Capacity of 1-to-K Broadcast Packet Erasure Channels with Channel Output Feedback
— A Packet Evolution Approach

Chih-Chun Wang, Purdue University

Presented in the 48-th Allerton Conference, 9/30/2010

Joint work with Y. Charlie Hu (Purdue), Ness B. Shroff (The OSU), Dimitrios Koutsonikolas, Abdallah Khreishah.

Sponsored by NSF CCF-0845968 and CNS-0905331.
Two Ingredients

Packet Erasure Channels (PECs):

- Input: $X \in \text{GF}(2^b)$ for large b.
- A packet X either arrives perfectly (with the help of CRC), or is considered as erasure and discarded. (No hybrid ARQ).
- Memoryless, time-invariant.
Packet Erasure Channels (PECs):

- Input: $X \in \text{GF}(2^b)$ for large b.
- A packet X either arrives perfectly (with the help of CRC), or is considered as erasure and discarded. (No hybrid ARQ).
- Memoryless, time-invariant.

The ER protocol — 1-hop cellular networks [Rozner et al. 07].

- 5 transmissions w/o coding vs. 4 transmissions w. coding
- Create its own SI through spatial diversity.
- Empirically, 10–20% throughput improvement.
Two Ingredients

Packet Erasure Channels (PECs):

- Input: \(X \in \text{GF}(2^b) \) for large \(b \).
- A packet \(X \) either arrives perfectly (with the help of CRC), or is considered as erasure and discarded. (No hybrid ARQ).
- Memoryless, time-invariant.

The ER protocol — 1-hop cellular networks [Rozner et al. 07].

- 5 transmissions w/o coding vs. 4 transmissions w. coding
- Create its own SI through spatial diversity.
- Empirically, 10–20% throughput improvement.

Our goal: Finding the Shannon capacity of PECs with channel output feedback (COF) for arbitrary number \(M \geq 3 \) of sessions.

Wang, Allerton 2010 – p. 2/20
The benefits of ER follows from the channel output feedback (COF).

Capacity-achieving schemes by code alignment.

<table>
<thead>
<tr>
<th># of sessions</th>
<th>ER-like Protocols (Broadcast PECs w. COF)</th>
<th>Gaussian broadcast channels w. COF</th>
</tr>
</thead>
<tbody>
<tr>
<td>M=2</td>
<td>Full capacity region [Georgiadis et al. 09]</td>
<td>Outer and inner bounds [Ozarow 84]</td>
</tr>
<tr>
<td>M=3</td>
<td>Full capacity region</td>
<td></td>
</tr>
<tr>
<td>General M</td>
<td>(1) Capacity for fair systems; (2) Outer and inner bounds that meet numerically.</td>
<td></td>
</tr>
</tbody>
</table>
The benefits of ER follows from the channel output feedback (COF).

<table>
<thead>
<tr>
<th># of sessions</th>
<th>ER-like Protocols (Broadcast PECs w. COF)</th>
<th>Gaussian broadcast channels w. COF</th>
</tr>
</thead>
<tbody>
<tr>
<td>M=2</td>
<td>Full capacity region [Georgiadis et al. 09]</td>
<td>Outer and inner bounds [Ozarow 84]</td>
</tr>
<tr>
<td>General M</td>
<td>(1) Capacity for fair systems; (2) Outer and inner bounds that meet numerically.</td>
<td>?</td>
</tr>
</tbody>
</table>

Capacity-achieving schemes by code alignment.

- The problem setting.
- Existing results for $M = 2$ [Georgiadis et al. 09].
- New concepts of code alignment and packet evolution.
- Main theorems and numerical evaluation.
1-Hop Cellular (AP) Networks

- 1-hop access point networks. M dest.
- M can be large, say ≈ 20.
- Each session has nR_i packets.
- The source s uses the channel n times.

Our goal is to maximize the achievable rate vector (R_1, \cdots, R_M).

(Instant) feedback

Broadcast PEC

X_{nR_1} Y_{nR_2} Z_{nR_3}

d_1 d_2 d_3
Formal Definition of Feasibility

A network code is defined by the following functions:

\[Y(t) = f_t(\{X_{k,l} : k \in [M], l \in [nR_k]\}, \{Z_k(\tau) : k \in [M], \tau \in [t-1]\}) , \]

\[\hat{X}_k = g_k(\{Z_k(\tau) : \tau \in [n]\}). \]
A network code is defined by the following functions:
\[Y(t) = f_t(\{X_{k,l} : k \in [M], l \in [nR_k]\}, \{Z_k(\tau) : k \in [M], \tau \in [t-1]\}), \]
\[\hat{X}_k = g_k(\{Z_k(\tau) : \tau \in [n]\}). \]

Definition 1 \((R_1, \ldots, R_M)\) is achievable if \(\forall \epsilon > 0\), there exist a sufficiently large \(n\), a sufficiently large finite field \(\mathbb{F}(2^b)\), and a corresponding network code, such that for independently and uniformly distributed \(X_k, k \in [M]\):
\[
\max_{k \in [M]} P(\hat{X}_k \neq X_k) < \epsilon.
\]
1-Hop Cellular (AP) Networks

- 1-hop access point networks. M dest.
- M can be large, say ≈ 20.
 (For 2-hop relay networks $M \leq 6$).
- Each session has nR_i packets.
- The source s uses the channel n times.
1-Hop Cellular (AP) Networks

- 1-hop access point networks. M dest.
- M can be large, say $≈ 20$.
- (For 2-hop relay networks $M \leq 6$).
- Each session has nR_i packets.
- The source s uses the channel n times.

For $M = 2$, no feedback, the capacity is $\frac{R_1}{p_1} + \frac{R_2}{p_2} \leq 1$.

