEC with COF.

Proposition 1: Any achievable rates (R1, · · · , RK) must
satisfy the following K! inequalities:

∀π,

K∑

j=1

Rπ(j)

p∪Sπ
j

≤ 1. (3)

Proof: Proposition 1 can be proven by a simple extension
of the outer bound arguments used in [9], [19]. (Note that when
K = 2, Proposition 1 collapses to Theorem 3 of [9].)

For any given permutation π, consider a new broadcast
channel with (K − 1) artificially created information pipes
connecting all the receivers d1 to dK . More explicitly, for all
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j ∈ [K−1], create an auxiliary pipe from dπ(j) to dπ(j+1). See
Fig. 3 for illustration. With the auxiliary pipes, any destination
dπ(j), j ∈ [K], not only observes its corresponding output
Zπ(j) of the broadcast PEC but also has all the information
Zπ(l) of its “upstream receivers” dπ(l) for all l ∈ [j−1]. Since
we only create new pipes, any achievable rates of the original
1-to-K broadcast PEC with COF must also be achievable
in the new 1-to-K broadcast PEC with COF in Fig. 3. The
capacity of the new 1-to-K broadcast PEC with COF is thus an
outer bound on the capacity of the original 1-to-K broadcast
PEC with COF.

On the other hand, the new 1-to-K broadcast PEC in
Fig. 3 is a physically degraded broadcast channel with the
new success probability of dk being p∪Sπ

k
instead of pπ(k)

(see Fig. 3). [7] proves that COF does not increase the
capacity of any physically degraded 1-to-2 broadcast channel.
By extending the derivation steps in [7], one can easily prove
that COF does not increase the capacity of any physically
degraded 1-to-K broadcast channel for arbitrary K values.
Therefore the capacity of the new 1-to-K broadcast PEC with
COF is identical to the capacity of the new 1-to-K broadcast
PEC without COF. Since (3) is the capacity of the new 1-to-K
broadcast PEC without COF, (3) must be an outer bound of the
capacity of the original 1-to-K PEC with COF. By considering
different permutation π, the proof of Proposition 1 is complete.

In the following, we first provide the capacity results for
general 1-to-3 broadcast PECs. We then state an achievability
inner bound for general 1-to-K broadcast PECs with COF
for arbitrary K values, which, together with the outer bound
in Proposition 1 can effectively bracket the capacities for the
cases in which K ≥ 4.

Proposition 2: For any parameter values{
p

S{1,2,3}\S : ∀S ∈ 2{1,2,3}
}

of a 1-to-3 broadcast PEC, the
capacity outer bound in Proposition 1 is indeed the capacity
region of a 1-to-3 broadcast PEC with COF.
The proof of Proposition 2 is provided in Section V-A.

To state the capacity inner bound, we need to define an
additional function: fp(ST ), which takes an input ST of two
disjoint sets S, T ∈ 2[K]. More explicitly, we define fp(ST ) as
the probability that a packet Y , transmitted through the 1-to-K
PEC, is received by all those di with i ∈ S and not received
by any dj with j ∈ T . For example, fp(S[K]\S) = p

S[K]\S
for all S ∈ 2[K]. For arbitrary disjoint S and T , we thus have

fp(ST ) ∆=
∑

∀S1:S⊆S1,T⊆([K]\S1)

p
S1[K]\S1

. (4)

We also say that a strict total ordering “≺” on 2[K] is
cardinality-compatible if

∀S1, S2 ∈ 2[K], |S1| < |S2| ⇒ S1 ≺ S2. (5)

Proposition 3: Fix any arbitrary cardinality-compatible,
strict total ordering ≺ on 2[K]. For any general 1-to-K
broadcast PEC with COF, a rate vector (R1, · · · , RK) can
be achieved by a linear network code if there exist 2K non-
negative x variables, indexed by S ∈ 2[K]:{

xS ≥ 0 : ∀S ∈ 2[K]
}

, (6)

and K3K−1 non-negative w variables, indexed by the tuple
(k; S → T ):

{
wk;S→T ≥ 0 : ∀k ∈ [K], ∀S, T ∈ 2[K],

satisfying T ⊆ S ⊆ ([K]\k)} , (7)

such that jointly the following linear inequalities3 are satisfied:
∑

∀S:S∈2[K]

xS < 1 (8)

∀T ∈ 2[K], ∀k ∈ T,

xT ≥
∑

∀S:(T\k)⊆S⊆([K]\k)

wk;S→(T\k) (9)

∀k ∈ [K], wk;∅→∅ · p∪[K] ≥ Rk (10)

∀k ∈ [K], ∀S ⊆ ([K]\k) satisfying S 6= ∅,
 ∑

∀T1:T1⊆S

wk;S→T1


 p∪([K]\S) ≥

∑

∀S1, T1 : such that
T1 ⊆ S1 ⊆ ([K]\k),

T1 ⊆ S, S * S1

wk;S1→T1 · fp

(
(S\T1)([K]\S)

)

(11)

∀k ∈ [K], S, T ∈ 2[K] satisfying T ⊆ S ⊆ ([K]\k), T 6= S,
wk;S→T +

∑

∀T1 : such that T1 ⊆ S,
(T1 ∪ {k}) ≺ (T ∪ {k})

wk;S→T1


 p∪([K]\S) ≤

∑

∀S1 : S1 ≺ S,
T ⊆ S1 ⊆ ([K]\k)

wk;S1→T · fp

(
(S\T )([K]\S)

)
+

∑

∀S1, T1 : such that
T1 ⊆ S1 ⊆ ([K]\k),

(T1 ∪ {k}) ≺ (T ∪ {k}),
T1 ⊆ S, S * S1

wk;S1→T1 · fp

(
(S\T1)([K]\S)

)
.

(12)

The proof of Proposition 3 is provided in Section V-C.
Remark: For K ≥ 4 and some general classes of PEC pa-

rameters, one can prove that the inner bound of Proposition 3
meets the outer bound in Proposition 1. Two such classes are
discussed in the next subsection.

B. Capacity Results For Two Classes of 1-to-K Broadcast
PECs

We first provide the capacity results for symmetric broadcast
PECs.

3There are totally (1 + K2K−1 + K3K−1) inequalities. More explicitly,
(8) describes one inequality. There are K2K−1 inequalities having the form
of (9). There are totally K3K−1 inequalities having the form of one of (10),
(11), and (12). For comparison, the outer bound in Proposition 1 actually has
more inequalities asymptotically (K! of them) than those in Proposition 3.

5



Definition 3: A 1-to-K broadcast PEC is symmetric if the
channel parameters

{
p

S[K]\S : ∀S ∈ 2[K]
}

satisfy

∀S1, S2 ∈ 2[K] with |S1| = |S2|, p
S1[K]\S1

= p
S2[K]\S2

.

That is, the success probability p
S[K]\S depends only on |S|,

the size of S, and does not depend on the subset of receivers
being considered.

Proposition 4: For any symmetric 1-to-K broadcast PEC
with COF, the capacity outer bound in Proposition 1 is indeed
the capacity region.
The proof of Proposition 4 is provided in Section V-D.

The perfect channel symmetry condition in Proposition 4
may be a bit restrictive for real environments as most broadcast
channels are non-symmetric. A more realistic setting is to al-
low channel asymmetry while assuming spatial independence
between different destinations dk.

Definition 4: A 1-to-K broadcast PEC is spatially indepen-
dent if the channel parameters

{
p

S[K]\S : ∀S ∈ 2[K]
}

satisfy

∀S ∈ 2[K], p
S[K]\S =

(∏

i∈S

pi

) 
 ∏

j∈[K]\S
(1− pj)


 ,

where pk is the marginal success probability of destination dk.
Note: A symmetric 1-to-K broadcast PEC needs not be spa-

tially independent. A spatially independent PEC is symmetric
if p1 = p2 = · · · = pK .

To describe the capacity results for spatially independent
1-to-K PECs, we need the following additional definition.

Definition 5: Consider a 1-to-K broadcast PEC with
marginal success probabilities p1 to pK . Without loss of
generality, assume p1 ≤ p2 ≤ · · · ≤ pK , which can be
achieved by relabeling. We say a rate vector (R1, · · · , RK)
is one-sidedly fair if

∀i < j, Ri · (1− pi) ≥ Rj · (1− pj).

We use Λosf to denote the collection of all one-sidedly fair
rate vectors.

The one-sided fairness contains many practical scenar-
ios of interest. For example, the perfectly fair rate vector
(R, R, · · · , R) by definition is also one-sidedly fair. Another
example is when min(p1, · · · , pK) ≥ 1

2 and we allow the
rate Rk to be proportional to the corresponding marginal
success probability pk, i.e., Rk = pkR. Then the rate vector
(p1R, p2R, · · · , pKR) is also one-sidedly fair.

We then have the following proposition.
Proposition 5: Suppose the 1-to-K PEC of interest is spa-

tially independent with marginal success probabilities 0 <
p1 ≤ p2 ≤ · · · ≤ pK . Any one-sidedly fair rate vector
(R1, · · · , RK) ∈ Λosf is in the capacity region if and only
if (R1, · · · , RK) ∈ Λosf satisfies

K∑

k=1

Rk

1−∏k
l=1(1− pl)

≤ 1. (13)

Proposition 5 implies that the region in Proposition 1 is
indeed the capacity when focusing on the one-sidedly fair
rate region Λosf. The proof of Proposition 5 is provided in
Section V-D.

IV. THE PACKET EVOLUTION SCHEMES

In the following, we describe a new class of coding schemes,
termed the packet evolution (PE) scheme, which embodies the
concept of code alignment and is the building block of the
capacity / achievability results in Section III.

A. Description Of The Packet Evolution Scheme

Recall that each (s, dk) session has nRk information pack-
ets Xk,1 to Xk,nRk

. We associate each of the
∑K

k=1 nRk

information packets with an intersession coding vector v and a
set S ⊆ [K]. An intersession coding vector is a

(∑K
k=1 nRk

)
-

dimensional row vector with each coordinate being a scalar in
GF(q). Before the start of the broadcast, for any k ∈ [K]
and j ∈ [nRk] we initialize the corresponding vector v of
Xk,j in a way that the only nonzero coordinate of v is the
coordinate corresponding to Xk,j and all other coordinates
are zero. Without loss of generality, we set the value of the
only non-zero coordinate to one. That is, initially the coding
vectors v are set to the elementary basis vectors of the entire(∑K

k=1 nRk

)
-dimensional message space.

For any k ∈ [K] and j ∈ [nRk] the set S of Xk,j is
initialized to ∅. As will be clear shortly after, we call S the
overhearing set4 of the packet Xk,j . For easier reference, we
use v(Xk,j) and S(Xk,j) to denote the intersession coding
vector and the overhearing set of the given packet Xk,j .

Throughout the n broadcast time slots, source s constantly
updates S(Xk,j) and v(Xk,j) according to the COF. The main
structure of a packet evolution scheme can now be described
as follows.

§ THE PACKET EVOLUTION SCHEME

1: Source s maintains a single flag fchange. Initially, set
fchange ← 1.

2: for t = 1, · · · , n, do
3: In the beginning of the t-th time slot, do Lines 4 to 10.
4: if fchange = 1 then
5: Choose two non-empty subsets T, Tsel ∈ 2[K] satis-

fying Tsel ⊆ T .
6: Run a subroutine PACKET SELECTION, which takes

T and Tsel as input and outputs a collection of
|Tsel| packets {Xk,jk

: ∀k ∈ Tsel}, one from each
session k ∈ Tsel, respectively. The selected packets
are termed the target packets, and we require that all
target packets Xk,jk

satisfy (S(Xk,jk
) ∪ {k}) ⊇ T

for all k ∈ Tsel.
7: Generate uniformly randomly |Tsel| coefficients ck ∈

GF(q) for all k ∈ Tsel and construct an intersession
coding vector vtx ←

∑
k∈Tsel

ck · v(Xk,jk
).

8: Set fchange ← 0.
9: end if

10: Send out a linearly intersession coded packet according
to the coding vector vtx. That is, we send

Ytx = vtx · (X1,1, · · · , XK,nRK
)T

4Unlike the existing results [12], in this work the overhearing set does
not mean that the receivers di in S(Xk,j) have known the value of Xk,j .
Detailed discussion of the overhearing set S(Xk,j) are provided in Lemma 2.
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where (X1,1, · · · , XK,nRK )T is a column vector con-
sisting of all information symbols.5

11: In the end of the t-th time slot, use a subroutine
UPDATE to revise the v(Xk,jk

) and S(Xk,jk
) values

of all target packets Xk,jk
based on the COF.

12: if the S(Xk,jk
) value changes for at least one target

packet Xk,jk
after the UPDATE then

13: Set fchange ← 1.
14: end if
15: end for

In summary, a group of target packets {Xk,jk
} are selected

according to the choice of the subset T . All k must be in T
and the subset Tsel is used to denote the subset of T from
which target packets are actually selected. The corresponding
vectors {v(Xk,jk

)} are used to construct a coding vector vtx.
The same coded packet Ytx, corresponding to vtx, is then sent
repeatedly until one of the target packets Xk,jk

evolves (when
the corresponding S(Xk,jk

) changes). Then a new subset T
is chosen and the process is repeated until we use up all n
time slots. Three subroutines are used as the building blocks
of a packet evolution method: (i) How to choose the non-
empty sets T, Tsel ∈ 2[K]; (ii) For each k ∈ Tsel, how to
select a single target packet Xk,jk

among all Xk,j satisfying
(S(Xk,j) ∪ {k}) ⊇ T ; and (iii) How to update the coding
vectors v(Xk,jk

) and the overhearing sets S(Xk,jk
). In the

following, we first describe the detailed update rules.

§ UPDATE OF S(Xk,jk
) AND v(Xk,jk

)
1: Input: The T , Tsel, and vtx used for transmission in the

current time slot; And Srx, the set of destinations di which
receive the transmitted coded packet in the current time
slot. (Srx is obtained through the COF in the end of the
current time slot.)

2: for all k ∈ Tsel do
3: if Srx * S(Xk,jk

) then
4: Set S(Xk,jk

) ← (T ∩ S(Xk,jk
)) ∪ Srx.

5: Set v(Xk,jk
) ← vtx.

6: end if
7: end for

An Illustrative Example Of The PE Scheme:

Let us revisit the optimal coding scheme of the example
in Fig. 2 of Section II-D. Before broadcast, the three infor-
mation packets X1 to X3 have the corresponding v and S:
v(X1) = (1, 0, 0), v(X2) = (0, 1, 0), and v(X3) = (0, 0, 1),
and S(X1) = S(X2) = S(X3) = ∅. We use the following
table for summary.

X1: (1,0,0),∅ X2: (0,1,0),∅ X3: (0,0,1),∅
Consider a duration of 5 time slots.

5It is critical to note that the coding operation is based purely on vtx rather
than on the list of the target packets Xk,jk

. It is possible that vtx has non-zero
coordinates corresponding to some Xk′,j that are not one of the target packets
Xk,jk

. By our construction, those Xk′,j will still participate in creating the
coded packet even though they are not one of the target packets.

