From Stopping sets to Trapping sets

The Exhaustive Search Algorithm & The Suppressing Effect

Chih-Chun Wang

School of Electrical & Computer Engineering
Purdue University
Good exhaustive trapping set search algorithm for arbitrary codes.

The suppressing effect for cyclically lifted code ensembles.
Good exhaustive trapping set search algorithm for arbitrary codes.

New results on the hardness of the problem

The suppressing effect for cyclically lifted code ensembles.
Content

- Good **exhaustive trapping set search** algorithm for **arbitrary codes**.
 - New results on the hardness of the problem
 - Existing work on exhaustive search for stopping sets

- The **suppressing effect** for cyclically lifted **code ensembles**.
Content

- Good exhaustive trapping set search algorithm for arbitrary codes.
- New results on the hardness of the problem
- Existing work on exhaustive search for stopping sets
- The exhaustive search for trapping sets based on exhaustive search for stopping sets.

- The suppressing effect for cyclically lifted code ensembles.
Good **exhaustive trapping set search** algorithm for **arbitrary codes**.

- New results on the hardness of the problem
- Existing work on exhaustive search for stopping sets
- The exhaustive search for trapping sets based on exhaustive search for stopping sets.
- Lessons from the results of exhaustive search algorithms
- The **suppressing effect** for cyclically lifted **code ensembles**.
Good exhaustive trapping set search algorithm for arbitrary codes.

- New results on the hardness of the problem
- Existing work on exhaustive search for stopping sets
- The exhaustive search for trapping sets based on exhaustive search for stopping sets.
- Lessons from the results of exhaustive search algorithms

The suppressing effect for cyclically lifted code ensembles.

Definition: Prob(the bad structure remains after lifting)
Good exhaustive trapping set search algorithm for arbitrary codes.

- New results on the hardness of the problem
- Existing work on exhaustive search for stopping sets
- The exhaustive search for trapping sets based on exhaustive search for stopping sets.
- Lessons from the results of exhaustive search algorithms

The suppressing effect for cyclically lifted code ensembles.

Definition: \[\text{Prob}(\text{the bad structure remains after lifting}) \]

Quantifying the suppressing effect.
Good **exhaustive trapping set search** algorithm for **arbitrary codes**.

- New results on the hardness of the problem
- Existing work on exhaustive search for stopping sets
- The exhaustive search for trapping sets based on exhaustive search for stopping sets.
- Lessons from the results of exhaustive search algorithms

The **suppressing effect** for cyclically lifted **code ensembles**.

- Definition: $\text{Prob}(\text{the bad structure remains after lifting})$
- **Quantifying** the suppressing effect.
- A design criteria for **base code optimization**.
Stoppers Sets

Definition: a set of variable nodes \(\Rightarrow \) the induced graph contains no check node of degree 1.

\[\begin{array}{c}
 i & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
 j & 4 & 2 & 3 \\
\end{array} \]
Definition: a set of variable nodes \(\Rightarrow \) the induced graph contains no check node of degree 1.

Why exhaustive search algorithms (for small stopping sets)?
Stopping Sets

Definition: a set of variable nodes \(\Rightarrow \) the induced graph contains no check node of degree 1.

Why exhaustive search algorithms (for small stopping sets)?

- Error floor optimization. BECs vs. non-erasure channels.

\[
\begin{array}{ccccccc}
& & & j & 2 & 3 & \\
i & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}
\]
Stopping Sets

- Definition: a set of variable nodes \Rightarrow the induced graph contains no check node of degree 1.

Why exhaustive search algorithms (for small stopping sets)?
- Error floor optimization. BECs vs. non-erasure channels.

Good but inexhaustive search algorithms: error floors of LDPC codes [Richardson 03], projection algebra [Yedidia et al. 01], the approximate minimum distance of LDPC codes [Hu et al. 04], [Hirotomo et al. 05], [Richter 06]
An NP-Hard Problem

=== The $SD(H, t)$ problem ===

INPUT: A code represented by its parity-check matrix H and an integer t.

OUTPUT: Output 1 if the minimal stopping distance of H is $\leq t$. Otherwise, output 0.

The hardness results:

- [Krishnan et al. 06]: For arbitrary H, $SD(H, t)$ is NP-complete.

 Proof: By reducing a VERTEX-COVER problem to $SD(H, t)$.