Wang, Allerton 2010 – p. 6/20
1-hop Cellular (AP) Networks

- 1-hop access point networks. \(M \) dest.
- \(M \) can be large, say \(\approx 20 \).
- (For 2-hop relay networks \(M \leq 6 \)).
- Each session has \(nR_i \) packets.
- The source \(s \) uses the channel \(n \) times.
- For \(M = 2 \), no feedback, the capacity is \(\frac{R_1}{p_1} + \frac{R_2}{p_2} \leq 1 \).
- For \(M = 2 \), w. feedback, the capacity is [Georgiadis et al. 09].

\[
\begin{align*}
\frac{R_1}{p_1} + \frac{R_2}{p_2} &\leq 1 \\
\frac{R_1}{p_1} + \frac{R_2}{p_1 \cup 2} &\leq 1
\end{align*}
\]
Outer bound [Ozarow et al. 84]: Introduce auxiliary pipes to convert it into *physically degraded channels*, for which feedback does not increase the capacity [El Gamal 78].

\[
\frac{R_1}{p_1} + \frac{R_2}{p_1 \cup 2} \leq 1 \quad p_2 \to p_{1 \cup 2}
\]

\[
\frac{R_1}{p_{1 \cup 2}} + \frac{R_2}{p_2} \leq 1
\]

The cap. of the original CH with feedback
≺ The cap. of the new physically degraded CH with feedback
= The cap. of the new physically degraded CH without feedback
Georgiadis’ Proof

- **Outer bound** [Ozarow et al. 84]: Introduce auxiliary pipes to convert it into *physically degraded channels*, for which feedback does not increase the capacity [El Gamal 78].

- **Inner bound**: A 2-phase approach. (Creating its own side info.)
Georgiadis’ Proof

Outer bound [Ozarow et al. 84]: Introduce auxiliary pipes to convert it into *physically degraded channels*, for which feedback does not increase the capacity [El Gamal 78].

Inner bound:

\[
\frac{R_1}{p_1} + \frac{R_2}{p_{1\cup 2}} \leq 1
\]

Phase 1

Rank = \(nR_1 \)

Keep sending until

Phase 2

\[
\frac{R_1}{p_{1\cup 2}} + \frac{R_2}{p_2} \leq 1
\]

either

or

recvd by 1

recvd by 2

Wang, Allerton 2010 – p. 7/20
Georgiadis’ Proof

Outer bound [Ozarow et al. 84]: Introduce auxiliary pipes to convert it into *physically degraded channels*, for which feedback does not increase the capacity [El Gamal 78].

Inner bound:

\[
\frac{R_1}{p_1} + \frac{R_2}{p_1 \cup p_2} \leq 1
\]

Phase 1
- Rank = \(n R_1 \)
- Keep sending until
- Receive either by 1 or 2

Phase 2
- Rank = \(n R_2 \)
- Keep sending until
- Receive either by 1 or 2

Wang, Allerton 2010 – p. 7/20
Georgiadis’ Proof

- **Outer bound** [Ozarow et al. 84]: Introduce auxiliary pipes to convert it into *physically degraded channels*, for which feedback does not increase the capacity [El Gamal 78].

- **Inner bound:**

 \[
 \frac{R_1}{p_1} + \frac{R_2}{p_{1∪2}} \leq 1 \]

 Phase 1
 - Rank = \(nR_1 \)
 - Keep sending until

 Phase 2
 - Rank = \(nR_2 \)
 - Either

 - Rcv’d by 1
 - or

 - Rcv’d by 12

 Mixing
 - Rcv’d by 2

 - Keep sending until
Georgiadis’ Proof

- **Outer bound** [Ozarow et al. 84]: Introduce auxiliary pipes to convert it into *physically degraded channels*, for which feedback does not increase the capacity [El Gamal 78].

- **Inner bound:**

 $\frac{R_1}{p_1} + \frac{R_2}{p_{1\cup2}} \leq 1$
 $\frac{R_1}{p_{1\cup2}} + \frac{R_2}{p_2} \leq 1$

Phase 1
- Rank = nR_1
- Keep sending until either
- Rank = nR_2
- Keep sending until

Phase 2
- Rcv'd by 1
- Rcv'd by 2
- Mixing
- Keep sending until both receivers are satisfied

Wang, Allerton 2010 – p. 7/20
Georgiadis’ Proof

Outer bound [Ozarow et al. 84]: Introduce auxiliary pipes to convert it into *physically degraded channels*, for which feedback does not increase the capacity [El Gamal 78].

Inner bound:

\[
\frac{R_1}{p_1} + \frac{R_2}{p_{1 \cup 2}} \leq 1
\]

Phase 1
- Rank = \(nR_1\)
- Keep sending until

Phase 2
- Rank = \(nR_2\)
- Mix

This scheme achieves the capacity.

Wang, Allerton 2010 – p. 7/20
What if $M \geq 3$?
What if $M \geq 3$?

- The CH. parameters become more involved.
- $M = 2$: $p_{12}, p_{12c}, p_{1c2}, p_{1c2c}$.
- $M \geq 3$: the success probability $p_S([M] \setminus S)$ that a packet is received by and only by $d_i \in S$. We have 2^M such parameters.
What if $M \geq 3$?

- The CH. parameters become more involved.
- $M = 2$: p_{12}, p_{12c}, p_{1c2}, p_{1c2c}.
- $M \geq 3$: the success probability $p_S([M] \setminus S)$ that a packet is received by and only by $d_i \in S$. We have 2^M such parameters.
- Can we also quantify the Shannon capacity for $M \geq 3$?
What if $M \geq 3$?

- The CH. parameters become more involved.
 - $M = 2$: $p_{12}, p_{12c}, p_{1c2}, p_{1c2c}$.
 - $M \geq 3$: the success probability $p_S([M] \setminus S)$ that a packet is received by and only by $d_i \in S$. We have 2^M such parameters.

Can we also quantify the Shannon capacity for $M \geq 3$?

- Generalization of the outer bound is straightforward.
- Generalization of the inner bound is more difficult.
For any permutation $\pi : [M] \mapsto [M]$,

- p_k: The marginal success probability.
For any permutation $\pi: [M] \mapsto [M]$,

p_k: The marginal success probability.
For any permutation $\pi : [M] \mapsto [M],$

- Cap. of the original CH with feedback
- Cap. of the new CH with feedback
- Cap. of the new CH without feedback

p_k: The marginal success probability.
Simple Cap. Outer Bound

- Cap. of the original CH with feedback
- Cap. of the new CH with feedback
- Cap. of the new CH without feedback

For any permutation $\pi : [M] \mapsto [M]$,

$\pi(1)$: The marginal success probability.

$p_{\cup S}$: Prob. at least one $d_i \in S$ is successful.