Slot 1: Suppose that s chooses T = Tsel = {1}. Since
(∅ ∪ {1}) ⊇ T , PACKET SELECTION outputs X1. The coding
vector vtx is thus a scaled version of v(X1) = (1, 0, 0).
Without loss of generality, we choose vtx = (1, 0, 0). Based
on vtx, s transmits a packet 1X1 +0X2 +0X3 = X1. Suppose
[X1] is received by d2, i.e., Srx = {2}. Since Srx = {2} is not
a subset of S(X1) = ∅, UPDATE thus sets S(X1) = {2} and
v(X1) = vtx = (1, 0, 0). The packet summary becomes

X1: (1,0,0),{2} X2: (0,1,0),∅ X3: (0,0,1),∅ .

Slot 2: Suppose that s chooses T = Tsel = {2}. Since
(∅ ∪ {2}) ⊇ T , PACKET SELECTION outputs X2. The coding
vector vtx is thus a scaled version of v(X2) = (0, 1, 0).
Without loss of generality, we choose vtx = (0, 1, 0) and
accordingly [X2] is sent. Suppose [X2] is received by d1, i.e.,
Srx = {1}. Since Srx * S(X2), after UPDATE the packet
summary becomes

X1: (1,0,0),{2} X2: (0,1,0),{1} X3: (0,0,1),∅ .

Slot 3: Suppose that s chooses T = Tsel = {3} and PACKET
SELECTION outputs X3. The coding vector vtx is thus a scaled
version of v(X3) = (0, 0, 1), and we choose vtx = (0, 0, 1).
Accordingly [X3] is sent. Suppose [X3] is received by d1 and
d2, i.e., Srx = {1, 2}. Then after UPDATE, the packet summary
becomes

X1: (1,0,0),{2} X2: (0,1,0),{1} X3: (0,0,1),{1, 2} .

Slot 4: Suppose that s chooses T = Tsel = {1, 2}. Since
(S(X1) ∪ {1}) ⊇ T and (S(X2) ∪ {2}) ⊇ T , PACKET SE-
LECTION outputs {X1, X2}. vtx is thus a linear combination of
v(X1) = (1, 0, 0) and v(X2) = (0, 1, 0). Without loss of gen-
erality, we choose vtx = (1, 1, 0) and accordingly [X1 + X2]
is sent. Suppose [X1 + X2] is received by d3, i.e., Srx = {3}.
Then during UPDATE, for X1, Srx = {3} * S(X1) = {2}.
UPDATE thus sets S(X1) = {2, 3} and v(X1) = vtx =
(1, 1, 0). For X2, Srx = {3} * S(X2) = {1}. UPDATE thus
sets S(X2) = {1, 3} and v(X2) = vtx = (1, 1, 0). The packet
summary becomes

X1: (1,1,0),{2, 3} X2: (1,1,0),{1, 3}
X3: (0,0,1),{1, 2} .

Slot 5: Suppose that s chooses T = Tsel = {1, 2, 3}. By
Line 6 of THE PACKET EVOLUTION SCHEME, the subroutine
PACKET SELECTION outputs {X1, X2, X3}. vtx is thus a lin-
ear combination of v(X1) = (1, 1, 0), v(X2) = (1, 1, 0), and
v(X3) = (0, 0, 1), which is of the form α(X1 + X2) + βX3.
Note that the packet evolution scheme automatically achieves
code alignment, which is the key component of the optimal
coding policy in Section II-D. Without loss of generality, we
choose α = β = 1 and vtx = (1, 1, 1). Ytx = [X1 + X2 + X3]
is sent accordingly. Suppose [X1 + X2 + X3] is received by
{d1, d2, d3}, i.e., Srx = {1, 2, 3}. Then after UPDATE, the
summary of the packets becomes

X1: (1,1,1),{1, 2, 3} X2: (1,1,1),{1, 2, 3}
X3: (1,1,1),{1, 2, 3} .

From the above step-by-step illustration, we see that the
optimal coding policy in Section II-D is a special instance of
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a packet evolution scheme.

B. Properties of A Packet Evolution Scheme

We term the packet evolution (PE) scheme in Section IV-A a
generic PE method since it does not specify how to choose T ,
Tsel, and the target packets Xk,jk

, and only requires Tsel ⊆ T
and the output of PACKET SELECTION satisfying (S(Xk,jk

)∪
{k}) ⊇ T, ∀k ∈ Tsel. In this subsection, we state some key
properties for any generic PE scheme. The intuition of the PE
scheme is based on these key properties and will be discussed
further in Section IV-C.

We first define the following notation for any linear network
code. (Note that the PE scheme is a linear network code.)

Definition 6: Consider any linear network code. For any
destination dk, each of the received packet Zk(t) can be
represented by a vector wk(t), which is a

(∑K
k=1 nRk

)
-

dimensional vector containing the coefficients used to generate
Zk(t). That is, Zk(t) = wk(t) · (X1,1, · · · , XK,nRK )T. If
Zk(t) is an erasure, we simply set wk(t) to be an all-zero
vector. The knowledge space of destination dk in the end of
time t is denoted by ΩZ,k(t), which is the linear span of wk(τ),
τ ≤ t. That is, ΩZ,k(t) ∆= span(wk(τ) : ∀τ ∈ [t]).

Definition 7: For any non-coded information packet Xk,j ,
we can view it as a product δk,j · (X1,1, · · · , XK,nRK

)T,
where δk,j is a

(∑K
k=1 nRk

)
-dimensional row vector with

a single one in the corresponding coordinate and all other
coordinates being zero. The message space of dk is then
defined as ΩM,k = span(δk,j : ∀j ∈ [nRk]).

With the above definitions, we have the following self-
explanatory lemma:

Lemma 1: In the end of time t, destination dk is able to
decode all the desired information packets Xk,j , ∀j ∈ [nRk],
if and only if ΩM,k ⊆ ΩZ,k(t).

We now define “non-interfering vectors” from the perspec-
tive of a destination dk.

Definition 8: In the end of time t, a vector v is “non-
interfering” from the perspective of dk if

v ∈ span(ΩZ,k(t),ΩM,k).

We note that any non-interfering vector v can always
be expressed as the sum of two vectors v′ and w, where
v′ ∈ ΩM,k is a linear combination of all information vectors
for dk and w ∈ ΩZ,k(t) is a linear combination of all the
packets received by dk. If v′ = 0, then the packet generated
from v = w is transparent from dk’s perspective since dk

can compute the value of w · (X1,1, · · · , XK,nRK
)T from

its current knowledge space ΩZ,k(t). If v′ 6= 0, then from
dk’s perspective, the packet generated from v = v′ + w
can be viewed as a pure information packet corresponding
to v′ ∈ ΩM,k by subtracting the content resulted from the
unwanted w vector. In either case, the packet corresponding
to v is not interfering with the transmission of the (s, dk)
session, which gives the name of “non-interfering vectors.”

The following Lemmas 2 and 3 discuss the time dynamics of
the PE scheme. To distinguish different time instants, we add
a time subscript and use St−1(Xk,jk

) and St(Xk,jk
) to denote

the overhearing set of Xk,jk
in the end of time (t− 1) and t,

respectively. Similarly, vt−1(Xk,jk
) and vt(Xk,jk

) denote the
coding vectors in the end of time (t− 1) and t, respectively.

Lemma 2: In the end of the t-th time slot, consider any
Xk,j out of all the information packets X1,1 to XK,nRK . Its
assigned vector vt(Xk,j) is non-interfering from the perspec-
tive of di for all i ∈ (St(Xk,j) ∪ {k}).

To illustrate Lemma 2, consider our 5-time-slot example.
In the end of Slot 4, we have v(X1) = (1, 1, 0) and
S(X1) ∪ {1} = {1, 2, 3}. From d1’s perspective, ΩZ,1(4) =
span((0, 1, 0), (0, 0, 1)) and ΩM,1 = span((1, 0, 0)). v(X1) ∈
span(ΩZ,1(4),ΩM,1) is indeed non-interfering from d1’s per-
spective. The same reasoning can be applied to d2 to show
that v(X1) is non-interfering from d2’s perspective. For
d3, ΩZ,3(4) = span((1, 1, 0)) and ΩM,3 = span((0, 0, 1)).
v(X1) ∈ span(ΩZ,3(4),ΩM,3) is indeed non-interfering from
d3’s perspective. Lemma 2 holds for our illustrative example.

We now define the remaining space of a PE scheme:
Definition 9: In the end of the t-th time slot, the remaining

space of destination dk is defined by ΩR,k(t):

ΩR,k(t) ∆=
span(vt(Xk,j) : ∀j ∈ [nRk] satisfying k /∈ St(Xk,j)).

Lemma 3: For any n and any ε > 0, there exists a
sufficiently large finite field GF(q) such that for all k ∈ [K]
and t ∈ [n],

Prob (span(ΩZ,k(t), ΩR,k(t)) = span(ΩZ,k(t),ΩM,k))
> 1− ε.

Intuitively, Lemma 3 says that if in the end of
time t we transmit some additional packets vt(Xk,j) ·
(X1,1, · · · , XK,nRK

)T from s to dk through a noise-free
information pipe for all the remaining coding vectors
{vt(Xk,j) : ∀j ∈ [nRk], k /∈ St(Xk,j)}, then with high prob-
ability, dk can successfully decode all the desired information
packets Xk,1 to Xk,nRk

(see Lemma 1) by the knowledge
space ΩZ,k(t) and the new information of the remaining space
ΩR,k(t).

Lemma 3 directly implies the following corollary.
Corollary 1: For any n and any ε > 0, there exists a

sufficiently large finite field GF(q) such that the following
statement holds. If in the end of the n-th time slot, all
information packets Xk,j have Sn(Xk,j) 3 k, then

Prob(∀k, dk can decode all its desired {Xk,j}) > 1− ε.

Proof: If in the end of the n-th time slot, all Xk,j

have Sn(Xk,j) 3 k, then the corresponding ΩR,k(n) = {0}
contains only the origin for all k ∈ [K]. Therefore, Corollary 1
is simply a restatement of Lemmas 1 and 3.

To illustrate Corollary 1, consider our 5-time-slot example.
In the end of Slot 5, since k ∈ S(Xk) for all k ∈ {1, 2, 3},
Corollary 1 guarantees that with high probability all dk can
decode the desired Xk, which was first observed in the
example of Section II-D.

The proofs of Lemmas 2 and 3 are relegated to Appen-
dices A and B, respectively.
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C. The Intuitions Of The Packet Evolution Scheme

Lemmas 2 and 3 are the key properties of a PE scheme. In
this subsection, we discuss the corresponding intuitions.

Receiving the information packet Xk,j: Each informa-
tion packet keeps a coding vector v(Xk,j). Whenever we
would like to communicate Xk,j to destination dk, instead of
sending a non-coded packet Xk,j directly, we send an inters-
ession coded packet according to the coding vector v(Xk,j).
Lemma 3 shows that if we send the packets corresponding
to all coding vectors v(Xk,j) that have not been heard by
dk (with k /∈ S(Xk,j)) through a noise-free information
pipe, then dk can indeed decode all the desired packets Xk,j

with close-to-one probability. It also implies, although in an
implicit way, that once a v(Xk,j0) is heard by dk for some
j0 (therefore k ∈ S(Xk,j0)), there is no need to transmit
this particular v(Xk,j0) in the later time slots. Jointly, these
two implications show that we can indeed use the coded
packet v(Xk,j) · (X1,1, · · · , XK,nRK

)T as a substitute for
Xk,j without losing any information. In the broadest sense, we
can say that dk receives a packet Xk,j if the corresponding
v(Xk,j) successfully arrives dk in some time slot t.

For each Xk,j , the set S(Xk,j) serves two purposes: (i)
Keep track of whether its intended destination dk has received
this Xk,j (through the corresponding v(Xk,j)), and (ii) Keep
track of whether v(Xk,j) is non-interfering to other destina-
tions di, i 6= k. We discuss these two purposes separately.

Tracking the reception of the intended dk: We first note
that in the end of time 0, dk has not received any packet and
we indeed have k /∈ S(Xk,j) = ∅. We then notice that for
any given Xk,j , the set S(Xk,j) evolves over time. By Line 4
of the UPDATE, we can prove that as time proceeds, the first
time t0 such that k ∈ S(Xk,j) must be the first time when
Xk,j is received by dk (i.e., Xk,j is chosen in the beginning
of time t and k ∈ Srx in the end of time t). One can also show
that for any Xk,j once k ∈ St0(Xk,j) in the end of time t0
for some t0, we will have k ∈ St(Xk,j) for all t ≥ t0. By the
above reasonings, checking whether k ∈ S(Xk,j) indeed tells
us whether the intended receiver dk has received Xk,j .

Tracking the non-interference from the perspective of
di 6= dk: Lemma 2 also ensures that v(Xk,j) is non-
interfering from di’s perspective for any i ∈ S(Xk,j), i 6= k.
Therefore S(Xk,j) successfully tracks whether v(Xk,j) is
non-interfering from the perspectives of di, i 6= k.

Serving multiple destinations simultaneously by mixing
non-interfering packets: The above discussion ensures that
when we would like to send an information packet Xk,jk

to dk,
we can send a coded packet v(Xk,jk

) · (X1,1, · · · , XK,nRK
)T

as an information-lossless substitute. On the other hand, by
Lemma 2, such v(Xk,jk

) is non-interfering from di’s per-
spective for all i ∈ (S(Xk,jk

) ∪ {k}). Therefore, instead of
sending a single coded packet corresponding to v(Xk,jk

), it is
beneficial to combine the transmission of two coded packets,
corresponding to v(Xk,jk

) and v(Xl,jl
), respectively, as long

as l ∈ S(Xk,jk
) and k ∈ S(Xl,jl

). By generalizing this idea, a
PE scheme first selects a Tsel ⊆ [K] and then choose all Xk,jk

such that k ∈ Tsel and v(Xk,jk
) are non-interfering from dl’s

perspective for all l ∈ Tsel\k (see Line 6 of the PE scheme).

This thus ensures that the coded packet vtx in Line 7 of the
PE scheme can serve all destinations k ∈ Tsel simultaneously.

Creating new coding opportunities while exploiting the
existing coding opportunities: As discussed in the example
of Section II-D, the suboptimality of the existing 2-phase
approach for K ≥ 3 destinations is due to the fact that it
fails to create new coding opportunities while exploiting old
coding opportunities. The PE scheme was designed to solve
this problem. More explicitly, for each Xk,j the v(Xk,j) is
non-interfering for all di satisfying i ∈ (S(Xk,j) ∪ {k}).
Therefore, the larger the set S(Xk,j) is, the larger the number
of sessions that can be coded together when transmitting
a coded packet corresponding to v(Xk,j). To create more
coding opportunities, we thus need to be able to enlarge
the S(Xk,j) set over time. Let us temporarily assume that
the PACKET SELECTION in Line 6 only chooses the Xk,j

satisfying S(Xk,j) = T\k. Then Line 4 of the UPDATE
guarantees that if some other di, i /∈ T , overhears the coded
transmission, we can update S(Xk,j) with a strictly larger set
(T ∩ S(Xk,j)) ∪ Srx = S(Xk,j) ∪ Srx. Therefore, new coding
opportunity is created since we can now mix more sessions
together with Xk,j . Note that the coding vector v(Xk,j) is
also updated accordingly. The new v(Xk,j) represents the
necessary “code alignment” in order to utilize this newly
created coding opportunity. The (near-) optimality of the PE
scheme is rooted deeply in the concept of code alignment,
which continuously aligns the “non-interfering subspaces”
through the joint use of S(Xk,j) and v(Xk,j).