- A byproduct of [Krishnan et al. 06]: With the sparsity restriction that the number of 1’s in H is limited to $O(n)$ rather than $O(n^2)$, then $SD(H, t)$ is still NP-complete.
Trapping Sets: Definitions

Operational definition: “the set of bits that are not eventually correct” [Richardson 03].
Trapping Sets: Definitions

- **Operational definition:** “the set of bits that are not eventually correct” [Richardson 03].

- **Empirical observations:** For non-erasure channels: trapping sets are \((a, b)\) near-codeword [MacKay et al. 03]
Trapping Sets: Definitions

- **Operational definition:** “the set of bits that are not eventually correct” [Richardson 03].

- **Empirical observations:** For non-erasure channels: trapping sets are \((a, b)\) near-codeword [MacKay et al. 03]

 - \((a, b)\) near codeword: A set of \(a\) variable nodes such that the induced graph has \(b\) odd-degree check nodes.
Trapping Sets: Definitions

- **Operational definition:** “the set of bits that are not eventually correct” [Richardson 03].

- **Empirical observations:** For non-erasure channels: trapping sets are \((a, b)\) near-codeword [MacKay et al. 03]
 - \((a, b)\) near codeword: A set of \(a\) variable nodes such the induced graph has \(b\) odd-degree check nodes.
 - A \((a, 0)\) near codeword \(\not\Rightarrow\) a stopping set
Trapping Sets: Definitions

- **Operational definition:** “the set of bits that are not eventually correct” [Richardson 03].

- **Empirical observations:** For non-erasure channels: trapping sets are \((a, b)\) near-codeword [MacKay et al. 03]

 - **\((a, b)\) near codeword:** A set of \(a\) variable nodes such the induced graph has \(b\) odd-degree check nodes.

 - A \((a, 0)\) near codeword \(\not\Rightarrow\) a stopping set

- We propose a new graph-theoretic definition:

 Definition 1 (\(k\)-out Trapping Sets) A subset of \(\{v_1, \ldots, v_n\}\) such that in the induced subgraph, there are exactly \(k\) check nodes of degree one.
\(k \)-Out Trapping Sets vs. Near-Codeword

Definition 1 (\(k \)-out Trapping Sets) A subset of variables such that in the induced subgraph, there are exactly \(k \) check nodes of degree one.

- \(k \)-out trapping sets \(\leftrightarrow \) stopping sets
 \((a, b)\) near-codewords \(\leftrightarrow \) valid codewords

- 0-out trapping sets \(\leftrightarrow \) stopping sets
 \((a, 0)\) near-codewords \(\leftrightarrow \) valid codewords
k-Out Trapping Sets vs. Near-Codeword

Definition 1 (*k*-out Trapping Sets) A subset of variables such that in the induced subgraph, there are exactly *k* check nodes of degree one.

- *k*-out trapping sets \iff stopping sets
 (a, b) near-codewords \iff valid codewords

- 0-out trapping sets \iff stopping sets
 $(a, 0)$ near-codewords \iff valid codewords

Why this definition?
k-Out Trapping Sets vs. Near-Codeword

Definition 1 (k-out Trapping Sets) A subset of variables such that in the induced subgraph, there are exactly k check nodes of degree one.

- k-out trapping sets \leftrightarrow stopping sets
 - (a, b) near-codewords \leftrightarrow valid codewords

- 0-out trapping sets \leftrightarrow stopping sets
 - $(a, 0)$ near-codewords \leftrightarrow valid codewords

Why this definition?

- Better analogy to stopping sets.
k- Out Trapping Sets vs. Near-Codeword

Definition 1 (k-out Trapping Sets) A subset of variables such that in the induced subgraph, there are exactly \(k \) check nodes of degree one.

- \(k \)-out trapping sets \(\leftrightarrow \) stopping sets
 - \((a, b)\) near-codewords \(\leftrightarrow \) valid codewords

- 0-out trapping sets \(\leftrightarrow \) stopping sets
 - \((a, 0)\) near-codewords \(\leftrightarrow \) valid codewords

Why this definition?