$S^\pi_k = \{ \pi(j) : \forall j = 1, \cdots, k \}$.
Simple Cap. Outer Bound

For any permutation \(\pi : [M] \mapsto [M] \),

- Cap. of the original CH with feedback \(\prec \) Cap. of the new CH with feedback
- Cap. of the new CH without feedback

\(p_k \): The marginal success probability.
\(p_{\cup S} \): Prob. at least one \(d_i \in S \) is successful.

\[S_{\pi k} = \{ \pi(j) : \forall j = 1, \cdots, k \}. \]

For each \(\pi \), the capacity of the degraded channel is

\[\sum_{k=1}^{M} R_{\pi(k)} \frac{p_{\cup S_{\pi k}}}{p_{\cup S_{\pi k}}} \leq 1. \]
Simple Cap. Outer Bound

- For any permutation $\pi : [M] \mapsto [M]$,
 - Cap. of the original CH with feedback
 - \prec Cap. of the new CH with feedback
 - \equiv Cap. of the new CH without feedback

- p_k: The marginal success probability.
- $p_{\cup S}$: Prob. at least one $d_i \in S$ is successful.

\[S_{\pi}^k = \{ \pi(j) : \forall j = 1, \cdots, k \} \]

For each π, the capacity of the degraded channel is

\[\sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_{\pi}^k}} \leq 1. \]

A capacity outer bound is thus

\[\forall \pi, \sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_{\pi}^k}} \leq 1. \]
Cap. Inner Bound?

How to achieve the outer bound: \(\forall \pi, \sum_{k=1}^{M} \frac{R_{\pi}(k)}{p_{\pi} \cup S_{\pi}^k} \leq 1 \)
How to achieve the outer bound: $\forall \pi, \sum_{k=1}^{M} \frac{R_{\pi}(k)}{p \cup S_{\pi}^k} \leq 1$

First try was by [Larsson et al. 06], an M-phase approach.
Cap. Inner Bound?

How to achieve the outer bound: \(\forall \pi, \sum_{k=1}^{M} \frac{R_{\pi}(k)}{p \cup S_{k}^{\pi}} \leq 1 \)

First try was by [Larsson et al. 06], an \(M \)-phase approach.

Phase 1
Creating New Coding Opp.

- rcv’d by 1
- rcv’d by 123
- rcv’d by 123

Phase 2
Exploiting Coding Opp.

- rcv’d by 123
- rcv’d by 123
- rcv’d by 123

Phase 3
Exploiting Coding Opp.

Wang, Allerton 2010 – p. 10/20
How to achieve the outer bound: \(\forall \pi, \sum_{k=1}^{M} \frac{R_{\pi}(k)}{p \cup S_{\pi}^k} \leq 1 \)

First try was by [Larsson \textit{et al.} 06], an \(M \)-phase approach.
Cap. Inner Bound?

How to achieve the outer bound: \(\forall \pi, \sum_{k=1}^{M} \frac{R_{\pi}(k)}{p_{\cup S_{\pi}^k}} \leq 1 \)

First try was by [Larsson et al. 06], an \(M \)-phase approach.
How to achieve the outer bound: $\forall \pi, \sum_{k=1}^{M} \frac{R_{\pi}(k)}{p_{\cup S_{\pi}^k}} \leq 1$

First try was by [Larsson et al. 06], an M-phase approach.

Those that have arrived the intended receivers need not be retransmitted!
How to achieve the outer bound: \(\forall \pi, \sum_{k=1}^{M} \frac{R_{\pi}(k)}{P_{\cup S_{\pi}^k}} \leq 1 \)

First try was by [Larsson et al. 06], an \(M \)-phase approach.
How to achieve the outer bound: \(\forall \pi, \sum_{k=1}^{M} \frac{R_{\pi}(k)}{p \cup S_{\pi}^k} \leq 1 \)

First try was by [Larsson et al. 06], an \(M \)-phase approach.
Cap. Inner Bound?

How to achieve the outer bound: \(\forall \pi, \sum_{k=1}^{M} \frac{R_{\pi}(k)}{p_{\cup S_{\pi}^{k}}} \leq 1 \)

First try was by [Larsson et al. 06], an \(M \)-phase approach.
Cap. Inner Bound?

How to achieve the outer bound: \(\forall \pi, \sum_{k=1}^{M} \frac{R_{\pi(k)}}{p \cup S_{\pi k}} \leq 1 \)

First try was by [Larsson et al. 06], an \(M \)-phase approach.
How to achieve the outer bound: \(\forall \pi, \sum_{k=1}^{M} \frac{R_{\pi}(k)}{p_{\cup S_{\pi}^k}} \leq 1 \)

First try was by [Larsson et al. 06], an \(M \)-phase approach.

Its performance is strictly bounded away from the outer bound.
What Went Wrong?

Phase 1
Creating New Coding Opp.

Phase 2
Exploiting Coding Opp.

Phase 3
Exploiting Coding Opp.
What Went Wrong?

Phase 1
Creating New Coding Opp.

Phase 2

Phase 3

d₁ has Y, Z
d₂ has X, Z

By 2 only

By 1 only

By both 1 and 2
What Went Wrong?

Phase 1
Creating New Coding Opp.

Phase 2
Exploiting Coding Opp.
& Creating New Coding Opp.

Phase 3
Exploiting Coding Opp.
& Creating New Coding Opp.

By 2 only

By 1 only

By both 1 and 2

X

Y

Z

$X + Y$ received by 123

d_1 has Y, Z
d_2 has X, Z
d_3 has $X + Y$
What Went Wrong?

Phase 1
Creating New Coding Opp.

Phase 2

Phase 3

By 2 only

By 1 only

By both 1 and 2

$X + Y$ received by 123

d_1 has Y, Z
d_2 has X, Z
d_3 has $X + Y$

Discard it => Suboptimal Recoup it for new coding opp.
What Went Wrong?

Phase 1
Creating New Coding Opp.

Phase 2

Phase 3

Discard it => Suboptimal Recoup it for new coding opp.
We need code alignment [W. ISIT10] in order to recoup the overheard coding opportunities during Phases 2 to M. That is, the overheard coding vector $[X + Y]$ has to remain aligned in the subsequent mixing stages.

$[\alpha (X + Y) + \beta Z]$ serves all three destinations, but $[\alpha X + \beta Y + \gamma Z]$ does not.
New Cap. Inner Bound

- We need code alignment [W. ISIT10] in order to recoup the overheard coding opportunities during Phases 2 to M.

- That is, the overheard coding vector $[X + Y]$ has to remain aligned in the subsequent mixing stages.

- $[\alpha(X + Y) + \beta Z]$ serves all three destinations, but $[\alpha X + \beta Y + \gamma Z]$ does not.

- We propose a new Packet Evolution scheme.

- Each information packet (payload) is expanded to (payload, overhearing status, representative coding vector)

 - overhearing status keeps evolving to create more coding opportunities.
 - representative coding vector keeps evolving to ensure code alignment.
The Packet Evolution Scheme

Phase 1
Creating New Coding Opp.