V. QUANTIFY THE ACHIEVABLE RATES OF PE SCHEMES

In this section, we describe how to use the PE schemes
to attain the capacity of 1-to-3 broadcast PECs with COF
(Proposition 2), the achievability results for general 1-to-
K broadcast PEC with COF (Proposition 3), the capacity
results for symmetric broadcast PECs (Proposition 4) and for
spatially independent PECs with one-sided fairness constraints
(Proposition 5).

A. Achieving the Capacity of 1-to-3 Broadcast PECs With
COF — Detailed Construction and Analysis

Consider a 1-to-3 broadcast PEC with arbitrary channel pa-
rameters {p

S{1,2,3}\S}. Without loss of generality, assume that
the marginal success probability pk > 0 for k = 1, 2, 3. Given
a rate vector (R1, R2, R3) and the PEC channel parameters
{p

S{1,2,3}\S}, we say that destination di dominates another
destination dk if

Ri

(
1

p∪({1,2,3}\k)
− 1

p∪{1,2,3}

)

≥ Rk

(
1

p∪({1,2,3}\i)
− 1

p∪{1,2,3}

)
. (14)

Lemma 4: For distinct values of i, k, l ∈ {1, 2, 3}, if di

dominates dk, and dk dominates dl, then we must have di

dominates dl.
The proof of Lemma 4 is provided in Appendix C.

By Lemma 4, we can assume that d1 dominates d2, d2

dominates d3, and d1 dominates d3, which can be achieved
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by relabeling the destinations. In the following, we provide a
detailed capacity-achieving PE scheme by explicitly describing
how to choose the subsets T , Tsel, and the corresponding target
packets Xk,jk

, k ∈ Tsel, in a generic PE scheme. The proposed
PE scheme contains four major phases.

§ A CAPACITY-ACHIEVING PE SCHEME FOR 1-TO-3 PECS

After sorting and relabeling the destinations according
to their dominance relationship as discussed previously, go
through the following phases in sequence.

Phase 1: There are three sub-phases denoted by Phase 1.kkk,
k = 1 to 3. Move along the sub-phases sequentially for k = 1
to 3. When we are in Phase 1.kkk, do the following: If there
exists at least one Xk,j satisfying S(Xk,j) = ∅, then choose
T = Tsel = {k} and select the target packet Xk,jk

arbitrarily
from such Xk,j . If not, move to the next sub-phase.

Phase 2: There are three sub-phases denoted by Phase 2.kkk,
k = 1 to 3. Move along the sub-phases sequentially for k = 1
to 3. When we are in Phase 2.kkk, do the following: Denote the
elements of {1, 2, 3}\k by i1 and i2. If there exists at least
one Xi1,j satisfying S(Xi1,j) = {i2} and at least one Xi2,l

satisfying S(Xi2,l) = {i1}, then choose T = Tsel = {i1, i2}
and select the target packets Xi1,ji1

and Xi2,ji2
arbitrarily

from such Xi1,j and Xi2,l packets. If not, move to the next
sub-phase.

Phase 3: There are three sub-phases denoted by Phase 3.kkk,
k = 1 to 3. Move along the sub-phases sequentially for k =
1 to 3. When we are in Phase 3.kkk, denote the elements of
{1, 2, 3}\k by i1 and i2 and without loss of generality assume
i1 < i2; Do the following steps:

1: if there exists at least one Xi1,j satisfying S(Xi1,j) = {i2}
then

2: T ← {i1, i2}. Select a target packet Xi1,ji1
arbitrarily

from such Xi1,j packets, and set Tsel ← {i1}.
3: if there exists at least one Xi2,l satisfying S(Xi2,l) =

{k, i1} then
4: Select the second target packet Xi2,ji2

arbitrarily
from such Xi2,l packets, and reset Tsel ← {i1, i2}.

5: end if
6: else
7: Move to the next sub-phase.
8: end if

Phase 4: Do the following steps:
1: T ← {1, 2, 3} and Tsel ← ∅.
2: for i = 1 to 3 do
3: if there exists at least one Xi,j satisfying S(Xi,j) =

{1, 2, 3}\i then
4: Select a target Xi,ji arbitrarily from such Xi,j and

set Tsel ← Tsel ∪ {i}.
5: end if
6: end for
7: if Tsel = ∅ then
8: End of transmission.
9: end if

§ The Analysis of The Capacity-Achieving PE Scheme
Given any arbitrary rate vector (R1, R2, R3) that is in the

interior of the capacity outer bound of Proposition 1, we
will prove in the following that the above PE scheme can
be finished within n time slots when n is sufficiently large.
Moreover, after termination of the above scheme, each dk can
successfully decode its desired packets {Xk,j : ∀j ∈ [nRk]}.
The proof is constructed by carefully analyzing the S(·) status
of the packets after each sub-phases.

Phase 1.kkk: We first note that in average each Xk,jk
packet

takes 1
p∪{1,2,3}

time slots before it is received by at least one
receiver, which in turn changes the corresponding S(Xk,j).
By the law of large numbers, Phases 1.1, 1.2, and 1.3 thus
continue for

≈ nR1

p∪{1,2,3}
time slots, (15)

≈ nR2

p∪{1,2,3}
time slots, (16)

and ≈ nR3

p∪{1,2,3}
time slots, respectively. (17)

The above first-order approximation has precision o(n) with
respect to the codeword length n. Such first-order approxima-
tion will be used throughout this section.

Phase 2.1: We term all X2,j packets that have S(X2,j) =
{3} the queue Q2;31 packets. Symmetrically, all X3,j packets
that have S(X3,j) = {2} are termed the queue Q3;21 packets.
In the end of Phase 1.3, all Q2;31 packets were resulted/created
in Phase 1.2 when a Phase-1.2 packet was received by d3

only. Since Phase 1.2 lasts for (16) number of time slots,
totally there are ≈ nR2p{3}{1,2}

p∪{1,2,3}
such packets. Symmetrically,

all Q3;21 packets were resulted/created in Phase 1.3 when a
Phase-1.3 packet was received by d2 only. Totally there are
≈ nR3p{2}{1,3}

p∪{1,2,3}
such packets.

One critical observation of the PE scheme is that when two
target packets X2,j2 and X3,j3 are mixed together to generate
vtx, each packet still keeps its own identity X2,j2 and X3,j3 ,
its own associated sets S(X2,j2) and S(X3,j3) and coding
vectors v(X2,j2) and v(X3,j3). Even the decision whether
to update S(X) or v(X) is made separately (Line 2 of the
UPDATE) for the two target packets X2,j2 or X3,j3 . Therefore,
it is as if packets X2,j2 or X3,j3 are sharing time slots in a
non-interfering way (like carpooling together). Following this
observation, we can quantify the changes of the numbers of
Q2;31 packets and Q3;21 packets during Phase 2.1.

We first take a closer look at when the status S(X3,j3) of
a Q3;21 packet X3,j3 will evolve. By Line 4 of the UPDATE,
the status S(X3,j3) evolves if and only if one of {d1, d3}
has received the coded packet in which X3,j3 participates.
Therefore, in average the status S(X3,j3) evolves after the
corresponding X3,j3 packet participates in 1

p∪{1,3}
time slots.

Since we have ≈ nR3p{2}{1,3}
p∪{1,2,3}

number of Q3;21 packets to
begin with, it takes

≈
nR3p{2}{1,3}

p∪{1,2,3}

1
p∪{1,3}

= nR3

(
1

p∪{1,3}
− 1

p∪{1,2,3}

)

(18)
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number of time slots to completely finish all Q3;21 packets.
By similar arguments, it takes

≈
nR2p{3}{1,2}

p∪{1,2,3}

1
p∪{1,2}

= nR2

(
1

p∪{1,2}
− 1

p∪{1,2,3}

)

(19)

number of time slots to completely use up all Q2;31 pack-
ets. Since we assume that d2 dominates d3, the dominance
inequality in (14) implies that (19) is no smaller than (18).
Therefore, for sufficiently large n, in Phase 2.1 we finish all
Q3;21 packets before exhausting the Q2;31 packets. As a result,
it takes roughly (18) number of time slots to finish Phase 2.1.

Phase 2.2: Similarly we term all X1,j packets that have
S(X1,j) = {3} the queue Q1;32 packets, all X3,j packets that
have S(X3,j) = {1} the queue Q3;12 packets.

By the same dominance-relationship-based arguments as
used in the analysis of Phase 2.1, for sufficiently large n, in
Phase 2.2 we finish the Q3;12 packets before exhausting the
Q1;32 packets. And it takes roughly

≈
nR3p{1}{2,3}

p∪{1,2,3}

1
p∪{2,3}

= nR3

(
1

p∪{2,3}
− 1

p∪{1,2,3}

)

(20)

number of time slots to finish Phase 2.2.
Phase 2.3: We term all X1,j packets that have S(X1,j) =

{2} the queue Q1;23 packets, all X2,j packets that have
S(X2,j) = {1} the queue Q2;13 packets. By similar arguments
as used in Phases 2.1 and 2.2 and by the fact that d1 dominates
d2, for sufficiently large n, in Phase 2.3 we finish the Q2;13

packets before exhausting the Q1;23 packets. And it takes
roughly

≈
nR2p{1}{2,3}

p∪{1,2,3}

1
p∪{2,3}

= nR2

(
1

p∪{2,3}
− 1

p∪{1,2,3}

)

(21)

number of time slots to finish Phase 2.3.
Phase 3: Before the analysis of Phase 3, we first summarize

the status of all packets in the end of Phase 2.3. For d3, all
X3,j packets that have S(X3,j) = ∅ have been used up in
Phase 1.3. All X3,j packets that have S(X3,j) = {1} and
S(X3,j) = {2} have been used up in Phases 2.2 and 2.1,
respectively. As a result, all X3,j packets are either received
by d3 (i.e., having 3 ∈ S(X3,j)) or have S(X3,j) = {1, 2}. We
term the latter type of X3,j packets the Q3;12 packets. Recall
the definition of fp(ST ) in (4). We note that each Phase-1.3
transmission will generate a Q3;12 packet when it is received
by and only by d1 and d2, which happens with probability
p123. Since Phase 1.3 lasts for nR3

p∪{1,2,3}
time slots, there

are
(

nR3
p∪{1,2,3}

)
p123 number of Q3;12 packets generated in

Phase 1.3. Similarly, each Phase-2.1 transmission will generate
a Q3;12 packet when it is received by d1 but not by d3

(see Line 4 of the UPDATE subroutine), which happens with
probability fp(13). Since Phase 2.1 lasts for (18) number
of time slots, there are

(
nR3p213

p∪{1,2,3}p∪{1,3}

)
fp(13) number of

Q3;12 packets generated in Phase 2.1. Similarly, there are

(
nR3p123

p∪{1,2,3}p∪{2,3}

)
fp(23) number of Q3;12 packets generated

in Phase 2.2. Totally, we have

≈ nR3

(
p123

p∪{1,2,3}
+

p213

p∪{1,2,3}

fp(13)
p∪{1,3}

+
p123

p∪{1,2,3}

fp(23)
p∪{2,3}

)

(22)

number of Q3;12 packets in the beginning of Phase 3. We can
further simplify (22) as

(22) = nR3p3

(
1
p3
− 1

p∪{1,3}
− 1

p∪{2,3}
+

1
p∪{1,2,3}

)
.

(23)

For d2, all X2,j packets that have S(X2,j) = ∅ have
been used up in Phase 1.2. All X2,j packets that have
S(X2,j) = {1} have been used up in Phase 2.3. As a
result, all the X2,j packets must satisfy one of the following:
(i) X2,j are received by d2 (i.e., having 2 ∈ S(X2,j)),
or (ii) have S(X2,j) = {3} (i.e., the Q2;31 packets), or
(iii) have S(X2,j) = {1, 3}, which are termed the Q2;13

packets. By similar arguments as used for the d3 packets,
there are

(
nR2

p∪{1,2,3}

)
p312 number of Q2;31 packets generated

in Phase 1.2. However, Phase 2.1 uses/destroys some Q2;31

packets. More explicitly, each Phase-2.1 transmission will
destroy a Q2;31 packet when it is received by one of {d1, d2}
(see Line 4 of the UPDATE subroutine), which happens with
probability p∪{1,2}. Since Phase 2.1 lasts for (18) number of
time slots, there are

(
nR3p213

p∪{1,2,3}p∪{1,3}

)
p∪{1,2} number of Q2;31

packets destroyed in Phase 2.1. As a result, there are

≈ nR2
p312

p∪{1,2,3}
− nR3

p213

p∪{1,2,3}

p∪{1,2}
p∪{1,3}

(24)

number of Q2;31 packets in the beginning of Phase 3.
For d1, all X1,j packets that have S(X1,j) = ∅ have been

used up in Phase 1.1. As a result, all the X1,j packets must
satisfy one of the following: (i) X1,j are received by d1 (i.e.,
having 1 ∈ S(X1,j)); (ii) have S(X1,j) = {2} (i.e., the Q1;23

packets); (iii) have S(X1,j) = {3} (i.e., the Q1;32 packets);
or (iv) have S(X1,j) = {2, 3}, which are termed the Q1;23

packets. By similar arguments as used for the d2 packets, there
are

≈nR1
p213

p∪{1,2,3}
− nR2

p123

p∪{1,2,3}

p∪{1,3}
p∪{2,3}

(25)

number of Q1;23 packets in the beginning of Phase 3, where
the first term is the number of Q1;23 packets generated in
Phase 1.1 and the second term corresponds to the number of
Q1;23 packets that are used up in Phase 2.3. Similarly, there
are

≈nR1
p312

p∪{1,2,3}
− nR3

p123

p∪{1,2,3}

p∪{1,2}
p∪{2,3}

(26)

number of Q1;32 packets in the beginning of Phase 3, where
the first term is the number of Q1;32 packets generated in
Phase 1.1 and the second term corresponds to the number of
Q1;32 packets that are used up in Phase 2.2.

We are now ready to analyze the status changes in Phase 3.
Phase 3.1: The goal of this subphase is to clean up the

Q2;31 packets that have not been used in Phase 2.1. By Line 4
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of the UPDATE, the S(X2,j2) of a Q2;31 packet X2,j2 will
change if and only if it is received by any one of {d1, d2}.
Therefore, in average the status S(X2,j2) of a Q2;31 packet
X2,j2 evolves after it participates in 1

p∪{1,2}
number of time

slots. Since we have (24) number of Q2;31 packets to begin
with, it will take

≈ (24)
p∪{1,2}

=nR2

(
1

p∪{1,2}
− 1

p∪{1,2,3}

)

− nR3

(
1

p∪{1,3}
− 1

p∪{1,2,3}

)
(27)

number of time slots to finish Phase 3.1, where the equality
follows from straightforward arithmetic simplification.