- Better analogy to stopping sets.
- An \((a, b)\) near-codeword \(\neq \) "\(k \leq b\)"-out trapping set.
- Our goal: With fixed \(b \), search all min. \(k \leq b\)-out TSs.
k-OUT TRAPPING SETS VS. NEAR-CODEWORD

Definition 1 (k-out Trapping Sets) A subset of variables such that in the induced subgraph, there are exactly k check nodes of degree one.

- k-out trapping sets \iff stopping sets
 (a, b) near-codewords \iff valid codewords
- 0-out trapping sets \iff stopping sets
 $(a, 0)$ near-codewords \iff valid codewords

Why this definition?

- Better analogy to stopping sets.
- An (a, b) near-codeword \iff “$k \leq b$"-out trapping set.
- Our goal: With fixed b, search all min. $k \leq b$-out TSs.
- Empirically, all error bits consist of only degree 1 & 2 check nodes. (The elementary trapping set [Landner et al. 05].)
The Hardness of k-OTD(H, t)

=== The k-OTD(H, t) problem ===

INPUT: A code represented by its parity-check matrix H and an integer t.

OUTPUT: Output 1 if the minimal k-out trapping distance of H is $\leq t$. Otherwise, output 0.
The Hardness of k-OTD(H, t)

=== The k-OTD(H, t) problem ===

INPUT: A code represented by its parity-check matrix H and an integer t.

OUTPUT: Output 1 if the minimal k-out trapping distance of H is $\leq t$. Otherwise, output 0.

When $k = 0$, then 0-OTD$(H, t) = SD(H, t)$ is NP-complete.
The Hardness of k-OTD(H, t)

--- The k-OTD(H, t) problem ---

INPUT: A code represented by its parity-check matrix H and an integer t.

OUTPUT: Output 1 if the minimal k-out trapping distance of H is $\leq t$. Otherwise, output 0.

- When $k = 0$, then 0-OTD$(H, t) = SD(H, t)$ is NP-complete.
- Is the hardness the same for any fixed $k > 0$ values?
Our First Result

Theorem 1 Consider a fixed $k > 0$. For arbitrary H, k-OTD(H, t) is **NP-complete**.

Theorem 2 Consider a fixed $k > 0$. With the *sparsity restriction* that the number of 1’s in H is limited to $O(n)$ rather than $O(n^2)$, then k-OTD(H, t) is **still NP-complete**.

Proof: Reduction from SD(H, t).
SD\((H, t)\) By \(k\)-OTD\((H', t')\)

Step 1: Duplicate \(G\) \((k + 2)\) times

\(k = 2\)
Step 1: Duplicate G $(k + 2)$ times

$k = 2$
SD\((H, t)\) By \(k\text{-OTD}(H', t')\)

Step 1: Duplicate \(G\) \((k + 2)\) times

\(k = 2\)
Step 1: Duplicate G $(k + 2)$ times

Run k-OTD$(H', t(k + 2))$.

$k = 2$
SD\((H, t)\) By \(k\text{-OTD}(H', t')\)

Step 1: Duplicate \(G\) \((k + 2)\) times

Run \(k\text{-OTD}(H', t(k + 2))\).

Claim:
any \(k\)-out TS must be parallel

\(k = 2\)
Step 1: Duplicate G $(k + 2)$ times

Run k-OTD($H', t(k + 2)$).

Claim:
- any k-out TS must be parallel
- and it must contain the target bit.
SD(\(H, t\)) By \(k\)-OTD(\(H', t'\))

Step 1: Duplicate \(G\) \((k + 2)\) times

Run \(k\)-OTD(\(H', t(k + 2)\)).

Claim:
- any \(k\)-out TS must be parallel
- and it must contain the target bit.
NP-hard problem = Impossible?
NP-hard problem = Impossible?

Most approaches use heuristics instead for error-floor optimization.

The girth, the Approximate Cycle Extrinsic (ACE) message degree, partial stopping set elimination, and ensemble-inspired upper bounds.
NP-hard problem = Impossible?

Most approaches use **heuristics** instead for error-floor optimization.

- The girth, the Approximate Cycle Extrinsic (ACE) message degree, partial stopping set elimination, and ensemble-inspired upper bounds.

Is there anything else we can do?
NP-hard problem = Impossible?

Most approaches use heuristics instead for error-floor optimization.

- The girth, the Approximate Cycle Extrinsic (ACE) message degree, partial stopping set elimination, and ensemble-inspired upper bounds.

Is there anything else we can do?