Phase 2
Exploiting Coding Opp.
& Creating New Coding Opp.

Phase 3
Exploiting Coding Opp.
& Creating New Coding Opp.

X

By 2 only

Y

By 1 only

Z

By both 1 and 2

d₁ has Y, Z

d₂ has X, Z
The Packet Evolution Scheme

Phase 1
Creating New Coding Opp.

X

Y

Z

By 2 only

By 1 only

By both 1 and 2

Phase 2
Exploiting Coding Opp.
& Creating New Coding Opp.

X + Y

By 3 only

Phase 3
Exploiting Coding Opp.
& Creating New Coding Opp.

d_1 has Y, Z
d_2 has X, Z
d_3 has X + Y
The Packet Evolution Scheme

Phase 1
Creating New Coding Opp.

Phase 2
Exploiting Coding Opp.
+ By 3 only
& Creating New Coding Opp.

Phase 3
Exploiting Coding Opp.
& Creating New Coding Opp.

By 1 only

By both 1 and 2

X

Y

Z

$X + Y$

d_1 has Y, Z

d_2 has X, Z

d_3 has $X + Y$
The Packet Evolution Scheme

Phase 1
Creating New Coding Opp.

Phase 2

Phase 3

Phase 1
- Creating New Coding Opp.

Phase 2
- Exploiting Coding Opp.
- Creating New Coding Opp.

Phase 3
- Exploiting Coding Opp.
- Creating New Coding Opp.

By 1 only
- Y

By 2 only
- X
 - By both 2 and 3

By both 1 and 2
- Z

By 3 only
- $X + Y$
 - d_1 has Y, Z
 - d_2 has X, Z
 - d_3 has $X + Y$
The Packet Evolution Scheme

Phase 1
Creating New Coding Opp.

Phase 2

By 2 only

+ By 3 only

Phase 3

By 1 only

By both 2 and 3

By both 1 and 2

\[X + Y \]

\[X \]

\[Y \]

\[Z \]

\[d_1 \text{ has } Y, Z \]
\[d_2 \text{ has } X, Z \]
\[d_3 \text{ has } X + Y \]
The Packet Evolution Scheme

Phase 1
Creating New Coding Opp.

Phase 2
Exploiting Coding Opp.
& Creating New Coding Opp.

Phase 3
Exploiting Coding Opp.
& Creating New Coding Opp.

\[X + Y \] = By both 2 and 3

By 1 only

By both 1 and 2

\[X + Y \] = By 3 only

\[d_1 \text{ has } Y, Z \]
\[d_2 \text{ has } X, Z \]
\[d_3 \text{ has } X + Y \]
The Packet Evolution Scheme

Phase 1
Creating New Coding Opp.

New representative coding vector

\[X \]

\[Y \]

\[Z \]

Phase 2

\[X + Y \]

By both 2 and 3

Phase 3

\[X + Y \]

By 3 only

d₁ has \(Y, Z \)
d₂ has \(X, Z \)
d₃ has \(X + Y \)

By 1 only

\[Z \]

By both 1 and 2
The Packet Evolution Scheme

Phase 1
Creating New Coding Opp.
New representative coding vector

Phase 2

Phase 3

$X + Y$ is indeed heard by d_3.

By both 2 and 3

By 1 only

By both 1 and 2

X Y Z
The Packet Evolution Scheme

Phase 1
Creating New Coding Opp.

New representative coding vector

Phase 2
Exploiting Coding Opp.
& Creating New Coding Opp.

New over hearing status

By both 2 and 3

Phase 3
Exploiting Coding Opp.
& Creating New Coding Opp.

By 1 only

By 3 only

\[X + Y \]

\[X + Y \]

\[X + Y \]

\[X + Y \] is indeed heard by \(d_3 \).
\[X + Y \] is actually not heard by \(d_2 \), but is non-interfering.

Wang, Allerton 2010 – p. 13/20
The Packet Evolution Scheme

Phase 1
Creating New Coding Opp.

New representative coding vector

\[X \]

\[Y \]

\[Z \]

New overhearing status

\[X + Y \] = By both 2 and 3

\[Y \] By 1 only

\[X + Y \] is indeed heard by \(d_3 \).
\[X + Y \] is actually not heard by \(d_2 \), but is non-interfering.
\[X + Y \] is strictly beneficial for \(d_1 \).

\[Z \] By both 1 and 2

Phase 2

Phase 3

\[d_1 \text{ has } Y, Z \]
\[d_2 \text{ has } X, Z \]
\[d_3 \text{ has } X + Y \]
The Packet Evolution Scheme

Phase 1
Creating New Coding Opp.

Phase 2

Phase 3

New representative coding vector

New overhearing status

$X + Y = \text{By both 2 and 3}$

By 1 only + By 3 only = By both 1 and 3

By both 1 and 2

d_1 has Y, Z
d_2 has X, Z
d_3 has $X + Y$
The Packet Evolution Scheme

Phase 1
Creating New Coding Opp.

Phase 2
Exploiting Coding Opp.
& Creating New Coding Opp.

Phase 3
Exploiting Coding Opp.
& Creating New Coding Opp.

New representative coding vector

By both 1 and 3

By both 1 and 3

By both 1 and 2

\[X + Y \]

\[Z \]

\[d_1 \text{ has } Y, Z \]
\[d_2 \text{ has } X, Z \]
\[d_3 \text{ has } X + Y \]
The Packet Evolution Scheme

Phase 1
Creating New Coding Opp.

New representative coding vector

\[X \]

\[Y \]

\[Z \]

\[X + Y \]

New overhearing status

\[X + Y \] = By both 2 and 3

By both 1 and 2

Phase 2
Exploiting Coding Opp.
& Creating New Coding Opp.

Phase 3
Exploiting Coding Opp.
& Creating New Coding Opp.

d_1 \text{ has } Y, Z
d_2 \text{ has } X, Z
d_3 \text{ has } X + Y
The Packet Evolution Scheme

Phase 1
Creating New Coding Opp.

New representative coding vector

\[X \]

\[Y \]

\[Z \]

Phase 2
Exploiting Coding Opp.
& Creating New Coding Opp.

New overhearing status

\[X + Y \]

= By both 2 and 3

\[Z \]

\[X + Y \]

= By both 1 and 3

\[X + Y \] is indeed heard by \(d_3 \).

Phase 3
Exploiting Coding Opp.
& Creating New Coding Opp.

\[d_1 \text{ has } Y, Z \]
\[d_2 \text{ has } X, Z \]
\[d_3 \text{ has } X + Y \]
The Packet Evolution Scheme

Phase 1
Creating New Coding Opp.