Phase 3.2: Similar to Phase 3.1, Phase 3.2 serves the role
of cleaning up the Q1;32 packets that have not been used in
Phase 2.2. By Line 4 of the UPDATE, the S(X1,j1) of a Q1;32

packet X1,j1 will change if and only if it is received by any
one of {d1, d2}. Therefore, in average the status S(X1,j1) of
a Q1;32 packet X1,j1 evolves after it participates in 1

p∪{1,2}
number of time slots. Since we have (26) number of Q1;32

packets to begin with, it will take

≈ (26)
p∪{1,2}

=nR1

(
1

p∪{1,2}
− 1

p∪{1,2,3}

)

− nR3

(
1

p∪{2,3}
− 1

p∪{1,2,3}

)
(28)

number of time slots to finish Phase 3.2.
Phase 3.3: Similar to Phases 3.1 and 3.2, Phase 3.3 serves

the role of cleaning up the Q1;23 packets that have not been
used in Phase 2.3. By similar analysis, it will take

≈ (25)
p∪{1,3}

=nR1

(
1

p∪{1,3}
− 1

p∪{1,2,3}

)

− nR2

(
1

p∪{2,3}
− 1

p∪{1,2,3}

)
(29)

number of time slots to finish Phase 3.3.
Phase 4: We first summarize the status of all the packets in

the end of Phase 3.3. For d3, all the X3,j packets are either
received by d3 (i.e., having 3 ∈ S(X3,j)) or have S(X3,j) =
{1, 2}, i.e., the Q3;12 packets. By Line 4 of the UPDATE, the
S(X3,j3) of a Q3;12 packet X3,j3 will change if and only if it
is received by d3. Therefore, each transmission in Phases 3.1
and 3.2 will in average use up p3 number of participated Q3;12

packets. Since Phases 3.1 and 3.2 have duration (27) and (28),
respectively, in the end of Phase 3.3 the total number of Q3;12

packets thus becomes

≈ (Eq.(23)− p3 · Eq.(27)− p3 · Eq.(28))+ , (30)

where the first term is the number of Q3;12 packets in the
end of Phase 2, the second and the third terms are the
numbers of Q3;12 packets used/destroyed in Phases 3.1 and
3.2, respectively, and (·)+ = max(·, 0) is the projection to the
non-negative reals. The reason we need the (·)+ operation is
that when there is no more Q3,;12 packet to select from, we
will stop selecting Q3;12 packets and the actually selected set
Tsel will be a strict subset of T (see Lines 2 and 4 of Phase 3).

For d2, all X2,j packets that have S(X2,j) = ∅ and
S(X2,j) = {1} have been used up in Phases 1.2 and 2.3,
respectively. All X2,j packets that have S(X2,j) = {3} have
been used up in Phases 2.1 and 3.1. As a result, all the X2,j

packets are either received by d2 (i.e., having 2 ∈ S(X2,j))
or have S(X2,j) = {1, 3}, i.e, the Q2;13 packets. By Line 4
of the UPDATE, the S(X2,j2) of a Q2;13 packet X2,j2 will
change if and only if it is received by d2. Therefore, each
transmission in Phase 3.3 will in average use up p2 number of
participated Q2;13 packets. Since Phase 3.3 has duration (29),
in the end of Phase 3.3 the total number of Q2;13 packets
becomes

≈ (
p132 · Eq.(16) + fp(32) · Eq.(21) + fp(12) · Eq.(18)

+fp(12) · Eq.(27)− p2 · Eq.(29)
)+ (31)

where the first four terms are the numbers of Q2;13 packets
generated in Phases 1.2, 2.3, 2.1, and 3.1, respectively, and
the fifth term is the number of Q2;13 packets used/destroyed
in Phase 3.3. The summation of the first four terms of (31)
can be further simplified to:

Summation of the first four terms of (31)

= nR2p2

(
1
p2
− 1

p∪{1,2}
− 1

p∪{2,3}
+

1
p∪{1,2,3}

)
. (32)

For d1, all X1,j packets that have S(X1,j) = ∅, S(X1,j) =
{2}, and S(X1,j) = {3} have been used up in Phases 1.1,
2.3+3.3, and 2.2+3.2, respectively. As a result, all the X1,j

packets are either received by d1 (i.e., having 1 ∈ S(X1,j))
or have S(X1,j) = {2, 3}, i.e., the Q1;23 packets. By similar
computation, in the end of Phase 3.3 the total number of Q1;23

packets is

≈ nR1

(
p231

p∪{1,2,3}
+

p213

p∪{1,2,3}

fp(31)
p∪{1,3}

+
p312

p∪{1,2,3}

fp(21)
p∪{1,2}

)
,

(33)

where the first, second, and the third terms correspond to the
numbers of Q1;23 packets generated in Phase 1.1, 2.3+3.3, and
2.2+3.2, respectively. We can further simplify (33) as

(33) = nR1p1

(
1
p1
− 1

p∪{1,2}
− 1

p∪{1,3}
+

1
p∪{1,2,3}

)
.

(34)
The goal of Phase 4 is to clean up the remaining packets.

Since in average the status S(Xi,j) of a Qi;{1,2,3}\i packet
Xi,j evolves after it participates in 1

pi
number of time slots,

Phase 4 thus takes

≈ max
(

Eq.(34)
p1

,
Eq.(31)

p2
,

Eq.(30)
p3

)
. (35)

number of time slots to finish. Once we finish Phase 4, for all
k ∈ {1, 2, 3}, j ∈ [nRk], we have k ∈ S(Xk,j). By Lemma 3
of any generic PE scheme, all dk can decode their desired
packets with close-to-one probability.

What remains to be shown is that with sufficiently large n,
we can finish transmissions of all four phases within n time
slots. That is, we need to prove that

(15) + (16) + (17) + (18) + (20)
+ (21) + (27) + (28) + (29) + (35) ≤ n. (36)
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The summation of the first nine terms of the left-hand side of
(36) can be simplified to

A1.1–3.3
∆=nR1

(
1

p∪{1,2}
+

1
p∪{1,3}

− 1
p∪{1,2,3}

)

+ nR2
1

p∪{1,2}
+ nR3

1
p∪{1,2,3}

,

where A1.1–3.3 is the total number of time slots in Phases 1.1 to
3.3. Since (35) is the maximum of three terms, proving (36) is
thus equivalent to proving that the following three inequalities
hold simultaneously.

A1.1–3.3 +
(34)
p1

≤ n,

A1.1–3.3 +
(31)
p2

≤ n,

and A1.1–3.3 +
(30)
p3

≤ n.

With straightforward simplification, proving the above three
inequalities is equivalent to proving

nR1

p1
+

nR2

p∪{1,2}
+

nR3

p∪{1,2,3}
≤ n,

nR1

p∪{1,2}
+

nR2

p2
+

nR3

p∪{1,2,3}
≤ n,

and
nR1

p∪{1,3}
+

nR2

p∪{1,2,3}
+

nR3

p3
≤ n.

Since the expressions of the numbers of time slots in Phase 1.1
to Phase 4: (15), (16), (17), (18), (20), (21), (27), (28), (29),
and (35) are of precision o(n), the last three inequalities hold
with arbitrarily close-to-one probability for sufficiently large n
for any rate vector (R1, R2, R3) in the interior of the capacity
outer bound in Proposition 1. The proof of Proposition 2 is
thus complete.

B. Achieving the Capacity of 1-to-3 Broadcast PECs With
COF — High-Level Discussion

As discussed in Section V-A, one advantage of a PE scheme
is that although different packets Xk,jk

and Xi,ji with k 6= i
may be mixed together, the corresponding evolution of Xk,jk

(the changes of S(Xk,jk
) and v(Xk,jk

)) is independent from
the evolution of Xi,ji and can thus be easily traced. Also by
Lemma 2, two different packets Xk,jk

and Xi,ji can share the
same time slot without interfering each other as long as i ∈
S(Xk,jk

) and k ∈ S(Xi,ji). These two observations enable
us to relate the achievability problem of a PE scheme to the
following “time slot packing problem.”

Let us focus on the (s, d1) session. For any X1,j packet,
initially S(X1,j) = ∅. Then as time proceeds, each X1,j

starts to participate in packet transmission. The corresponding
S(X1,j) evolves to different values, depending on the set
of destinations that receive the transmitted packet in which
X1,j participates. Since in this subsection we focus mostly
on S(X1,j), we sometimes use S(X) as shorthand if it is
unambiguous from the context. Fig. 4 describes how S(X)
evolves through different values. In Fig. 4, we use circles to
represent the five different states according to the S(X) value.

Fig. 4. The state transition diagram for destination d1 when applying the
packet evolution scheme to a 1-to-3 broadcast PEC.

The receiving set Srx, the set of destinations who successfully
receive the transmitted coded packet, decides the transition
between different states. In Fig. 4, we thus mark each transition
arrow (between different states) by the value(s) of Srx that
enables the transition. For example, by Line 4 of the UPDATE,
when the initial state is S(X) = ∅, if the receiving set Srx 3 1,
then the new set satisfies S(X) 3 1. Similarly, when the
initial state is S(X) = ∅, if Srx = {2, 3}, then the new
S(X) becomes S(X) = {2, 3}. (Note that the corresponding
v(X1,j) also evolves over time to maintain the non-interfering
property in Lemma 2, which is not illustrated in Fig. 4.)

Since S(X1,j) 3 1 if and only if d1 receives X1,j , it
thus takes nR1

p1
logical time slots to finish the transmission

of nR1 information packets. On the other hand, some logical
time slots for the (s, d1) session can be “packed/shared”
jointly with the logical time slots for the (s, dk) session,
k 6= 1, or, equivalently, one physical time slot can serve two
sessions simultaneously. In the following, we quantify how
many logical time slots of the (s, d1) session are compatible
to those of other sessions. For any S0 ∈ 2{2,3}, let A1;S0

denote the number of logical time slots (out of the total nR1
p1

time slots) such that during those time slots, the transmitted
X1,j has S(X1,j) = S0. Initially, there are nR1 packets X1,j .
If any one of {d1, d2, d3} receives the transmitted packet
(equivalently Srx 6= ∅), we have S(X1,j) ← Srx, which is
no longer an empty set. Therefore, each X1,j contributes to

1
p∪{1,2,3}

logical time slots with S(X1,j) = ∅. We thus have

A1;∅ = nR1

(
1

p∪{1,2,3}

)
. (37)

We also note that during the evolution process of X1,j , if
and only if one of {d1, d3} receives the transmitted packet
(equivalently Srx ∩ {1, 3} 6= ∅), then S(X) value will move
from one of the two states “S(X) = ∅” and “S(X) = {2}”
to one of the three states “S(X) = {3},” “S(X) = {2, 3},”
and “S(X) 3 1.” Therefore, each X1,j contributes to 1

p∪{1,3}
logical time slots during which we either have S(X1,j) = ∅
or S(X1,j) = {2}. By the above reasoning, we have

A1;{2} + A1;∅ = nR1

(
1

p∪{1,3}

)
. (38)
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Similarly, during the evolution process of X1,j , if and only if
one of {d1, d2} receives the transmitted packet (equivalently
Srx∩{1, 2} 6= ∅), then S(X) value will move from one of the
two states “S(X) = ∅” and “S(X) = {3}” to one of the three
states “S(X) = {2},” “S(X) = {2, 3},” and “S(X) 3 1.”
Therefore, each X1,j contributes to 1

p∪{1,2}
logical time slots

during which either S(X1,j) = ∅ or S(X1,j) = {3}. By the
above reasoning, we have

A1;{3} + A1;∅ = nR1

(
1

p∪{1,2}

)
. (39)

Before S(X) evolves to the state “S(X) 3 1,” any logical time
slot contributed by such an X must have one of the following
four states: “S(X) = ∅,” “S(X) = {2},” “S(X) = {3},” and
“S(X) = {2, 3}.” As a result, we must have

A1;{2,3} + A1;{2} + A1;{3} + A1;∅ = nR1

(
1
p1

)
. (40)

Solving (37), (38), (39), and (40), we have

A1;∅ = nR1

(
1

p∪{1,2,3}

)
(41)

A1;{2} = nR1

(
1

p∪{1,3}
− 1

p∪{1,2,3}

)
(42)

A1;{3} = nR1

(
1

p∪{1,2}
− 1

p∪{1,2,3}

)
(43)

A1;{2,3} = nR1

(
1
p1
− 1

p∪{1,2}
− 1

p∪{1,3}
+

1
p∪{1,2,3}

)
.

(44)

We can also define Ak;S0 as the number of logical time slots of
the (s, dk) session with S(Xk,jk

) = S0. By similar derivation
arguments, for any distinct indices k, i1, and i2 in {1, 2, 3},
we have

Ak;∅ = nRk

(
1

p∪{1,2,3}

)
(45)

Ak;{i1} = nRk

(
1

p∪({1,2,3}\i1)
− 1

p∪{1,2,3}

)
(46)

Ak;{i1,i2} = nRk

(
1
pk
− 1

p∪{k,i1}
− 1

p∪{k,i2}
+

1
p∪{1,2,3}

)
.

(47)

The achievability problem of a PE scheme thus relates to
the following time slot packing problem.

Consider 12 types of logical time slots and each
type is denoted by (k;S0) for some k ∈ {1, 2, 3}
and S0 ∈ 2({1,2,3}\k). The numbers of logical time
slots of each type are described in (45) to (47). Two
logical time slots of types (k1; S1) and (k2; S2) are
compatible if k1 6= k2, k1 ∈ S2, and k2 ∈ S1. Any
compatible logical time slots can be packed together
in the same physical time slot. The time slot packing
problem is thus: Can we pack all the logical time
slots within n physical time slots?

The detailed 4-phase PE scheme in Section V-A thus
corresponds to the time-slot-packing policy depicted in Fig. 5.
Namely, we first use Phases 1.1 to 1.3 send all the logical

time slots that cannot be packed with any other logical time
slots. Totally, it takes A1;∅ + A2;∅ + A3;∅ number of time
slots to finish Phases 1.1 to 1.3. We then use Phases 2.1 to
2.3 to pack those logical time slots that can be packed with
exactly one other logical time slot from a different session.
By the assumption that d1 dominates d2 and d3, and d2

dominates d3, we have A1;{2} ≥ A2;{1}, A1;{3} ≥ A3;{1}, and
A2;{3} ≥ A3;{2}. Therefore, it takes A3;{2} + A3;{1} + A2;{1}
number of physical time slots to finish Phases 2.1 to 2.3.

Phases 3.1 to 3.3 are to clean up the remaining logical
time slots of types (2; {3}), (1; {3}), and (1; {2}). We notice
that in Phase 3.1 when sending a logical time slot of type
(2; {3}), there is no type-(3, {2}) logical time slot that can be
packed together. On the other hand, there are still some type-
(3, {1, 2}) logical time slots, which can also be packed with
the logical time slots of the (s, d2) session. Therefore, when
we send a logical time slot of type (2; {3}), the optimal way is
to pack it with a type-(3, {1, 2}) logical time slots together as
illustrated in Phase 3.1 of Fig. 5. It is worth emphasizing that
although those type-(3, {1, 2}) logical time slots may later be
packed with two other logical time slots simultaneously, there
is no point to save the type-(3, {1, 2}) logical time slots for
future time slot packing. The reason is that when Phase 3.1
cleans up the remaining type-(2; {3}) logical time slots, it
actually provides a zero-cost free ride for any logical time
slot that is compatible to a type-(2; {3}) logical time slot.
Therefore, piggybacking a type-(2; {3}) logical time slot with
a type-(3, {1, 2}) logical time slot is optimal. Similarly, we
also take advantage of the free ride by packing logical time
slots of type-(1; {3}) with that of type-(3; {1, 2}) in Phase 3.2,
and by packing logical time slots of type-(1; {2}) with that of
type-(2; {1, 3}) in Phase 3.3. It thus takes

(A2;{3} −A3;{2}) + (A1;{3} −A3;{1}) + (A1;{2} −A2;{1})

number of time slots to finish Phases 3.1 to 3.3.
In Phase 4, we clean up and pack together all the remain-

ing logical time slots of types (1; {2, 3}), (2; {1, 3}), and
(3; {1, 2}). We thus need

max
(
(A3;{1,2} − (A2;{3} −A3;{2})− (A1;{3} −A3;{1}))+,

(A2;{1,3} − (A1;{2} −A2;{1}))+, A1;{2,3}
)

(48)

number of time slots to finish Phase 4. Depending on which
of the three terms in (48) is the largest, the total number of
physical time slots is one of the following three expressions:

A3;∅ + A3;{1} + A3;{2} + A3;{1,2} + A1;∅ + A1;{2} + A2;∅,

A2;∅ + A2;{1} + A2;{3} + A2;{1,3} + A1;∅ + A1;{3} + A3;∅,

or A1;∅ + A1;{2} + A1;{3} + A1;{2,3} + A2;∅ + A2;{3} + A3;∅.