- NP-completeness \implies the asymptotic complexity.
NP-hard problem = Impossible?

Most approaches use heuristics instead for error-floor optimization.

- The girth, the Approximate Cycle Extrinsic (ACE) message degree, partial stopping set elimination, and ensemble-inspired upper bounds.

Is there anything else we can do?

- NP-completeness \Longrightarrow the asymptotic complexity.
- NP-completeness has relatively less predictability for finite n.
NP-hard problem = Impossible?

Most approaches use **heuristics** instead for error-floor optimization.
- The girth, the Approximate Cycle Extrinsic (ACE) message degree, partial stopping set elimination, and ensemble-inspired upper bounds.

Is there anything else we can do?

- NP-completeness \implies the **asymptotic complexity**.
- NP-completeness has relatively less predictability for finite n.
- For practical codes, we only need $n \approx 500–5000$.

Wang – p. 10/21
NP-hard problem = Impossible?

Most approaches use heuristics instead for error-floor optimization.

- The girth, the Approximate Cycle Extrinsic (ACE) message degree, partial stopping set elimination, and ensemble-inspired upper bounds.

Is there anything else we can do?

- NP-completeness implies the asymptotic complexity.
- NP-completeness has relatively less predictability for finite n.
- For practical codes, we only need $n \approx 500–5000$.
Leverage Upon $\text{SD}(H, t)$

=== The $\text{SD}(H, t)$ problem ===

OUTPUT: Output an exhaustive list of minimum stopping sets if the minimal stopping distance is $\leq t$. Otherwise, output \emptyset.

- In our previous work [ISIT 06], a good exhaustive search $\text{SD}(H, t)$ is provided.
- Capable of exhausting $t = 11–13$ for codes of $n \approx 500$.
Leverage Upon $SD(H, t)$

=== The $SD(H, t)$ problem ===

OUTPUT: Output an exhaustive list of minimum stopping sets if the minimal stopping distance is $\leq t$. Otherwise, output \emptyset.

- In our previous work [ISIT 06], a good exhaustive search $SD(H, t)$ is provided.
 - Capable of exhausting $t = 11–13$ for codes of $n \approx 500$.
- On this Friday 4:45pm [Rosnes & Ytrehus, ISIT07], a more efficient exhaustive search $SD(H, t)$ will be introduced.
 - Capable of exhausting $t = 18–26$ for codes of $n = 150–5000$.
Leverage Upon SD(H, t)

=== The SD(H, t) problem ===

OUTPUT: Output an exhaustive list of minimum stopping sets if the minimal stopping distance is $\leq t$. Otherwise, output \emptyset.

- In our previous work [ISIT 06], a good exhaustive search SD(H, t) is provided.
 - Capable of exhausting $t = 11–13$ for codes of $n \approx 500$.
- On this Friday 4:45pm [Rosnes & Ytrehus, ISIT07], a more efficient exhaustive search SD(H, t) will be introduced.
 - Capable of exhausting $t = 18–26$ for codes of $n = 150–5000$.
- Good SD(H, t) \Rightarrow good k-OTD(H, t)
k-OTD(H, t') By SD(H, t)

$k = 2$
1. Select \(k \) edges.
k-OTD(H, t') By SD(H, t)

1. Select k edges.
2. Based on the k check nodes, identify the neighbor variables.
1. Select k edges.
2. Based on the k check nodes, identify the neighbor variables.
3. Remove the check nodes and neighbor variables.
1. Select k edges.
2. Based on the k check nodes, identify the neighbor variables.
3. Remove the check nodes and neighbor variables.
k-OTD(H, t') By SD(H, t)

1. Select k edges.

2. Based on the k check nodes, identify the neighbor variables.

3. Remove the check nodes and neighbor variables.

4. Run SD(H, t) to find the minimal stopping sets containing the interested variables.
1. Select k edges.

2. Based on the k check nodes, identify the neighbor variables.

3. Remove the check nodes and neighbor variables.

4. Run $SD(H, t)$ to find the minimal stopping sets containing the interested variables.
1. Select k edges.

2. Based on the k check nodes, identify the neighbor variables.

3. Remove the check nodes and neighbor variables.

4. Run $\text{SD}(H, t)$ to find the minimal stopping sets containing the interested variables.

5. Select another k edges and repeat the procedure.
Empirical Study of k-OTD(H, t)

- Complexity grows $O(n^k)$.
Empirical Study of k-OTD(H, t)