Phase 2
Exploiting Coding Opp.
& Creating New Coding Opp.

Phase 3
Exploiting Coding Opp.
& Creating New Coding Opp.

New representative coding vector

New overhearing status

By both 1 and 3

$X + Y$ is indeed heard by d_3.

$X + Y$ is actually not heard by d_1, but is non-interfering.
The Packet Evolution Scheme

Phase 1
Creating New Coding Opp.

New representative coding vector

\[X \]

\[Y \]

\[Z \]

New overhearing status

\[X + Y \] = By both 2 and 3

\[X + Y \] = By both 1 and 3

By both 1 and 2

Phase 2
Exploiting Coding Opp.
& Creating New Coding Opp.

Phase 3
Exploiting Coding Opp.
& Creating New Coding Opp.

\[X + Y \] is indeed heard by \(d_3 \).

\[X + Y \] is actually not heard by \(d_1 \), but is non-interfering.

\[X + Y \] is strictly beneficial for \(d_2 \).
The Packet Evolution Scheme

Phase 1
Creating New Coding Opp.

New representative
coding vector

\[X \]

\[Y \]

\[Z \]

Phase 2
Exploiting Coding Opp.
& Creating New Coding Opp.

New overhearing
status

\[X + Y \] = By both 2 and 3

\[X + Y \] = By both 1 and 3

\[Z \] By both 1 and 2

Phase 3
Exploiting Coding Opp.
& Creating New Coding Opp.

\[d_1 \] has \(Y, Z \)
\[d_2 \] has \(X, Z \)
\[d_3 \] has \(X + Y \)
The Packet Evolution Scheme

Phase 1
Creating New Coding Opp.

New representative coding vector

X

Y

Z

New overhearing status

$X + Y$ = By both 1 and 3

$X + Y$ = By both 1 and 3

Phase 2
Exploiting Coding Opp.
& Creating New Coding Opp.

Phase 3
Exploiting Coding Opp.
& Creating New Coding Opp.

$X + Y + Z$

d_1 has Y, Z

d_2 has X, Z

d_3 has $X + Y$

Simultaneously serve all three destinations
An Example of $M = 4$

$M = 4$ sessions, each d_k has $X_{k,1}$ to $X_{k,100}$ packets.

Each $X_{k,l}$, $\forall k \in [4], l \in [100]$ has an overheard status $S(X_{k,l}) \subseteq \{1, 2, 3, 4\}$, and a representative coding vector $v(X_{k,l})$ being a 400-dimensional vector.
An Example of $M = 4$

- $M = 4$ sessions, each d_k has $X_{k,1}$ to $X_{k,100}$ packets.
- Each $X_{k,l}$, $\forall k \in [4], l \in [100]$ has an overhearing status $S(X_{k,l}) \subseteq \{1, 2, 3, 4\}$, and a representative coding vector $v(X_{k,l})$ being a 400-dimensional vector.
- Use $S(X_{k,l})$ to decide which packets to be coded together.

 Suppose we plan to encode sessions 1, 2, 3 together. We choose three packets X_{1,l_1}, X_{2,l_2}, and X_{3,l_3} such that $S(X_{1,l_1}) = \{2, 3\}$, $S(X_{2,l_2}) = \{1, 3\}$, and $S(X_{3,l_3}) = \{1, 2\}$.
An Example of $M = 4$

- $M = 4$ sessions, each d_k has $X_{k,1}$ to $X_{k,100}$ packets.
- Each $X_{k,l}$, $\forall k \in [4], l \in [100]$ has an overhearing status $S(X_{k,l}) \subseteq \{1, 2, 3, 4\}$, and a representative coding vector $\mathbf{v}(X_{k,l})$ being a 400-dimensional vector.
- Use $S(X_{k,l})$ to decide which packets to be coded together.
 - Suppose we plan to encode sessions 1, 2, 3 together. We choose three packets X_{1,l_1}, X_{2,l_2}, and X_{3,l_3} such that $S(X_{1,l_1}) = \{2, 3\}$, $S(X_{2,l_2}) = \{1, 3\}$, and $S(X_{3,l_3}) = \{1, 2\}$
- Instead of mixing X_{1,l_1} to X_{3,l_3}, we mix $\mathbf{v}(X_{1,l_1})$ to $\mathbf{v}(X_{3,l_3})$.
 - Generate \mathbf{v}_{tx} by $\mathbf{v}_{tx} = c_1 \mathbf{v}(X_{1,l_1}) + c_2 \mathbf{v}(X_{2,l_2}) + c_3 \mathbf{v}(X_{3,l_3})$.
 - Transmit $Y = \mathbf{v}_{tx}(X_{1,1}, \cdots, X_{4,100})^T$.
An Example of $M = 4$

- Use $S(X_{k,l})$ to decide which packets to be coded together.

 Suppose we plan to encode sessions 1, 2, 3 together. We choose three packets X_{1,l_1}, X_{2,l_2}, and X_{3,l_3} such that $S(X_{1,l_1}) = \{2, 3\}$, $S(X_{2,l_2}) = \{1, 3\}$, and $S(X_{3,l_3}) = \{1, 2\}$

- Instead of mixing X_{1,l_1} to X_{3,l_3}, we mix $v(X_{1,l_1})$ to $v(X_{3,l_3})$.

 Generate v_{tx} by $v_{tx} = c_1 v(X_{1,l_1}) + c_2 v(X_{2,l_2}) + c_3 v(X_{3,l_3})$.

 Transmit $Y = v_{tx}(X_{1,1}, \ldots, X_{4,100})^T$.

An Example of $M = 4$

- Use $S(X_{k,l})$ to decide which packets to be coded together.
 - Suppose we plan to encode sessions 1, 2, 3 together. We choose three packets X_{1,l_1}, X_{2,l_2}, and X_{3,l_3} such that $S(X_{1,l_1}) = \{2,3\}$,

 $S(X_{2,l_2}) = \{1,3\}$, and $S(X_{3,l_3}) = \{1,2\}$
 - Instead of mixing X_{1,l_1} to X_{3,l_3}, we mix $v(X_{1,l_1})$ to $v(X_{3,l_3})$.
 - Generate v_{tx} by $v_{tx} = c_1v(X_{1,l_1}) + c_2v(X_{2,l_2}) + c_3v(X_{3,l_3})$.
 - Transmit $Y = v_{tx}(X_{1,1}, \cdots, X_{4,100})^T$.