By (45) to (47), one can easily check that all three equations
are less than n for any (R1, R2, R3) in the interior of the outer
bound of Proposition 1, which answers the time-slot-packing
problem in an affirmative way. One can also show that the
packing policy in Fig. 5, motivated by the capacity-achieving
PE scheme in Section V-A, is indeed the tightest among all
packing policies.

14



Fig. 5. The time-slot packing policy that corresponds to the 4-Phase solution for 1-to-3 broadcast PECs. The shaded rectangles represent the logical time
slots of types (1; {2, 3}), (2; {1, 3}), and (3; {1, 2}).

C. The Achievability Results of General 1-to-K Broadcast
PECs With COF

In Section V-B, we show that the capacity-achieving PE
scheme for a 1-to-3 PEC can be viewed as a tightest solution
to the time-slot-packing problem. However, the converse may
not hold due to the causality constraint of the PE scheme.

One major difference between the tightest solution of the
time-slot-packing problem in Fig. 5 and the detailed PE
scheme in Section V-A is that for the former, we can pack
the time slots in any order. There is no need to first pack
those logical time slots that cannot be shared with any other
time slots. Any packing order will result in the same amount
of physical time slots in the end. On the other hand, for the PE
scheme it is critical to perform the 4 phases (10 sub-phases)
in sequence since many packets used in the later phases are
generated by the previous phases. For example, all the packets
in Phases 2 to 4 are generated in Phases 1.1 to 1.3. Therefore
it is imperative to conduct Phase 1 first before Phases 2 to 4.
Similarly, the Q3;{1,2} packets used in Phases 3.1 and 3.2 are
generated in Phases 1.3, 2.1, and 2.2. Therefore, the number of
Q3;{1,2} packets in the end of Phase 1.3 alone (without those
generated in Phases 2.1 and 2.2) may not be sufficient for
mixing with Q1;{3} packets. As a result, it can be suboptimal
to perform Phase 3.1 before Phases 2.1 and 2.2.

The causality constraints for a 1-to-K PEC complicate the
design and analysis of PE schemes. In the following, we
thus consider only acyclic construction of PE schemes, which
allows tractable analysis but at the cost of potentially being
throughput suboptimal.6

The main feature of the proposed PE scheme is that we
choose the mixing set T in an acyclic fashion. For comparison,
the T parameters used in the capacity-achieving PE scheme of
Section V-A are {1}, {2}, {3}, {2, 3}, {1, 3}, {1, 2}, {2, 3},
{1, 3}, {1, 2}, and {1, 2, 3} in Phases 1.1 to 4, respectively.
We notice that T = {1, 2} is visited twice in Phases 2.3 and
3.3. We thus call the capacity-achieving PE scheme a cyclic
PE scheme. For an acyclic PE scheme, we never revisit any
T value during all the phases.

6In Section VI-E, it was shown numerically that for most PEC parameter
values, the proposed acyclic PE scheme is sufficient to achieve the capacity.

Consider any rate vector (R1, · · · , RK) satisfying the in-
ner bound in Proposition 3. We describe the corresponding
achievability PE scheme by specifying how to choose the
sets T , Tsel, and how to choose the target packets Xk,jk

.
Since x∅ only participates in the left-hand side of (8), we can
assume x∅ = 0 without loss of generality. For the following
discussion, we further assume that the variables {xS} and
{wk;S→T } in Proposition 3 satisfy (10) and (11) with equality.
In the end of this subsection, we discuss how to relax this
assumption.

For simplicity, we also assume a sufficiently large n so that
the proposed PE scheme can be described and analyzed based
on the corresponding first order approximation.

§ A PE SCHEME FOR THE ACHIEVABILITY RESULTS OF
GENERAL 1-TO-K PECS

The scheme contains 2K phases indexed by T ∈ 2[K]. We
go through Phase T sequentially according to the cardinality-
compatible total ordering ≺. That is, Phase T1 precedes
Phase T2 if and only if T1 ≺ T2.

Phase TTT : Phase T lasts for nxT time slots. Since x∅ = 0, we
simply skip Phase ∅ and focus on the discussion for T 6= ∅. We
then describe how to choose the actually selected set Tsel ⊆ T
and the target packets Xk,jk

, k ∈ Tsel. In the beginning of
Phase T , set Tsel ← T .

For each time slot, each destination dk chooses its tar-
get packet Xk,jk

independently from the choices of other
destinations di, i ∈ Tsel\k. In the following, we describe
the subroutine that chooses Xk,jk

for a fixed k ∈ Tsel.
The subroutine contains 2K−|T | stages, indexed by a set
S ∈ 2[K] satisfying (T\k) ⊆ S ⊆ ([K]\k). Again, we move
sequentially through the stages according to the cardinality-
compatible total ordering ≺. That is, Stage S1 precedes
Stage S2 if and only if S1 ≺ S2.

Stage SSS: Stage S lasts for nwk;S→(T\k) time slots.
Throughout this stage, choose the target packet Xk,jk

arbi-
trarily from all Xk,j having S(Xk,j) = S. After nwk;S→(T\k)

time slots, we move to the next stage.
Once we have finished all stages for dk (i.e. after finishing

Stage ([K]\k)), we simply stop choosing any Xk,j in this
phase by setting Tsel ← Tsel\k.
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§ The Analysis of The Achievability PE Scheme
We first prove that for sufficiently large n, the above PE

scheme is always feasible.

• It is guaranteed by (8) that the above PE scheme can
finish all phases within n time slots. It is also guaranteed
by (9) that for each Phase T , each dk, k ∈ T can finish all
its stages within the allocated nxT time slots for Phase T .

• We also need to show that for any k ∈ T , during the
corresponding Stage S of Phase T there is always at
least one Xk,j having S(Xk,j) = S, from which a target
packet Xk,jk

will be chosen. We term those packets the
Qk;S packets.

The last bullet is proven as follows. Consider the beginning of
Stage S in Phase (T∪{k}) for some k /∈ T , where they satisfy
T ⊆ S ⊆ ([K]\k). Assume by induction that the proposed PE
scheme is feasible from time 0 to the beginning of Stage S in
Phase (T ∪ {k}). Consider two cases depending on whether
T = S or not.

Case 1: T 6= S. By Line 4 of the UPDATE, the status
S(Xk,j) of a Qk;S packet Xk,j evolves if and only if one
of the di with i ∈ ([K]\S) receives the coded transmission.
Therefore, sending Qk;S packets for nwk;S→T number of
time slots in Stage S of Phase (T ∪ {k}) will consume
nwk;S→T · p∪([K]\S) number of Qk;S packets. Therefore,
we need to prove that in the beginning of Stage S of
Phase (T ∪{k}), there are no fewer than nwk;S→T ·p∪([K]\S)

number of Qk;S packets.
To that end, we first quantify the total number of Qk;S

packets that have been created before Stage S of Phase (T ∪
{k}). We notice that the Qk;S packets can be created either in
a prior Stage S1 of the current Phase (T ∪{k}) with S1 ≺ S;
or in a prior Phase (T1 ∪ {k}) with (T1 ∪ {k}) ≺ (T ∪ {k}).
For the former case, for each time slot in which we transmit
a Qk;S1 packet in Phase (T ∪ {k}), there is some chance that
the packet will evolve into a Qk;S packet. More explicitly,
by Line 4 of the UPDATE, a Qk;S1 packet in Phase (T ∪
{k}) evolves into a Qk;S packet if and only if the packet is
received by all di with i ∈ (S\T ) and not by any di with
i ∈ ([K]\S). As a result, in average each such transmission
will create fp((S\T )([K]\S)) number of Qk;S packets. Since
we previously sent Qk;S1 packets for a total nwk;S1→T number
of time slots, the first term of the right-hand side of (12) is
indeed the normalized number of Qk;S packets created in a
prior Stage S1 of the current Phase (T ∪ {k}).

For the latter case, for each time slot in which we transmit
a Qk;S1 packet in Stage S1 of Phase (T1 ∪ {k}), there is
some chance that the packet will evolve into a Qk;S packet.
More explicitly, by Line 4 of the UPDATE, a Qk;S1 packet in
Phase (T1 ∪ {k}) evolves into a Qk;S packet if and only if





T1 ⊆ S

Srx * S1

(S\T1) ⊆ Srx

([K]\S) ⊆ ([K]\Srx)

or equivalently





T1 ⊆ S

S * S1

(S\T1) ⊆ Srx

([K]\S) ⊆ ([K]\Srx)

,

where the above equivalence relationship follows from the
fact that when considering Stage S1 of Phase (T1 ∪ {k})
we implicitly imply T1 ⊆ S1 ⊆ ([K]\k). Therefore, for any
(S1, T1) pair satisfying T1 ⊆ S and S * S1, a Qk;S1 packet
in Stage S1 of Phase (T1∪{k}) will have fp((S\T1)([K]\S))
probability to evolve into a Qk;S packet. Since we previously
sent Qk;S1 packets in Stage S1 of Phase (T1∪{k}) for a total
nwk;S1→T1 number of time slots, the second term of the right-
hand side of (12) is indeed the normalized number of Qk;S

packets created during prior phases. In sum, the right-hand
side of (12) is the normalized total number of Qk;S packets
created before Stage S of Phase (T ∪ {k}).

On the other hand, among all Qk;S packets created, some
of them may have been used up in prior phases. More
explicitly, Qk;S packets may be consumed in Stage S of a
prior Phase (T1 ∪ {k}) such that T1 ⊆ S and (T1 ∪ {k}) ≺
(T ∪ {k}). By the same arguments as when we previously
quantify the number of Qk;S packets to be consumed in
Phase (T ∪ {k}), Stage S of a prior Phase (T1 ∪ {k}) will
consume n · wk;S→T1 · p∪([K]\S) number of Qk;S packets.
The second term of the left-hand side of (12) thus represents
the normalized total number of Qk;S packets that have been
consumed before the beginning of Stage S of Phase (T ∪{k}).
As a result, (12) guarantees that in the beginning of Stage S
of Phase (T ∪ {k}) with T 6= S, there are no fewer than
nwk;S→T · p∪([K]\S) number of Qk;S packets. There is thus
always a Xk,j packet with S(Xk,j) = S to choose from
throughout Stage S of Phase (T ∪ {k}) for any T 6= S.

Case 2: T = S. We have two subcases depending on
whether S = ∅. Case 2.1: T = S = ∅. In the beginning
of Stage ∅ of Phase (∅ ∪ {k}), no Xk,j has ever been
transmitted. Therefore, all Xk,j have S(Xk,j) = ∅, and we
have nRk number of Qk;∅ packets. By similar reasons as in
the previous analysis, Stage ∅ of Phase (∅∪{k}) will consume
nwk;∅→∅ ·p∪[K] number of Qk;∅ packets. With the assumption
that (10) is satisfied with equality, it is thus guaranteed that
we have enough Qk;∅ packets for Stage ∅ of Phase (∅∪ {k}).

Case 2.1: T = S 6= ∅. Similar to Case 1, we again quantify
the total number of Qk;S packets that have been created before
Stage S of Phase (T ∪ {k}). However, with the assumption
that T = S 6= ∅, the first term of the right-hand side of (12)
no longer exists since the two conditions S = T ⊆ S1 and
S1 ≺ S cannot hold simultaneously. Therefore, there is only
a single term in the right-hand side of (11) that corresponds
to the total number of Qk;S packets that have been created. In
addition, the assumption T = S 6= ∅ enables us to combine
the two terms of the left-hand side of (12) into a single term
as in the left-hand side of (11). Since we assume that (11)
is satisfied with equality, it is thus guaranteed that we have
enough Qk;S packets for Stage S of Phase (T ∪ {k}) when
T = S 6= ∅. The discussion of Cases 1, 2.1, and 2.1 guarantees
that the proposed PE scheme is feasible for sufficiently large n.

We now prove the decodability of the proposed PE scheme.
• When the proposed PE terminates, all dk can decode their

desired Xk,j packets with close-to-one probability when
sufficiently large n and GF(q) are used.

Consider destination dk. Recall the assumption that (10) and
(11) are satisfied with equality. The decodability can be proved
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by noticing that in the discussion of Cases 2.1 and 2.2 of the
feasibility analysis, all Qk;S packets are used up completely
after Stage S of Phase (S∪{k}) for all S ∈ 2([K]\k). We then
notice that any subsequent Stage S1 of the current Phase (S∪
{k}) must satisfy S1 6= S and S1 ⊇ S. As a result, by Line 4
of the UPDATE, no Qk;S packets will be generated in any
subsequent Stage S1 of the current Phase (S ∪ {k}).

In the following, we prove by contradiction that no Xk,j

packet in any Stage S1 of a subsequent Phase T can have its
status S(Xk,j) evolving into S. To that end, we first note that
since we consider a subsequent phase, we must have (S ∪
{k}) ≺ T , S1 ⊇ (T\k) and k /∈ S1. Let Srx denote the set of
destinations receiving the transmitted packet. For the status of
a Xk,j packet to evolve into S, by Line 4 of the UPDATE, we
must have Srx * S1, and

S = (T ∩ S1) ∪ Srx = (T\k) ∪ Srx. (49)

Since (S∪{k}) ≺ T and k /∈ S, we have |S|+1 ≤ |T |, which
implies |S| ≤ |T\k|. Together with (49), we have (T\k) ⊇
Srx. This contradicts the inequalities S1 ⊇ (T\k) and Srx *
S1. Thus no Xk,j packet in any Stage S1 of a subsequent
Phase T can have its status S(Xk,j) evolving into S.

The above discussion proves that once we use up all Qk;S

packets in Stage S of Phase (S ∪ {k}), there will be no Xk,j

with S(Xk,j) = S until the end of the PE scheme. As a result,
once the PE scheme terminates, there will be no Xk,j with
S(Xk,j) ∈ 2([K]\k). Therefore, all Xk,j must have S(Xk,j) 3
k. By Lemma 3, the decodability of the proposed PE scheme
is guaranteed.

We now discuss how to relax the assumption that (10) and
(11) are satisfied with equality. For example, suppose (10) is
a strict inequality. In this case, we simply add n(wk;∅→∅ ·
p∪[K]−Rk) dummy all-zero packets to the (s, dk) session so
that the new rate R̃k, including both the information and the
dummy packets, satisfies (10) with equality. Then our previous
analysis proves that our PE scheme7 can send all nR̃k packets
to dk. The destination dk simply discards the dummy packets
when decoding.

Similarly, suppose for some S 6= ∅, (11) is a strict in-
equality with the difference between the left-hand side and
the right-hand-side being ∆. In this case, we simply add n ·∆
dummy all-zero packets Xk,dummy to the (s, dk) session in the
beginning of Stage S of Phase (S ∪ {k}), and set their status
S(Xk,dummy) to S. Since the dummy packets are all-zero, we
can set their overhearing status to any set without affecting the
decodability of other packets. In this way, we again convert a
strict inequality to equality and our previous analysis follows.