- Complexity grows $O(n^k)$. A harder problem than SD(H, t).
Empirical Study of k-OTD(H, t)

- Complexity grows $O(n^k)$. A harder problem than SD(H, t).
- For codes of interest, 50% FER from $k \leq 2$ TS [Richardson 03].
Empirical Study of k-OTD(H, t)

- Complexity grows $O(n^k)$. A harder problem than SD(H, t).
- For codes of interest, 50% FER from $k \leq 2$ TS [Richardson 03].
- When $n \approx 500$ and rate $\frac{1}{2}$ codes, $t = 10–12$ for 1-OTS(H, t).
 $t = 9–11$ for 2-OTS(H, t), based on our SD(H, t).
Empirical Study of k-OTD(H, t)

- Complexity grows $O(n^k)$. A harder problem than SD(H, t).
- For codes of interest, 50% FER from $k \leq 2$ TS [Richardson 03].
- When $n \approx 500$ and rate $\frac{1}{2}$ codes, $t = 10–12$ for 1-OTS(H, t).
 \hspace{1cm} $t = 9–11$ for 2-OTS(H, t), based on our SD(H, t).
- **Tanner (155,64,20) code 04**: Minimal 1-out TD ≥ 12, and \hspace{1cm} minimal 2-out TD $= 8$ w. multiplicity 465.
 All from the following by automorphisms [Tanner et al. 04].

\begin{align*}
7, 17, 19, 33, 66, 76, 128, 140 \\
7, 31, 33, 37, 44, 65, 100, 120 \\
1, 19, 63, 66, 105, 118, 121, 140 \\
44, 61, 65, 73, 87, 98, 137, 146 \\
31, 32, 37, 94, 100, 142, 147, 148.
\end{align*}
Empirical Study of k-OTD(H, t)

- **Ramanujan-Margulis (2184,1092) Code** w. $q = 13$, $p = 5$ [Rosenthal et al. 00];
- **Inexhaustive results — upper bounds**: analytical search [Mackay et al. 03], error-impulse search [Hu et al. 04]

 Minimum Hamming distance ≤ 14

- **Exhaustive results by SD(H, t) — lower bounds**:

 Minimum Hamming distance \geq minimum SD ≥ 14
 multiplicity 1092

Min. 1-out TD ≥ 13 and min. 2-out TD ≥ 10.
\[\lambda(x) = 0.31961x + 0.27603x^2 + 0.01453x^5 + 0.38983x^6, \quad \rho(x) = 0.50847x^5 + 0.49153x^6 \]

AWGN, \((\lambda(x), \rho(x))\), \(n = 512\), 0-out/1-out trapping sets.

“Rand” \((2, 1), (2, 8)\); “SS Opt” \((13, 40), (5, 4)\); “SS+TS Opt” \((11, 12), (10, 24)\).

Sum-product decoder, 80 iterations, 100 frame errors.
Insufficiency of TSs

The relationship to error floors.

- $n = 504$ Girth-optimized Irregular PEG code [Hu et al. 05], 1-out TSs of size 7:

 52, 53, 122, 136, 178, 229, 348
 5, 42, 100, 131, 187, 199, 374

- $n = 504$ TS-optimized irregular code w. the same deg. distr., 0/1-out TSs: $(10, 7)/(8, 40)$.
Insufficiency of TSs

The relationship to error floors.

$n = 504$ Girth-optimized
1-out TSs of size 7:
52, 53, 122, 136, 178, 229, 348
5, 42, 100, 131, 187, 199, 374

$n = 504$ TS-optimized code
0/1-out TSs: $(10, 7)/(5, 42)$

Frame / Bit Error Rate (FER/BER)

Signal to Noise Ratio: $E_s/N_0 = 20\log(1/\sigma)$
The Cyclically Lifted Ensemble

[Gross 74], [Richardson & Urbanke] and many more.

(a) The base code (b) The lifted code with an all-zero lifting sequence

(c) The lifted code with a cyclic lifting sequence.
The Cyclically Lifted Ensemble

[Gross 74], [Richardson & Urbanke] and many more.

Based Code Optimization \Rightarrow lower ensemble error floor.