- Upon receiving a feedback, say $\{d_3, d_4\}$ receive Y:
 - Augment overhearing status $S(x_{k,l})$ and update representative coding vector $v(x_{k,l})$:

 $S(X_{1,l_1}) \leftarrow S(X_{1,l_1}) \cup \{3,4\} = \{2,3,4\}$, \hspace{1cm} $v(X_{1,l_1}) \leftarrow v_{tx}$
 $S(X_{2,l_2}) \leftarrow S(X_{2,l_2}) \cup \{3,4\} = \{1,3,4\}$, \hspace{1cm} $v(X_{2,l_2}) \leftarrow v_{tx}$
 $S(X_{3,l_3}) \leftarrow S(X_{3,l_3}) \cup \{3,4\} = \{1,2,3,4\}$, \hspace{1cm} $v(X_{3,l_3}) \leftarrow v_{tx}$
An Example of $M = 4$

- Use $S(X_{k,l})$ to decide which packets to be coded together.
 - Suppose we plan to encode sessions 1, 2, 3 together. We choose three packets X_{1,l_1}, X_{2,l_2}, and X_{3,l_3} such that $S(X_{1,l_1}) = \{2, 3\}$, $S(X_{2,l_2}) = \{1, 3\}$, and $S(X_{3,l_3}) = \{1, 2\}$
 - Instead of mixing X_{1,l_1} to X_{3,l_3}, we mix $v(X_{1,l_1})$ to $v(X_{3,l_3})$.
 - Generate v_{tx} by $v_{tx} = c_1 v(X_{1,l_1}) + c_2 v(X_{2,l_2}) + c_3 v(X_{3,l_3})$.
 - Transmit $Y = v_{tx}(X_{1,1}, \ldots, X_{4,100})^T$.
 - Upon receiving a feedback, say “$\{d_3, d_4\}$ receive Y”:
 - Augment overhearing status $S(x_{k,l})$ and update representative coding vector $v(x_{k,l})$:

 $S(X_{1,l_1}) \leftarrow S(X_{1,l_1}) \cup \{3, 4\} = \{2, 3, 4\}$,
 $v(X_{1,l_1}) \leftarrow v_{tx}$

 $S(X_{2,l_2}) \leftarrow S(X_{2,l_2}) \cup \{3, 4\} = \{1, 3, 4\}$,
 $v(X_{2,l_2}) \leftarrow v_{tx}$

 $S(X_{3,l_3}) \leftarrow S(X_{3,l_3}) \cup \{3, 4\} = \{1, 2, 3, 4\}$,
 $v(X_{3,l_3}) \leftarrow v_{tx}$
An Example of $M = 4$

- Use $S(X_{k,l})$ to decide which packets to be coded together.
 - Suppose we plan to encode sessions 1, 2, 3 together. We choose three packets X_{1,l_1}, X_{2,l_2}, and X_{3,l_3} such that $S(X_{1,l_1}) = \{2,3\}$, $S(X_{2,l_2}) = \{1,3\}$, and $S(X_{3,l_3}) = \{1,2\}$
 - Instead of mixing X_{1,l_1} to X_{3,l_3}, we mix $\mathbf{v}(X_{1,l_1})$ to $\mathbf{v}(X_{3,l_3})$.
 - Generate \mathbf{v}_{tx} by $\mathbf{v}_{tx} = c_1 \mathbf{v}(X_{1,l_1}) + c_2 \mathbf{v}(X_{2,l_2}) + c_3 \mathbf{v}(X_{3,l_3})$.
 - Transmit $Y = \mathbf{v}_{tx}(X_{1,1}, \cdots, X_{4,100})^T$.
 - Upon receiving a feedback, say \(\{d_3, d_4\}\) receive Y:
 - Augment overheard status $S(x_{k,l})$ and update representative coding vector $\mathbf{v}(x_{k,l})$:

 \[
 \begin{align*}
 S(X_{1,l_1}) &\leftarrow S(X_{1,l_1}) \cup \{3,4\} = \{2,3,4\}, & \mathbf{v}(X_{1,l_1}) &\leftarrow \mathbf{v}_{tx} \\
 S(X_{2,l_2}) &\leftarrow S(X_{2,l_2}) \cup \{3,4\} = \{1,3,4\}, & \mathbf{v}(X_{2,l_2}) &\leftarrow \mathbf{v}_{tx} \\
 S(X_{3,l_3}) &\leftarrow S(X_{3,l_3}) \cup \{3,4\} = \{1,2,3,4\}, & \mathbf{v}(X_{3,l_3}) &\leftarrow \mathbf{v}_{tx}
 \end{align*}
 \]

Create more coding Opp. Create more coding Opp.
An Example of $M = 4$

- Use $S(X_{k,l})$ to decide which packets to be coded together.
 - Suppose we plan to encode sessions 1, 2, 3 together. We choose three packets $X_{1,l_1}, X_{2,l_2},$ and X_{3,l_3} such that $S(X_{1,l_1}) = \{2, 3\}$, $S(X_{2,l_2}) = \{1, 3\}$, and $S(X_{3,l_3}) = \{1, 2\}$

- Instead of mixing X_{1,l_1} to X_{3,l_3}, we mix $\mathbf{v}(X_{1,l_1})$ to $\mathbf{v}(X_{3,l_3})$.
 - Generate \mathbf{v}_{tx} by $\mathbf{v}_{tx} = c_1 \mathbf{v}(X_{1,l_1}) + c_2 \mathbf{v}(X_{2,l_2}) + c_3 \mathbf{v}(X_{3,l_3})$.
 - Transmit $Y = \mathbf{v}_{tx}(X_{1,1}, \ldots, X_{4,100})^T$.

- Upon receiving a feedback, say \{d_3, d_4\} receive Y:

 - Augment overhearing status $S(x_{k,l})$ and update representative coding vector $\mathbf{v}(x_{k,l})$:

 $\begin{align*}
 S(X_{1,l_1}) &\leftarrow S(X_{1,l_1}) \cup \{3, 4\} = \{2, 3, 4\}, & \mathbf{v}(X_{1,l_1}) &\leftarrow \mathbf{v}_{tx} \\
 S(X_{2,l_2}) &\leftarrow S(X_{2,l_2}) \cup \{3, 4\} = \{1, 3, 4\}, & \mathbf{v}(X_{2,l_2}) &\leftarrow \mathbf{v}_{tx} \\
 S(X_{3,l_3}) &\leftarrow S(X_{3,l_3}) \cup \{3, 4\} = \{1, 2, 3, 4\}, & \mathbf{v}(X_{3,l_3}) &\leftarrow \mathbf{v}_{tx}
 \end{align*}$

Create more coding Opp.