With the use of dummy packets, we can convert all (10) and
(11) to equalities. The proof of Proposition 3 is thus complete.

D. Attaining The Capacity Of Two Classes of PECs

In this section, we prove the capacity results for symmetric
1-to-K broadcast PECs in Proposition 4 and for spatially in-
dependent broadcast PECs with one-sided fairness constraints
in Proposition 5.

7The dummy packets are also associated with the status S(·) and the coding
vector v(·). And they follow all operations of the PE scheme.

Proof of Proposition 4: Since the broadcast channel is
symmetric, for any S1, S2 ∈ 2[K], we have

p∪S1 = p∪S2 if |S1| = |S2|.
Without loss of generality, also assume that R1 ≥ R2 ≥ · · · ≥
RK . By the above simplification, the outer bound in Proposi-
tion 1 collapses to the following single linear inequality:

K∑

k=1

Rk

p∪[k]
≤ 1. (50)

We use the results in Proposition 3 to prove that (50)
is indeed achievable. To that end, we first fix an arbitrary
cardinality-compatible total ordering. Then for any S ⊆
([K]\k), we choose

wk;S→S = Rk·

K∑

i=K−|S|




∑

∀S1 : |S1| = i
([K]\S) ⊆ S1 ⊆ [K]

(−1)i−(K−|S|)

p∪S1


 ,

(51)
wk;S→T = 0, for all T ⊆ S and T 6= S. (52)

We also choose

∀T 6= ∅, xT = max
∀k∈T


 ∑

∀S:(T\k)⊆S⊆([K]\k)

wk;S→(T\k)


 ,

(53)
x∅ = 0. (54)

The symmetry of the broadcast PEC, the assumption that R1 ≥
R2 ≥ · · · ≥ RK , and (53) jointly imply that

xT = wk∗;(T\k∗)→(T\k∗) where k∗ ∆= min{i : i ∈ T} (55)

for all T 6= ∅.
By simple probability arguments as first described8 in

Section V-B, we can show that the above choices of wk;S→T

and xT are all non-negative and jointly satisfy the inequalities
(9) to (12).

The remaining task is to show that inequality (8) is satisfied
for any (R1, · · · , RK) in the interior of the capacity outer
bound (50). To that end, we simply need to verify the following
equalities by some simple arithmetic computation.

∀k ∈ [K],
∑

∀T∈2[K]:k∈T,[k−1]∩T=∅
xT

=
∑

∀T∈2[K]:k∈T,[k−1]∩T=∅
wk;(T\k)→(T\k)

=
Rk

p∪[k]
. (56)

Summing (56) over different k values, we thus show that any
(R1, · · · , RK) in the interior of the capacity outer bound (50)
indeed satisfies (8). The proof of Proposition 4 is complete.

8Some detailed discussion can also be found in the proof of Lemma 5 in
Appendix D.
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Proof of Proposition 5: Consider an arbitrary spatially
independent broadcast PEC with 0 < p1 ≤ p2 ≤ · · · ≤ pK .
The capacity outer bound in Proposition 1 implies that any
achievable rate vector (R1, · · · , RK) must satisfy

K∑

k=1

Rk

1−∏k
l=1(1− pl)

≤ 1. (57)

We use the results in Proposition 3 to prove that any one-
sidedly fair rate vector (R1, · · · , RK) ∈ Λosf that is in the
interior of (57) is indeed achievable. To that end, we first
fix an arbitrary cardinality-compatible total ordering. Then we
choose wk;S→T as in (51) and (52) and choose xT as in (53)
and (54). By Lemma 5 in Appendix D and by (53), we have

xT = max
∀k∈T

(
wk;(T\k)→(T\k)

)

= wk∗;(T\k∗)→(T\k∗) where k∗ ∆= min{i : i ∈ T}

for all T 6= ∅.
The remaining proof can be completed by following the

same steps after (55) in the proof of Proposition 4.

VI. FURTHER DISCUSSION OF THE MAIN RESULTS

A. Accounting Overhead

Thus far we assume that the individual destination dk knows
the global coding vector vtx that is used to generate the coded
symbols (see Line 10 of the main PE scheme). Since vtx is
generated randomly, this assumption generally does not hold,
and the coding vector vtx also needs to be conveyed to the
destinations. Otherwise, destinations dk cannot decode the
original information symbols Xk,j from the received coded
symbols Zk(t), t ∈ [n]. The cost of sending the coding vector
vtx is termed the coding overhead or the accounting overhead.

We use the generation-based scheme in [3] to absorb the
accounting overheard. Namely, we first choose sufficiently
large n and finite field size q such that the PE scheme can
achieve (1 − ε)-portion of the capacity with close-to-one
probability when assuming there is no accounting overhead.
Once n and q are fixed, we choose an even larger finite field
GF(qM+

∑K
k=1 nRk) for some large integer M . The large finite

field is then treated as a vector of dimension M +
∑K

k=1 nRk.
Although each information symbol (vector) is chosen from
Xk,j ∈ GF(qM+

∑K
k=1 nRk), we limit the range of the Xk,j

vector value such that the first
∑K

k=1 nRk coordinates are
always zero. We can thus view the entire systems as sending
M coordinates in each vector. In the PE scheme, we then
focus on coding over each coordinate, respectively. The same
coding vector vtx is used repeatedly to encode the last M
coordinates. And we use the first

∑K
k=1 nRk coordinates to

store the coding vector vtx.
Since only the last M coordinates are used to carry infor-

mation, overall the transmission rate is reduced by a factor
M

M+
∑K

k=1 nRk
. By choosing a sufficiently large M , we have

averaged out and absorbed the accounting overhead.

B. Minimum Finite Field Size

The PE scheme in Section IV is presented in a form of
random linear network coding, which uses a sufficiently large
finite field size GF(q) and one can prove that the desired
properties hold with close-to-one probability. In contrast, the
following proposition focuses on the existence of a non-
random algorithm by quantifying the corresponding minimum
size of the finite field.

Proposition 6: Consider the 1-to-K broadcast PEC prob-
lem with COF. For any fixed finite field GF(q0) satisfying
q0 > K, all the achievability results in Propositions 2, 3,
4, and 5 can be attained by a deterministic PE algorithm on
GF(q0) that deterministically computes the mixing coefficients
{ck : ∀k ∈ Tsel} in Line 7 of the PE scheme.

The proof of Proposition 6 is relegated to Appendix E.
Remark: In practice, the most commonly used finite field is

GF(28). Proposition 6 guarantees that GF(28) is sufficient for
coding over K ≤ 255 sessions together.

C. The Accounting Overhead For Real-World Applications

Although the accounting overheard is fully absorbed under
the theoretic capacity definition (see Definitions 1 and 2),
in practice, such an absorption-based technique relies on the
assumption that one has the freedom to increase the packet
size GF(q) without affecting the erasure probabilities. In this
subsection, we briefly discuss the performance of the PE
scheme for a realistic setting in which the packet size is fixed
to L bits and there are K destinations.

Proposition 6 ensures that we can use GF(q) with q =
K +1. In this way, each GF(q) symbol can be represented by
log2(K+1) ≈ log2(K) bits. Therefore, the overhead of trans-
mitting the coding vector is upper bounded by Kn log2(K)
bits. The achievable rate is thus strictly away from the capacity
but is no smaller than L−Kn log2(K)

L fraction of the outer
bound. Note that for the PE scheme, the coding vector vtx in
the header is usually sparse and highly compressible. For ex-
ample, in the very beginning of the PE transmission, each vtx is
simply an elementary vector with all but one of the coordinates
being zero. A heuristic estimate of the overhead of transmitting
a compressed coding vector is K(log2(n) + log2(K)), where
K represents the number of sessions, log2(n) bits are used to
describe the indices of the coordinates that are non-zero, and
log2(K) bits are used to describe the values of the non-zero
coordinates. Using compressed coding vectors, the overhead
can be drastically reduced to ≈ K(log2(n)+log2(K))

L . It is of
practical interest to explicitly quantify the compressibility of
coding vector vtx in the proposed PE scheme, which is beyond
the scope of this work.

D. The Asymptotic Sum-Rate Capacity of Large K Values

We first define the sum-rate capacity as follows:
Definition 10: The sum-rate capacity R∗sum is defined as

R∗sum = sup

{
K∑

k=1

Rk : (R1, · · · , RK) is achievable

}
.

Proposition 5 quickly implies the following corollary.
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Fig. 6. The 3-D capacity region of a 1-to-3 spatially independent broadcast
PEC with marginal success probabilities p1 = 0.7, p2 = 0.5, and p3 = 0.3.

Corollary 2: Consider any spatially independent 1-to-K
broadcast PECs with marginal success probabilities 0 < p1 ≤
p2 ≤ · · · ≤ pK < 1. With COF, the sum-rate capacity satisfies

∑K
k=1

1
1−pk∑K

k=1
1

(1−pk)(1−∏k
l=1(1−pl))

≤ R∗sum ≤ 1.

If we further enforce perfect fairness, i.e., R1 = R2 = · · · =
RK , then the corresponding sum-rate capacity R∗sum,perf.fair
becomes

R∗sum,perf.fair =
K∑K

k=1
1

(1−∏k
l=1(1−pl))

.

Proof: Since the sum-rate capacity nR∗sum is no larger
than the total available time slots n, we have the upper bound
R∗sum ≤ 1. Since the rate vector

(
R

1−p1
, R

1−p2
, · · · , R

1−pK

)

is one-sidedly fair, Proposition 5 leads to the lower bound
of R∗sum. Since a perfectly fair rate vector (R,R, · · · , R) is
also one-sidedly fair, Proposition 5 gives the exact value of
R∗sum,perf.fair.

Corollary 2 implies the following: Consider any fixed p > 0.
Consider a symmetric, spatially independent 1-to-K broadcast
PEC with marginal success probability p1 = p2 = · · · = pK =
p. When K is sufficiently large, both the sum-rate capacities
R∗sum and R∗sum,perf.fair approach one. That is, for sufficiently
large K, network coding completely removes all the channel
uncertainty by taking advantage of the spatial diversity among
different destinations di. Therefore, each (s, dk) session can
sustain rate 1−ε

K for some ε > 0 where ε → 0 when K →∞.
Note that when compared to the MIMO capacity gain, the
setting in this paper is more conservative in a sense that it
assumes no coordination among destinations.

This relationship was first observed and proven in [15]
by identifying a lower bound of R∗sum,perf.fair for symmetric,
spatially independent PECs. Compared to the results in [15],
Corollary 2 focuses on the more general setting of non-
symmetric spatially independent PECs, and provides the exact
value of R∗sum,perf.fair and a lower bound on R∗sum.

E. Numerical Evaluation
Fig. 6 illustrates the 3-dimensional capacity region of

(R1, R2, R3) of a spatially independent, 1-to-3 broadcast

PEC with COF. The corresponding marginal probabilities are
p1 = 0.7, p2 = 0.5, and p3 = 0.3. The six facets in
Fig. 6 correspond to the six different permutations used in
Proposition 1.

For general 1-to-K PECs with K ≥ 4, we can use the
outer and inner bounds in Propositions 1 and 3 to bracket the
actual capacity region. Since there is no tightness guarantee
for K ≥ 4 except for the two special classes of channels in
Section III-B, we use computer to numerically evaluate the
tightness of the outer and inner bound pairs. To that end,
for any fixed K value, we consider spatially independent
1-to-K broadcast PEC with the marginal success probabil-
ities pk chosen randomly from (0, 1). To capture the K-
dimensional capacity region, we first choose a search direction
~v = (v1, · · · , vK) uniformly randomly from a K-dimensional
unit ball. With the chosen values of pk and ~v, we use a
linear programming (LP) solver to find the largest touter such
that (R1, · · · , RK) = (v1 · touter, · · · , vK · touter) satisfies the
capacity outer bound in Proposition 1.

To evaluate the capacity inner bound, we need to choose a
cardinality-compatible total ordering. For any set S ⊆ [K], the
corresponding incidence vector 1S is a K-dimensional binary
vector with the i-th coordinate being one if and only if i ∈ S.
We can also view 1S as a binary number, where the first
coordinate is the most significant bit and the K-th coordinate is
the least significant bit. For example, for K = 4, S = {1, 2, 4}
has 1S = (1, 1, 0, 1) = 13. For two sets S1 6= S2, we define
S1 ≺ S2 if and only if either (i) |S1| = |S2| and 1S1 < 1S2 ,
or (ii) |S1| < |S2|. Based on this cardinality-compatible total
ordering, we again use the LP solver to find the largest tinner
such that (R1, · · · , RK) = (v1 · tinner, · · · , vK · tinner) satisfies
the capacity inner bound in Proposition 3. The deficiency is
then defined as defi

∆= touter−tinner
touter

. We then repeat the above
experiment for 104 times for K = 4, 5, and 6, respectively.

Note that although there is no tightness guarantee for K ≥ 4
except in the one-sidedly fair rate region, all our numerical
experiments (totally 3 × 104) have defi ≤ 0.1%. Actually, in
our experiments with K ≤ 6, we have not found any instance
of the input parameters (p1, · · · , pK) and ~v, for which defi
is greater than the numerical precision of the LP solver. This
shows that Propositions 1 and 3 indeed describe the capacity
region from the practical perspective.

To illustrate the broadcast network coding gain, we compare
the sum-rate capacity versus the sum rate achievable by
time sharing. Figs. 7 and 8 consider symmetric, spatially
independent PECs with marginal success probabilities p1 =
· · · = pK = p. We plot the sum rate capacity R∗sum,perf.fair
versus p for a perfectly fair system. The baseline is the largest
sum rate that can be achieved by time sharing for a perfectly
fair system. As seen in Figs. 7 and 8, the network coding gains
are substantial even when we only have K = 4 destinations.
We also note that R∗sum,perf.fair approaches one for all p ∈ (0, 1]
as predicted by Corollary 2.

We are also interested in the sum rate capacity under asym-
metric channel profiles (also known as heterogeneous channel
profiles). Consider asymmetric, spatially independent PECs.
For each p value, we let the channel gains p1 to pK be equally
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Fig. 7. The sum-rate capacity R∗sum,perf.fair in a perfectly fair system versus the
marginal success probability p of a symmetric, spatially independent 1-to-K
broadcast PEC, K = 2 and 4.
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Fig. 8. The sum-rate capacity R∗sum,perf.fair in a perfectly fair system versus the
marginal success probability p of a symmetric, spatially independent 1-to-K
broadcast PEC, K = 20 and 100.

spaced between (p, 1), i.e., pk = p+(k−1) 1−p
K−1 . We then plot

the sum rate capacities for different p values. Fig. 9 describes
the case for K = 6. The sum rate capacities are depicted
by solid curves, which is obtained by solving the linear
inequalities in the outer and inner bounds of Propositions 1
and 3. For all the parameter values used to plot Fig. 9, the
outer and inner bounds meet and we thus have the exact sum
rate capacities for the case of K = 6. The best achievable
rate of time sharing are depicted by dashed curves in Fig. 9.
We consider both a perfectly fair system (R,R, · · · , R) or
a proportionally fair system (p1R, p2R, · · · , pKR) for which
the rate of the (s, dk) session is proportional to the marginal
success probability pk (the optimal rate when all other sessions
are silent). To highlight the impact of channel heterogeneity,
we also redraw the curves of perfectly symmetric PECs with
p1 = · · · = pK = p.