(a) The base code (b) The lifted code with an all-zero lifting sequence

(c) The lifted code with a cyclic lifting sequence.
The Cyclically Lifted Ensemble

[Gross 74], [Richardson & Urbanke] and many more.

Based Code Optimization \Rightarrow lower ensemble error floor.

(a) The base code (b) The lifted code with an all-zero lifting sequence

(c) The lifted code with a cyclic lifting sequence.

Base Code — of size n ($n = 16$)

Lifted Code — of lifting factor K ($K = 4$)
Theorem 3 If ⬤ forms a k_L-out trapping set for one lifted code, then ⬤ forms a k_B-out trapping set for the base code where $k_L \geq k_B$.

Base Code — of size n ($n = 16$)

Lifted Code — of lifting factor K ($K = 4$)
Different Orders of Survivals

Definition 2

First order survivals

Base Code — of size n ($n = 16$)

Lifted Code — of lifting factor K ($K = 4$)
Different Orders of Survivals

Definition 2

First order survivals

Base Code — of size n ($n = 16$)

\[
\begin{array}{cccccccc}
\cdot \cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\end{array}
\]

Lifted Code — of lifting factor K ($K = 4$)

\[
\begin{array}{cccccccc}
\cdot \cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\end{array}
\]

Definition 3

High order survivals

Base Code — of size n ($n = 16$)

\[
\begin{array}{cccccccc}
\cdot \cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\end{array}
\]

Lifted Code — of lifting factor K ($K = 4$)

\[
\begin{array}{cccccccc}
\cdot \cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\end{array}
\]
Different Orders of Survivals

Definition 2

First order survivals

- **Base Code** — of size n ($n = 16$)
- **Lifted Code** — of lifting factor K ($K = 4$)

Definition 3

High order survivals

- **Base Code** — of size n ($n = 16$)
- **Lifted Code** — of lifting factor K ($K = 4$)

Empirically, *almost all small trapping sets are of first order.*

[Wang 06, Ländner 05]
Theorem 4 (\(k_L = k_B = 0\), a preliminary result) For a fixed base code with a min. stopping set \(s_B\),

\[
E\{|\text{first order survivals}|\} \propto K^{- \left(0.5\#E - \#V + 0.5\#C_{\text{odd}}_{\geq 3}\right)}
\]

\[
\text{FER}_{\text{BEC, ensemble}} = \text{const} \cdot K^{- \left(0.5\#E - \#V + 0.5\#C_{\text{odd}}_{\geq 3}\right)}.
\]

where \(\text{const} = f(\text{the min. stp. dist., multi.})\).
First order survival

Theorem 4 (\(k_L = k_B = 0\), a preliminary result) For a fixed base code with a min. stopping set \(s_B\),
\[
E\{|\text{first order survivals}|\} \propto K^{-\left(0.5\#E - \#V + 0.5\#C_{\text{odd}}\geq 3\right)}
\]
\[
\text{FER}_{\text{BEC,ensemble}} = \text{const} \cdot K^{-\left(0.5\#E - \#V + 0.5\#C_{\text{odd}}\geq 3\right)}.
\]
where \(\text{const} = f(\text{the min. stp. dist., multi.})\).

Theorem 5 (\(k_L = k_B > 0\)) For a base-code \(k\)-out trapping set \(t_B\),
\[
E\{|\text{first order survivals}|\} \propto K^{0.5k_B} K^{-\left(0.5\#E - \#V + 0.5\#C_{\text{odd}}\geq 3\right)}.
\]
First order survival

Theorem 4 \((k_L = k_B = 0)\), a preliminary result) For a fixed base code with a min. stopping set \(s_B\),

\[
E\{|\text{first order survivals}\}| \propto K^{-\left(0.5\#E - \#V + 0.5\#C_{\text{odd,} \geq 3}\right)}
\]

\[
F_{\text{FER BEC,ensemble}} = \text{const} \cdot K^{-\left(0.5\#E - \#V + 0.5\#C_{\text{odd,} \geq 3}\right)}.
\]

where \(\text{const} = f(\text{the min. stp. dist., multi.})\).