Create more coding Opp.

X_{3,l_3} has arrived d_3
An Example of $M = 4$

- Use $S(X_{k,l})$ to decide which packets to be coded together.
- Suppose we plan to encode sessions 1, 2, 3 together. We choose three packets X_{1,l_1}, X_{2,l_2}, and X_{3,l_3} such that $S(X_{1,l_1}) = \{2, 3\}$, $S(X_{2,l_2}) = \{1, 3\}$, and $S(X_{3,l_3}) = \{1, 2\}$
- Instead of mixing X_{1,l_1} to X_{3,l_3}, we mix $v(X_{1,l_1})$ to $v(X_{3,l_3})$.
 - Generate v_{tx} by $v_{tx} = c_1 v(X_{1,l_1}) + c_2 v(X_{2,l_2}) + c_3 v(X_{3,l_3})$.
 - Transmit $Y = v_{tx}(X_{1,1}, \cdots, X_{4,100})^T$. Achieve Code Alignment

Upon receiving a feedback, say \{\(d_3, d_4\)\} receive Y:
- Augment over-hearing status $S(x_{k,l})$ and update representative coding vector $v(x_{k,l})$:
 - $S(X_{1,l_1}) \leftarrow S(X_{1,l_1}) \cup \{3, 4\} = \{2, 3, 4\}$
 - $S(X_{2,l_2}) \leftarrow S(X_{2,l_2}) \cup \{3, 4\} = \{1, 3, 4\}$
 - $S(X_{3,l_3}) \leftarrow S(X_{3,l_3}) \cup \{3, 4\} = \{1, 2, 3, 4\}$

Create more coding Opp. X_{3,l_3} has arrived d_3

Achieve Code Alignment

$\mathbf{v}(X_{1,l_1}) \leftarrow v_{tx}$
$\mathbf{v}(X_{2,l_2}) \leftarrow v_{tx}$
$\mathbf{v}(X_{3,l_3}) \leftarrow v_{tx}$
Analysis of The PE Schemes

In the packet evolution scheme, each packet evolves independently.
Analysis of The PE Schemes

- In the packet evolution scheme, each packet evolves independently.

- We can quantify the number of slots that a packet has overhearing status T.

\[
\begin{align*}
\text{Rx 3} & \quad \frac{nR_3}{p_3} - \frac{nR_3}{p_{1,3}} - \frac{nR_3}{p_{1,2,3}} + \frac{nR_3}{p_{1,2,3}} \\
\text{Rx 2} & \quad \frac{nR_3}{p_{2,3}} \\
\text{Rx 1} & \quad \frac{nR_3}{p_{1,2,3}}
\end{align*}
\]
Analysis of The PE Schemes

- In the packet evolution scheme, each packet evolves independently.

- We can quantify the number of slots that a packet has overhearing status T. The analysis of PE schemes becomes a time-slot packing problem:
Analysis of The PE Schemes

In the packet evolution scheme, each packet evolves independently.

We can quantify the number of slots that a packet has overhearing status T. The joint success prob. $p_{S \{1,2,3\}}$ affects the duration of each status, and thus how to pack them.

The analysis of PE schemes becomes a time-slot packing problem:
Capacity Results $M = 3$

Based on the Packet Evolution method, we have:

Proposition 1 Consider any 1-to-3 broadcast PEC with channel output feedback with arbitrary parameters $p_S(\{1,2,3\}\setminus S)$ for all $S \subseteq \{1,2,3\}$.

The capacity region is indeed $\forall \pi$, $\sum_{k=1}^{M} \frac{R_{\pi(k)}(k)}{p_{\cup S_{\pi k}}} \leq 1$.

6 facets \Leftrightarrow 6 different permutations π
Capacity Results $M \geq 4$

Outer bound: \[\forall \pi, \sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_{\pi_k}}} \leq 1.\]

<table>
<thead>
<tr>
<th>Settings with general $M > 3$ values</th>
<th>Capacity inner bound results</th>
</tr>
</thead>
<tbody>
<tr>
<td>General (P_{S[M] \setminus S})</td>
<td></td>
</tr>
<tr>
<td>Spatially symmetric broadcast PECs</td>
<td></td>
</tr>
<tr>
<td>Spatially independent broadcast PECs</td>
<td></td>
</tr>
</tbody>
</table>
Capacity Results \(M \geq 4 \)

Outer bound:

\[
\forall \pi, \quad \sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S^\pi_k}} \leq 1.
\]

<table>
<thead>
<tr>
<th>Settings with general M>3 values</th>
<th>Capacity inner bound results</th>
</tr>
</thead>
<tbody>
<tr>
<td>General (PS[M]{\setminus S})</td>
<td>* A cap. Inner bound by using LP solvers to find the tightest time-slot packing</td>
</tr>
<tr>
<td>Spatially symmetric broadcast PECs</td>
<td>* Numerically meets the outer bound for all our experiments</td>
</tr>
<tr>
<td>Spatially independent broadcast PECs</td>
<td></td>
</tr>
</tbody>
</table>

Wang, Allerton 2010 – p. 17/20
Capacity Results $M \geq 4$

Outer bound: $\forall \pi, \quad \sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_{\pi}^{k}}} \leq 1.$

<table>
<thead>
<tr>
<th>Settings with general $M>3$ values</th>
<th>Capacity inner bound results</th>
</tr>
</thead>
<tbody>
<tr>
<td>General $p_{S[M]\setminus S}$</td>
<td>* A cap. Inner bound by using LP solvers to find the tightest time-slot packing</td>
</tr>
<tr>
<td>Spatially symmetric broadcast PECs</td>
<td>* Numerically meets the outer bound for all our experiments</td>
</tr>
<tr>
<td>$p_{S_{1}[M]\setminus S_{1}} = p_{S_{2}[M]\setminus S_{2}}$ if $</td>
<td>S_{1}</td>
</tr>
<tr>
<td>Spatially independent broadcast PECs</td>
<td></td>
</tr>
</tbody>
</table>
Capacity Results $M \geq 4$

Outer bound: $\forall \pi, \quad \sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_{\pi}k}} \leq 1$.