As seen in Fig. 9, for perfectly fair systems, the sum-rate
capacity gain does not increase much when moving from
symmetric PECs p1 = · · · = pK = p to the heteroge-
neous channel profile with p1 to pK evenly spaced between
(p, 1). The reason is due to that the worst user d1 (with the
smallest p1) dominates the system performance in a perfectly
fair system. When we allow proportional fairness, network
coding again provides substantial improvement for all p values.
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Fig. 9. The sum-rate capacities for a 6-destination heterogenous channel
profiles with the success probabilities p1 to p6 evenly spaced between (p, 1).
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Fig. 10. The sum-rate capacities for a 20-destination heterogenous channel
profiles with the success probabilities p1 to p20 evenly spaced between (p, 1).

However, the gain is not as large as the case of symmetric
channels. For example, when p1 to pK are evenly spaced
between (0, 1). The sum rate capacity of a proportionally
fair system is 0.56 (p = 0). However, if all p1 to pK are
concentrated on their mean 0.5, then the sum rate capacity of
the symmetric channel (p = 0.5) is 0.79. The results show
that for practical implementation, it is better to group together
all the sessions of similar marginal success rates and perform
intersession network coding within the same group.

We also repeat the same experiment of Fig. 9 but for the
case K = 20 in Fig. 10. In this case of a moderate-sized
K = 20, the sum-rate capacity of a perfectly fair system is
characterized by Proposition 5. On the other hand, the sum-rate
capacity of a proportionally fair system are characterized by
Proposition 5 only when all p1 to pK are in the range of [0.5, 1]
(see the discussion of one-sidedly fair systems in Section V-D).
Since the evaluations of both the outer and inner bounds have
prohibitively high complexity for the case K = 20, we use
the capacity formula of Proposition 5 as a substitute9 of the
sum-rate capacity for p < 0.5, which is illustrated in Fig. 10
by the fine dotted extension of the solid curve for the region

9When all p1 to pK are in [0.5, 1], the formula in Proposition 5 describes
the capacity. When some p1 to pK is outside [0.5, 1], the formula in
Proposition 5 describes an outer bound of the capacity.
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of p ∈ [0.5, 1]. Again, the more sessions (K = 20) to be
encoded together, the higher the network coding gain over the
best time sharing rate.

VII. CONCLUSION

The recent development of practical network coding
schemes [3] has brought attentions back to the study of packet
erasure channels (PECs), which is a generalization of the
classic binary erasure channels. Since per-packet feedback
(such as ARQ) is widely used in today’s network protocols,
it is thus of critical importance to study PECs with channel
output feedback (COF). This work has focused on deriving the
capacity of general 1-to-K broadcast PECs with COF, which
was previously known only for the case K = 2.

In this work, we have proposed a new class of intersession
network coding schemes, termed the packet evolution (PE)
schemes, for the broadcast PECs. Based on the PE schemes,
we have derived the capacity region for general 1-to-3 broad-
cast PECs, and a pair of capacity outer and inner bounds
for general 1-to-K broadcast PECs, both of which can be
easily evaluated by any linear programming solver for the
cases K ≤ 6. It has also been proven that the outer and
inner bounds meet for two classes of 1-to-K broadcast PECs:
the symmetric broadcast PECs, and the spatially independent
broadcast PECs with the one-sided fairness rate constraints.
Extensive numerical experiments have shown that the outer
and inner bounds meet for almost all broadcast PECs encoun-
tered in practical scenarios. Therefore, we can effectively use
the outer/inner bounds as the substitute for the capacity region
in practical applications. The capacity results in this paper also
show that for large K values, the noise of the broadcast PECs
can be effectively removed by exploiting the inherent spatial
diversity of the system, even without any coordination among
the destinations.
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APPENDIX A
A PROOF OF LEMMA 2

Proof: We prove Lemma 2 by induction on the time index
t. First consider the end of the 0-th time slot (before any
transmission). Since S0(Xk,j) = ∅ for all Xk,j and the only
di satisfying i ∈ (S0(Xk,j)∪{k}) is dk, we only need to check
whether v0(Xk,j) is in the linear space span(ΩZ,k(0), ΩM,k).
Since in the end of time 0 the coding vector v0(Xk,j) is the
elementary vector δk,j ∈ ΩM,k, Lemma 2 holds in the end of
time 0.

Suppose Lemma 2 is satisfied in the end of time (t − 1).
Consider the end of time t. We use T and Tsel to denote
the subsets chosen in the beginning of time t and use
{Xk,jk

: ∀k ∈ Tsel} to denote the corresponding target packets.
Consider the following cases:

Case 1: Consider those Xk,jk
such that St(Xk,jk

) =
St−1(Xk,jk

). We first note that if Line 4 of the UPDATE is
executed, then St(Xk,jk

) 6= St−1(Xk,jk
). Therefore, for those

Xk,jk
such that St(Xk,jk

) = St−1(Xk,jk
), we must have that

Lines 4 and 5 of the UPDATE are not executed, which implies
that vt(Xk,jk

) = vt−1(Xk,jk
).

By definition, ΩZ,i(t − 1) ⊆ ΩZ,i(t) for all i ∈ [K] and
t ∈ [n]. By the induction assumption, we thus have that for
all di with i ∈ (St(Xk,jk

) ∪ {k}) = (St−1(Xk,jk
) ∪ {k}),

vt(Xk,jk
) = vt−1(Xk,jk

)
∈ span(ΩZ,i(t− 1), ΩM,i) ⊆ span(ΩZ,i(t), ΩM,i).

Vector vt(Xk,jk
) is thus non-interfering from the perspectives

of all di, i ∈ (St(Xk,jk
) ∪ {k}).

Case 2: Consider those Xk′,j′ that are not selected as a
target packet (i.e., k′ /∈ Tsel). Since those packets do not
participate in time t, their S(Xk′,j′) and v(Xk′,j′) do not
change from time (t − 1) to time t. The same arguments of
Case 1 thus hold verbatim for this case.

Case 3: Consider those target packets Xk,jk
such that

St(Xk,jk
) 6= St−1(Xk,jk

). We must have St(Xk,jk
) = (T ∩

St−1(Xk,jk
)) ∪ Srx and vt(Xk, jk) = vtx by Lines 4 and 5

of the UPDATE, respectively. Consider any di such that i ∈
(St(Xk,jk

)∪ {k}). We have two subcases: Case 3.1: i ∈ Srx.
Since all such di must explicitly receive the transmitted packet
corresponding to vtx = vt(Xk,jk

) in the end of time t, we must
have

vt(Xk,jk
) = vtx ∈ span(vtx) = span(wi(t))

⊆ ΩZ,i(t) ⊆ span(ΩZ,i(t),ΩM,i),

where wi(t) is the coding vector corresponding to Zi(t).
Such vt(Xk,jk

) is thus non-interfering from di’s perspective.
Case 3.2: i ∈ (St(Xk,jk

) ∪ {k})\Srx. We first notice that

St(Xk,jk
) ∪ {k} = (T ∩ St−1(Xk,jk

)) ∪ Srx ∪ {k}
= ((T ∪ {k}) ∩ (St−1(Xk,jk

) ∪ {k})) ∪ Srx

= (T ∩ (St−1(Xk,jk
) ∪ {k})) ∪ Srx (58)

= T ∪ Srx, (59)

where (58) follows from that k ∈ Tsel ⊆ T since Xk,jk
is a

target packet. (59) follows from that (St−1(Xk,jk
)∪{k}) ⊇ T

by Line 6 of the main structure of the PE scheme. From (59),
the i value in this case must satisfy

i ∈ (St(Xk,jk
) ∪ {k})\Srx = (T ∪ Srx)\Srx = T\Srx. (60)

Also by Line 6 of the main structure of the PE scheme,
for all i that satisfy (60) we must have i ∈ (T\Srx) ⊆
T ⊆ (St−1(Xl,jl

) ∪ {l}) for all l ∈ Tsel. By induction, the
vt−1(Xl,jl

) vectors used to generate the new vtx (totally |Tsel|
of them) must all be non-interfering from di’s perspective.
Therefore

∀l ∈ T, vt−1(Xl,jl
) ∈ span(ΩZ,i(t− 1),ΩM,i) (61)

= span(ΩZ,i(t), ΩM,i),

where the last equality follows from the fact that di, i ∈ T\Srx,
does not receive any packet in time t. Since vtx is a linear
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combination of vt−1(Xl,jl
) for all l ∈ Tsel, we thus have

vt(Xk,jk
) = vtx ∈ span(ΩZ,i(t), ΩM,i).

Based on the above reasoning, vt(Xk,jk
) is non-interfering for

all di with i ∈ (St(Xk,jk
) ∪ {k})\Srx.

The proof is completed by induction on the time index t.

APPENDIX B
A PROOF OF LEMMA 3

Proof of Lemma 3: We focus on proving a statement
that is slightly stronger than that of Lemma 3: For any n and
ε > 0, there exists a sufficiently large finite field GF(q) such
that for all t ∈ [n],

Prob(∀k ∈ [K], span(ΩZ,k(t), ΩR,k(t))
= span(ΩZ,k(t), ΩM,k)) > 1− ε. (62)

We prove the above statement by induction on time t. In
the end of time t = 0, since for all k ∈ [K]

ΩR,k(0) = span(v0(Xk,j) : ∀j ∈ [nRk], k /∈ S0(Xk,j) = ∅)
= span(δk,j : ∀j ∈ [nRk]) = ΩM,k,

we have

Prob(∀k ∈ [K], span(ΩZ,k(0), ΩR,k(0))
= span(ΩZ,k(0), ΩM,k)) = 1.

(62) is thus satisfied.
Consider the end of time t > 0. By induction, the following

event is of close-to-one probability:

∀k ∈ [K], span(ΩZ,k(t− 1), ΩR,k(t− 1))
= span(ΩZ,k(t− 1), ΩM,k). (63)

The following proofs are conditioned on the event that (63) is
satisfied.

We use T and Tsel to denote the subsets chosen in the be-
ginning of time t and use {Xk,jk

} to denote the corresponding
target packets. Consider the following cases:

Case 1: Consider those k ∈ Tsel such that the corresponding
target packet Xk,jk

either has St(Xk,jk
) = St−1(Xk,jk

) or
has k ∈ St−1(Xk,jk

). For the former subcase St(Xk,jk
) =

St−1(Xk,jk
), by Line 4 of the UPDATE, we must have

vt(Xk,jk
) = vt−1(Xk,jk

). Since Xk,jk
is the only packet

among {Xk,j : ∀j ∈ [nRk]} that participate in time t, for
which the corresponding v(Xk,j) coding vector may change,
we must have vt(Xk,j) = vt−1(Xk,j) for all j ∈ [nRk]. We
then have

ΩR,k(t) = span(vt(Xk,j) : ∀j ∈ [nRk], k /∈ St(Xk,j)
= span(vt−1(Xk,j) : ∀j ∈ [nRk], k /∈ St−1(Xk,j))
= ΩR,k(t− 1). (64)

We note that for the latter subcase k ∈ St−1(Xk,jk
), we must

have T ⊆ (St−1(Xk,jk
) ∪ {k}) = St−1(Xk,jk

) by Line 6 of
the main PE scheme. Therefore Line 4 of the UPDATE implies
that k ∈ St(Xk,jk

) as well. Since the remaining space ΩR,k

only counts the vectors v(Xk,j) with k /∈ S(Xk,j), (64) holds

for the latter subcase as well. For both subcases, let wk(t)
denote the corresponding coding vector of Zk(t), which may
or may not be an erasure. We then have

span(ΩZ,k(t),ΩR,k(t))
= span(wk(t), ΩZ,k(t− 1), ΩR,k(t))
= span(wk(t), ΩZ,k(t− 1), ΩR,k(t− 1))
= span(wk(t), ΩZ,k(t− 1), ΩM,k) (65)
= span(ΩZ,k(t),ΩM,k),

where (65) is obtained by the induction condition (63). (62)
thus holds for the k values satisfying Case 1.

Case 2: Consider those dl with l /∈ Tsel. Since no Xl,j

packets participate in time t and their S(Xl,j) and v(Xl,j)
do not change in time t, the same arguments of Case 1 hold
verbatim for this case.

Case 3: Consider those k ∈ Tsel such that the corresponding
target packet Xk,jk

has St(Xk,jk
) 6= St−1(Xk,jk

) and k /∈
St−1(Xk,jk

). Define Ω′R as

Ω′R
∆= span(vt−1(Xk,j) : ∀j ∈ [nRk]\jk, k /∈ St−1(Xk,j)).

(66)

Note that the conditions of Case 3 and (66) jointly imply that
ΩR,k(t−1) = span(vt−1(Xk,jk

), Ω′R). We have two subcases
depending on whether k ∈ St(Xk,jk

).
Case 3.1: k /∈ St(Xk,jk

). By Line 4 of the UPDATE,
we have k /∈ Srx, i.e., dk receives an erasure in time t.
Therefore ΩZ,k(t) = ΩZ,k(t − 1). We will first show that
span (ΩZ,k(t), ΩR,k(t)) ⊆ span(ΩZ,k(t), ΩM,k).

Since the target dk satisfies k ∈ Tsel ⊆ T ⊆ (St−1(Xl,jl
) ∪

{l}), for all l ∈ Tsel, by Lemma 2 all those vt−1(Xl,jl
) are

non-interfering from dk’s perspective. That is,

∀l ∈ Tsel, vt−1(Xl,jl
) ∈ span(ΩZ,k(t− 1), ΩM,k)

= span(ΩZ,k(t), ΩM,k). (67)

As a result, we have vt(Xk,jk
) = vtx ∈ span(ΩZ,k(t), ΩM,k)

since vtx is a linear combination of all vt−1(Xl,jl
) for all

l ∈ Tsel. Therefore, we have

span (ΩZ,k(t), ΩR,k(t))
= span (ΩZ,k(t),vt(Xk,jk

), Ω′R)
⊆ span(ΩZ,k(t), ΩZ,k(t), ΩM,k, Ω′R)
= span(ΩZ,k(t), ΩM,k, Ω′R). (68)

Since we condition on the event that (63) holds, we have

span(ΩZ,k(t), Ω′R) ⊆ span (ΩZ,k(t),vt−1(Xk,jk
), Ω′R)

= span (ΩZ,k(t),ΩR,k(t− 1))
= span (ΩZ,k(t− 1), ΩR,k(t− 1))
= span (ΩZ,k(t− 1), ΩM,k)
= span(ΩZ,k(t),ΩM,k). (69)

Jointly (68) and (69) show that span (ΩZ,k(t),ΩR,k(t)) ⊆
span(ΩZ,k(t), ΩM,k).

To prove (62) for Case 3.1, it remains to show that the event
span (ΩZ,k(t), ΩR,k(t)) ⊇ span(ΩZ,k(t), ΩM,k) is of close-to-
one probability, conditioning on (63) being true. We consider
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two subcases: depending on whether the following equation is
satisfied.

vt−1(Xk,jk
) ∈ span (ΩZ,k(t− 1), Ω′R)

= span (ΩZ,k(t), Ω′R) . (70)

Case 3.1.1: If (70) is satisfied, then we have

span (ΩZ,k(t), ΩR,k(t))
= span (ΩZ,k(t),vt(Xk,jk

), Ω′R)
⊇ span (ΩZ,k(t), Ω′R)
= span (ΩZ,k(t),vt−1(Xk,jk

), Ω′R) (71)
= span (ΩZ,k(t), ΩR,k(t− 1))
= span (ΩZ,k(t− 1),ΩR,k(t− 1))
= span(ΩZ,k(t− 1),ΩM,k) (72)
= span(ΩZ,k(t), ΩM,k), (73)

where (71) follows from (70), and (72) follows from the
induction condition (63).