Theorem 5 \((k_L = k_B > 0)\) For a base-code k-out trapping set \(t_B\),

\[
E\{|\text{first order survivals}\}| \propto K^{0.5k_B} K^{-\left(0.5\#E - \#V + 0.5\#C_{\text{odd,} \geq 3}\right)}.
\]

Theorem 6 \((k_L = k_B + 1)\) For a base-code k-out trapping set \(t_B\),

\[
E\{|\text{first order survivals}\}| \propto K^{0.5k_B} K^{-\left(0.5\#E - \#V + 0.5\#C_{\text{odd,} \geq 3}\right)} (K\#C_{\text{odd,} \geq 3} + \#C_{\text{even,} \geq 4}).
\]
First order survival

Theorem 4 ($k_L = k_B = 0$, a preliminary result) For a fixed base code with a min. stopping set s_B,

$$E\{|\text{first order survivals}|\} \propto K^{-\left(0.5E - #V + 0.5C_{odd, \geq 3}\right)}$$

$$FER_{BEC, ensemble} = \text{const} \cdot K^{-\left(0.5E - #V + 0.5C_{odd, \geq 3}\right)}.$$

where const $= f(\text{the min. stp. dist., multi.})$.

Theorem 5 ($k_L = k_B > 0$) For a base-code k-out trapping set t_B,

$$E\{|\text{first order survivals}|\} \propto K^{0.5k_B} K^{-\left(0.5E - #V + 0.5C_{odd, \geq 3}\right)}.$$

Theorem 6 ($k_L = k_B + 1$) For a base-code k-out trapping set t_B,

$$E\{|\text{first order survivals}|\} \propto K^{0.5k_B} K^{-\left(0.5E - #V + 0.5C_{odd, \geq 3}\right)} (K#C_{odd, \geq 3} + #C_{even, \geq 4}).$$

Base code optimization: $0.5E - #V + 0.5C_{odd, \geq 3}$
First order survival

Theorem 4
For a fixed base code with a min. stopping set B, $E\{|f\} \propto K - (0.5\#E - \#V + 0.5\#C_{odd, \geq 3})$.

Theorem 5
For a k-out trapping set t_B, $E\{|f\} \propto K^{0.5}K - (0.5\#E - \#V + 0.5\#C_{odd, \geq 3})$.

Theorem 6
For a k-out trapping set t_B, $E\{|f\} \propto K^{0.5}K - (0.5\#E - \#V + 0.5\#C_{odd, \geq 3})$.

Base code optimization: $0.5\#E - \#V + 0.5\#C_{odd, \geq 3}$.

$E_S/N_0 = 20\log(1/\sigma)$

Frame / Bit Error Rate (FER/BER)

$E_B = 128$, $K = 4$. $0/1$-out TSs: (11,12)/(10,24)

$\#C_{even, \geq 4}$.
Define the k-out trapping set graph-theoretically.
Define the k-out trapping set graph-theoretically.

Deciding the minimal k-out trapping distance is NP-hard.
Define the k-out trapping set graph-theoretically.

Deciding the minimal k-out trapping distance is NP-hard.

But still doable for practical code lengths $n \approx 500$.
Define the k-out trapping set graph-theoretically.

Deciding the minimal k-out trapping distance is NP-hard.

But still doable for practical code lengths $n \approx 500$.

Implement k-OTD(H, t) by SD(H, t).
Conclusion

- Define the k-out trapping set graph-theoretically.
- Deciding the minimal k-out trapping distance is \textbf{NP-hard}.
- But still doable for practical code lengths $n \approx 500$.
- Implement k-OTD(H, t) by $SD(H, t)$.
- Insufficiency of the trapping set (near-codeword).
Define the k-out trapping set graph-theoretically.

Deciding the minimal k-out trapping distance is NP-hard.

But still doable for practical code lengths $n \approx 500$.

Implement k-OTD(H, t) by $SD(H, t)$.

Insufficiency of the trapping set (near-codeword).

Quantifying the suppressing effect of cyclic lifting for trapping sets.
Define the k-out trapping set graph-theoretically.

Deciding the minimal k-out trapping distance is \textbf{NP-hard}.

But still doable for practical code lengths $n \approx 500$.

Implement k-OTD(H, t) by SD(H, t).

Insufficiency of the trapping set (near-codeword).

Quantifying the \textbf{suppressing effect} of cyclic lifting for trapping sets.

Base code optimization: $0.5#E - #V + 0.5#C_{\text{odd}, \geq 3}$.