<table>
<thead>
<tr>
<th>Settings with general $M>3$ values</th>
<th>Capacity inner bound results</th>
</tr>
</thead>
<tbody>
<tr>
<td>General $p_{S[M] \setminus S}$</td>
<td>* A cap. Inner bound by using LP solvers to find the tightest time-slot packing * Numerically meets the outer bound for all our experiments</td>
</tr>
<tr>
<td>Spatially symmetric broadcast PECs $p_{S_1[M] \setminus S_1} = p_{S_2[M] \setminus S_2}$ if $</td>
<td>S_1</td>
</tr>
<tr>
<td>Spatially independent broadcast PECs</td>
<td></td>
</tr>
</tbody>
</table>

Wang, Allerton 2010 – p. 17/20
Capacity Results $M \geq 4$

Outer bound:

$$\forall \pi, \quad \sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup_{\pi} S_k}} \leq 1.$$

Settings with general $M>3$ values

- **General**
 $$p_{S[M] \setminus S}$$

Spatially symmetric broadcast PECs

- $p_{S_1[M] \setminus S_1} = p_{S_2[M] \setminus S_2}$ if $|S_1| = |S_2|$

Spatially independent broadcast PECs

- $$p_{S[M] \setminus S} = \prod_{k \in S} p_k \prod_{j \in [M] \setminus S} (1 - p_j)$$

Capacity inner bound results

- *A cap. Inner bound by using LP solvers to find the tightest time-slot packing*
- *Numerically meets the outer bound for all our experiments*

The inner and outer bounds always meet. → Full capacity region.
Capacity Results $M \geq 4$

Outer bound:

$$\forall \pi, \quad \sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_k}^{\pi}} \leq 1.$$

Settings with general $M>3$ values

<table>
<thead>
<tr>
<th>General $P_{S[M] \setminus S}$</th>
<th>Capacity inner bound results</th>
</tr>
</thead>
<tbody>
<tr>
<td>* A cap. Inner bound by using LP solvers to find the tightest time-slot packing</td>
<td></td>
</tr>
<tr>
<td>* Numerically meets the outer bound for all our experiments</td>
<td></td>
</tr>
</tbody>
</table>

Spatially symmetric broadcast PECs

$$p_{S_1[M] \setminus S_1} = p_{S_2[M] \setminus S_2}$$ if $|S_1| = |S_2|$

<table>
<thead>
<tr>
<th>Spatially independent broadcast PECs $p_{S[M] \setminus S}$</th>
<th>The inner and outer bounds always meet. → Full capacity region.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{S[M] \setminus S} = \prod_{k \in S} p_k \prod_{j \in [M] \setminus S} (1 - p_j)$</td>
<td>The inner and outer bounds meet when (R_1, \ldots, R_M) are one-sided fair (when $R_1 \approx R_2 \approx \cdots \approx R_M$)</td>
</tr>
</tbody>
</table>
Capacity Results $M \geq 4$

Outer bound: $\forall \pi, \quad \sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_{\pi_k}}} \leq 1.$

<table>
<thead>
<tr>
<th>Settings with general M>3 values</th>
<th>Capacity inner bound results</th>
</tr>
</thead>
<tbody>
<tr>
<td>General $p_{S[M] \setminus S}$</td>
<td>* A cap. Inner bound by using LP solvers to find the tightest time-slot packing</td>
</tr>
<tr>
<td>Spatially symmetric broadcast PECs $p_{S_1[M] \setminus S_1} = p_{S_2[M] \setminus S_2}$ if $</td>
<td>S_1</td>
</tr>
<tr>
<td>Spatially independent broadcast PECs $p_{S[M] \setminus S} = \prod_{k \in S} p_k \prod_{j \in [M] \setminus S}$</td>
<td>The inner and outer bounds always meet. → Full capacity region.</td>
</tr>
</tbody>
</table>

The inner and outer bounds meet when (R_1, \cdots, R_M) are one-sided fair $R_1 \approx R_2 \approx \cdots \approx R_M$
Numerical Evaluation

\[\forall \pi, \quad \sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_{\pi}^k}} \leq 1. \]

Symmetric spatially independent PECs: \(p_1 = p_2 = \cdots = p_M = p \)

Perfectly fair systems: \(R_1 = R_2 = \cdots = R_M \)

Sum rate capacity \(\sum_{k=1}^{M} R_k \) vs. marginal success prob. \(p \).
Numerical Evaluation

\[\forall \pi, \sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_k^{\pi}}} \leq 1. \]

Symmetric spatially independent PECs: \(p_1 = p_2 = \cdots = p_M = p \)
Perfectly fair systems: \(R_1 = R_2 = \cdots = R_M \)

Sum rate capacity \(\sum_{k=1}^{M} R_k \) vs. marginal success prob. \(p \).

Corollary: When \(M \to \infty \), the channel becomes effectively noiseless. [Larsson et al. 06]
Outer bound: $$\forall \pi, \sum_{k=1}^{M} \frac{R_{\pi(k)}}{p_{\cup S_{\pi}k}} \leq 1.$$ Tight for $$M = 3$$

Settings with general $$M > 3$$ values

General

$$p_{\mathcal{S}[M] \setminus \mathcal{S}}$$

Spatially symmetric broadcast PECs

$$p_{\mathcal{S}_1[M] \setminus \mathcal{S}_1} = p_{\mathcal{S}_2[M] \setminus \mathcal{S}_2} \text{ if } |\mathcal{S}_1| = |\mathcal{S}_2|$$

Spatially independent broadcast PECs

$$p_{\mathcal{S}[M] \setminus \mathcal{S}} = \prod_{k \in \mathcal{S}} p_k \prod_{j \in [M] \setminus \mathcal{S}} (1 - p_j)$$

Capacity inner bound results

* A cap. Inner bound by using LP solvers to find the tightest time-slot packing

* **Numerically meets** the outer bound for all our experiments

The inner and outer bounds always meet. → Full capacity region.

The inner and outer bounds meet when $$(R_1, \cdots, R_M)$$ are one-sided fair (when $$R_1 \approx R_2 \approx \cdots \approx R_M$$)
Definition 2 The one-sidedly fair region Λ_{osf} contains all rate vectors (R_1, \cdots, R_M) satisfying

$$\forall i, j \text{ satisfying } p_i < p_j, \text{ we have } R_i(1 - p_i) \geq R_j(1 - p_j).$$

Remark 1: A perfectly fair vector (R, \cdots, R) belongs to Λ_{osf}.

Remark 2: A proportionally fair vector $(p_1 R, \cdots, p_M R)$ belongs to Λ_{osf} if $\min\{p_k : \forall k \in [M]\} \geq 0.5$.