Case 3.1.2: (70) is not satisfied. By the equality between
(71) and (73), we have

span (ΩZ,k(t),vt−1(Xk,jk
), Ω′R) = span(ΩZ,k(t),ΩM,k).

(74)

Recall that vt(Xk,jk
) = vtx is a linear combination of

vt−1(Xl,jl
) satisfying (67). By (67), (74), and the assumption

that (70) is not satisfied, we thus have that each vt−1(Xl,jl
)

can be written as a unique linear combination: αvt−1(Xk,jk
)+

w where α is a GF(q) coefficient and w is a vector satisfying
w ∈ span (ΩZ,k(t), Ω′R). By the same reasoning, we can
rewrite vt(Xk,jk

) as

vt(Xk,jk
) = ckvt−1(Xk,jk

) +
∑

∀l∈Tsel\k
clvt−1(Xl,jl

)

= ckvt−1(Xk,jk
) + (αvt−1(Xk,jk

) + w)
= (ck + α)vt−1(Xk,jk

) + w. (75)

where α is a GF(q) coefficient, w is a vector satisfying w ∈
span (ΩZ,k(t), Ω′R), and the values of α and w depend on the
random coefficients cl for all l ∈ Tsel\k. As a result, we have

span (ΩZ,k(t), ΩR,k(t))
= span (ΩZ,k(t),vt(Xk,jk

),Ω′R)
= span (ΩZ,k(t), ((ck + α)vt−1(Xk,jk

) + w) , Ω′R) .

Since (70) is not satisfied and w ∈ span (ΩZ,k(t),Ω′R), we
have

span (ΩZ,k(t), ((ck + α)vt−1(Xk,jk
) + w) , Ω′R)

= span (ΩZ,k(t),vt−1(Xk,jk
), Ω′R)

= span(ΩZ,k(t),ΩM,k) (76)

if and only if (ck + α) 6= 0. Since ck is uniformly distributed
in GF(q) and the random variables ck and α are independent,
the event that (76) is true has conditional probability q−1

q ,
conditioning on (63) being true. For sufficiently large q values,
the conditional probability approaches one.

Case 3.2: k ∈ St(Xk,jk
). Recall that for Case 3, we

consider those k such that k /∈ St−1(Xk,jk
). By Line 4 of

the UPDATE, we must have k ∈ Srx, i.e., dk receives the
transmitted packet perfectly in time t. Therefore, in the end
of time t, ΩR,k(t) = Ω′R, which was first defined in (66).

We consider two subcases: depending on whether the fol-
lowing equation is satisfied.

vt−1(Xk,jk
) ∈ span (ΩZ,k(t− 1),Ω′R) . (77)

Case 3.2.1: If (77) is satisfied, then we have

span (ΩZ,k(t), ΩR,k(t)) = span (ΩZ,k(t), Ω′R)
= span (vt(Xk,jk

), ΩZ,k(t− 1), Ω′R)
= span (vt(Xk,jk

), ΩZ,k(t− 1),vt−1(Xk,jk
),Ω′R) (78)

= span (vt(Xk,jk
), ΩZ,k(t− 1), ΩR,k(t− 1))

= span(vt(Xk,jk
), ΩZ,k(t− 1), ΩM,k) (79)

= span(ΩZ,k(t), ΩM,k),

where (78) follows from (77), and (79) follows from the
induction assumption (63).

Case 3.2.2: (77) is not satisfied. By the induction assump-
tion (63), we have

span (ΩZ,k(t− 1),vt−1(Xk,jk
),Ω′R)

= span(ΩZ,k(t− 1), ΩM,k). (80)

Since the target dk satisfies k ∈ Tsel ⊆ T ⊆ (St−1(Xl,jl
) ∪

{l}), for all l ∈ Tsel, by Lemma 2 all those vt−1(Xl,jl
) are

non-interfering from dk’s perspective. That is,

∀l ∈ Tsel, vt−1(Xl,jl
) ∈ span(ΩZ,k(t− 1), ΩM,k). (81)

By (80), (81), and the assumption that (77) is not satisfied,
each vt−1(Xl,jl

) can thus be written as a unique linear
combination: αvt−1(Xk,jk

)+w where α is a GF(q) coefficient
and w is a vector satisfying w ∈ span (ΩZ,k(t− 1), Ω′R).
Since vt(Xk,jk

) = vtx is a linear combination of vt−1(Xl,jl
),

by the same reasoning, we can rewrite vt(Xk,jk
) as

vt(Xk,jk
) = ckvt−1(Xk,jk

) +
∑

∀l∈Tsel\k
clvt−1(Xl,jl

)

= ckvt−1(Xk,jk
) + (αvt−1(Xk,jk

) + w)
= (ck + α)vt−1(Xk,jk

) + w. (82)

where α is a GF(q) coefficient, w is a vector satisfying w ∈
span (ΩZ,k(t− 1),Ω′R), and the values of α and w depend on
the random coefficients cl for all l ∈ Tsel\k. As a result, we
have

span (ΩZ,k(t), ΩR,k(t)) = span (ΩZ,k(t), Ω′R)
= span (vt(Xk,jk

), ΩZ,k(t− 1), Ω′R) (83)
= span (vt(Xk,jk

), ΩZ,k(t− 1),vt−1(Xk,jk
),Ω′R) (84)

= span (vt(Xk,jk
), ΩZ,k(t− 1), ΩR,k(t− 1))

= span (vt(Xk,jk
), ΩZ,k(t− 1), ΩM,k)

= span (ΩZ,k(t), ΩM,k) ,

where the equality from (83) to (84) is true if and only if the
(ck + α) in (82) is not zero, since (77) is not satisfied and
w ∈ span (ΩZ,k(t− 1), Ω′R).

Since ck is uniformly distributed in GF(q) and the ran-
dom variables ck and α are independent, the event that
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span (ΩZ,k(t), ΩR,k(t)) = span (ΩZ,k(t), ΩR,M ) has the con-
ditional probability q−1

q , conditioning on (63) being true.
For sufficiently large q values, the conditional probability
approaches one.

Combining all cases: Let T and Tsel denote the sub-
sets chosen in time t and let Ak,t denote the event that
span(ΩZ,k(t), ΩR,k(t)) = span(ΩZ,k(t), ΩM,k). Note that
Cases 3.1.2 and 3.2.2 are the only two subcases such that the
conditional probability of Ak,t given

⋂
∀j∈[K]Aj,t−1 is lower

bounded by q−1
q and for all other subcases the conditional

probability is one. Also note that both Cases 3.1.2 and 3.2.2
have k ∈ Tsel. As a result, the discussion of Cases 1 to 3.2
plus the union bound lead to the following inequalities:

Prob


 ⋂

∀k∈[K]

Ak,t

∣∣∣∣∣∣
T, Tsel,

⋂

∀j∈[K]

Aj,t−1


 ≥

(
1− |Tsel|

q

)
.

Since for any Tsel ⊆ T ⊆ [K] we must have |Tsel| ≤ K, we
then have

Prob


 ⋂

∀k∈[K]

Ak,t

∣∣∣∣∣∣
⋂

∀j∈[K]

Aj,t−1


 ≥

(
1− K

q

)
. (85)

By concatenating the conditional probabilities, we thus have

Prob(∀k ∈ [K], span(ΩZ,k(t), ΩR,k(t))
= span(ΩZ,k(t), ΩM,k))

= Prob


 ⋂

∀k∈[K]

Ak,t


 ≥

(
1− K

q

)t

≥
(

1− K

q

)n

.

(86)

As a result, for any fixed K and n values, we can choose a
sufficiently large finite field GF(q) such that (86) approaches
one. (62) thus holds for all t ∈ [n].

APPENDIX C
A PROOF OF LEMMA 4

Proof of Lemma 4: Suppose Lemma 4 is not true and
we have di dominates dk, dk dominates dl, and dl dominates
di. By definition, we must have

Ri

(
1

p∪({1,2,3}\k)
− 1

p∪{1,2,3}

)

≥ Rk

(
1

p∪({1,2,3}\i)
− 1

p∪{1,2,3}

)
, (87)

Rk

(
1

p∪({1,2,3}\l)
− 1

p∪{1,2,3}

)

≥ Rl

(
1

p∪({1,2,3}\k)
− 1

p∪{1,2,3}

)
, (88)

Rl

(
1

p∪({1,2,3}\i)
− 1

p∪{1,2,3}

)

≥ Ri

(
1

p∪({1,2,3}\l)
− 1

p∪{1,2,3}

)
. (89)

We then notice that the product of the left-hand sides of (87),
(88), and (89) equals the product of the right-hand sides of

(87), (88), and (89). As a result, all three inequalities (87),
(88), and (89) must be equalities. Since (89) is an equality,
we can also say that di dominates dl. The proof of Lemma 4
is complete.

APPENDIX D
A KEY LEMMA FOR THE PROOF OF PROPOSITION 5

For any S ⊆ [K] and S 6= [K], define

LS
∆=

K∑

i=K−|S|




∑

∀S1 : |S1| = i
([K]\S) ⊆ S1 ⊆ [K]

(−1)i−(K−|S|)

p∪S1


 .

We then have the following lemma:
Lemma 5: Suppose the 1-to-K broadcast PEC is spa-

tially independent with marginal success probabilities 0 <
p1 ≤ · · · ≤ pK . Consider any one-sidedly fair rate vector
(R1, · · · , RK) ∈ Λosf and any T ⊆ [K]. For any k1, k2 ∈ T
with k1 < k2, we have

Rk1 · LT\k1 ≥ Rk2 · LT\k2 .

Proof: Consider K independent geometric random vari-
ables X1 to XK with success probability p1 to pK . That is,
the probability mass function Fk(t) of any Xk satisfies

Fk(t) ∆= Prob(Xk = t) = pk(1− pk)t−1,

for all strictly positive integer t. For the sake of simplicity,
here we omit the discussion of the degenerate case in which
pk = 1. We say that the geometric random trial Xk is finished
at time t if Xk = t. For any S ⊆ [K] and S 6= [K], define
three random variables

Y[K]\S
∆= min{Xi : i ∈ [K]\S} (90)

WS
∆= max{Xi : i ∈ S} (91)

ΓS
∆= Y[K]\S −min(Y[K]\S ,WS). (92)

For (91), we use the convention max ∅ = 0.
Intermediate Step 1: We will first show that

LS = E {ΓS} .

To that end, for any time t, we mark each time instant t by a
set It

∆= {i ∈ [K] : Xi < t}. We then have

ΓS = Y[K]\S −min(Y[K]\S ,WS) =
∞∑

t=1

1{It=S}.

By noting that

t ≤ Y[K]\S ⇐⇒ It ⊆ S,

we also have

Y[K]\S =
∞∑

t=1

1{t≤Y[K]\S} =
∞∑

t=1

1{It⊆S} =
∑

∀S′:S′⊆S

ΓS′ .

(93)
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Taking the expectation of (93), we then have for all S ⊆ [K]
and S 6= [K],

∑

∀S′:S′⊆S

E {ΓS′} = E
{
Y[K]\S

}
=

1
p∪([K]\S)

. (94)

Solving the simultaneous equations (94), we have

E {ΓS′} =
K∑

i=K−|S′|




∑

∀S1 : |S1| = i
([K]\S′) ⊆ S1 ⊆ [K]

(−1)i−(K−|S′|)

p∪S1




= LS′ ,

for all S′ ⊆ [K] and S′ 6= [K].
Intermediate Step 2: We will show that for any non-empty
subset T ⊆ [K] and any k1, k2 ∈ T with k1 < k2, we have

LT\k1

1− pk1

≥ LT\k2

1− pk2

. (95)

For any realization (X1, · · · , XK) = (x1, · · · , xK), we use
y[K]\S , wS , and γS to denote the corresponding values of
Y[K]\S , WS , and ΓS according to (90), (91), and (92), respec-
tively. We then have

E
{
ΓT\k1

}
=

∑

∀(x1,··· ,xK)

γT\k1

K∏

k=1

Fk(xk)

=
∑

∀(x1,··· ,xK):γT\k1>0

γT\k1

K∏

k=1

Fk(xk). (96)

Note that the only difference between E
{
ΓT\k1

}
and

E
{
ΓT\kk

}
is the underlying measures of Xk1 and Xk2 .

Therefore, by the change of measure formula, we have

E
{
ΓT\k2

}
=

∑

∀(x1,··· ,xK):γT\k1>0

γT\k1 ·

(
Fk2(xk1)
Fk1(xk1)

Fk1(xk2)
Fk2(xk2)

) K∏

k=1

Fk(xk). (97)

Note that when γT\k1 > 0, we must have y([K]\T )∪{k1} >
wT\k1 , which in turn implies that xk1 ≥ xk2 + 1 since k2 ∈
(T\k1). We then have

Fk2(xk1)
Fk1(xk1)

Fk1(xk2)
Fk2(xk2)

=
pk2(1− pk2)

xk1−1

pk1(1− pk1)
xk1−1

pk1(1− pk1)
xk2−1

pk2(1− pk2)
xk2−1

=
(

1− pk2

1− pk1

)xk1−xk2

≤
(

1− pk2

1− pk1

)
, (98)

where the last inequality follows from pk1 ≤ pk2 and xk1 ≥
xk2 + 1. Combining (96), (97), and (98), we thus have

E{ΓT\k1}
(

1− pk2

1− pk1

)
≥ E{ΓT\k2},

which implies (95).

Final Step 3: Since (R1, · · · , RK) ∈ Λosf, by the definition
of one-sided fairness, we have

Rk1(1− pk1) ≥ Rk2(1− pk2). (99)

Multiplying (95) and (99) together, the proof of Lemma 5 is
complete.

APPENDIX E
A PROOF OF PROPOSITION 6

Proof of Proposition 6: To prove this proposition, we
only need to prove that for any q0 > K, the source s can al-
ways compute the mixing coefficients {ck : ∀k ∈ T} in Line 7
of the PE scheme, such that the key properties in Lemmas 2
and 3 hold with probability one. Then for any PE scheme,
we can use the computed mixing coefficients {ck : ∀k ∈ T}
instead of the randomly chosen ones, while attaining the same
desired throughput performance during our construction of
capacity-achieving PE schemes in Sections V-A and V-C.

We first notice that the proof of Lemma 2 does not involve
any probabilistic arguments. Therefore, Lemma 2 holds for
any choices of the mixing coefficients with probability one.

For Lemma 3, we notice that for individual time t, the
probability that (62), a stronger version of Lemma 3, is
satisfied conditioning on the satisfaction in time (t−1) is lower
bounded by (85). As a result, when q0 > K, the conditional
probability is strictly positive. Therefore, there must exist one
realization of random {ck : k ∈ Tsel} at time t that satisfies
(62). By deterministically choosing the coefficients {ck : k ∈
Tsel} from one of those good realizations, we can satisfy (62)
for time t with probability one. By deterministically choosing
good {ck : k ∈ Tsel} for all t ∈ [n], the proof is complete.
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