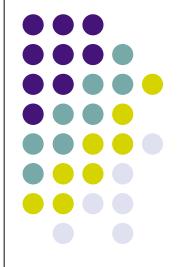


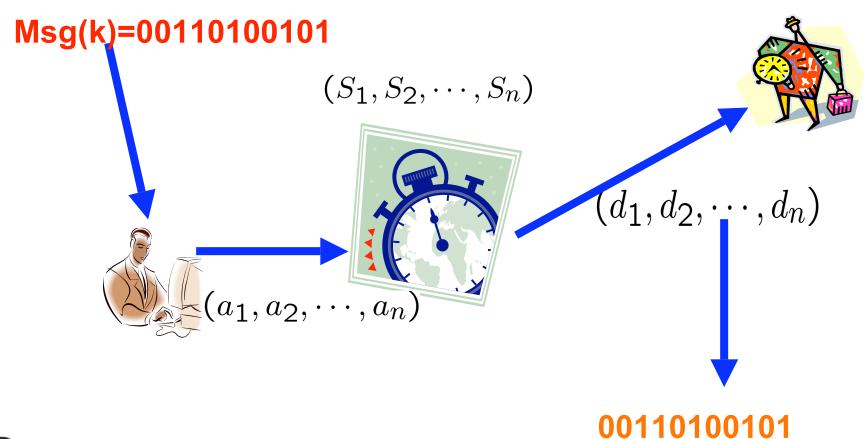
Capacity Bounds on Timing Channels with Bounded Service Times

S. Sellke, C.-C. Wang, N. B. Shroff, and S. Bagchi

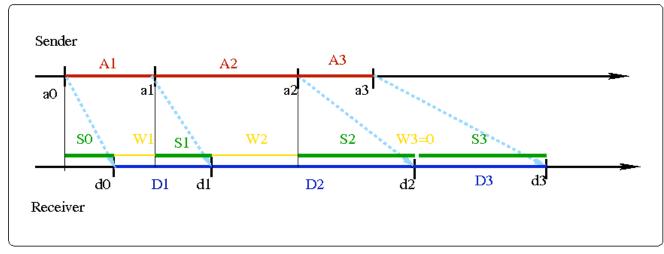
School of Electrical and Computer Engineering Purdue University, West Lafayette, IN 47907 USA



What are Timing Channels?



Timing Channels



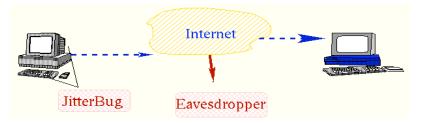
- Information is conveyed in the timing of the bits
 - Sender: a₀, a₂, ..., a_{n-1}.
 - Server: S₀, S₂, ..., S_{n-1}
 - Receiver: d_0, d_1, \dots, d_n ; and recovers information.

Applications of Timing Channels

• Keyboard JitterBug [1]

[1] G. Shah et al, Keyboards and Covert Channels, 2006

Best Student Paper Award, 15th USENIX Security Symposium



 Implement timing channels using on-off technique over TCP/IP networks [2]

[2] S. Cabuk et al, IP Covert Timing Channels: Design and Detection, 2004

Covert Timing Channels in Multi-Level Security (MLS) Systems [3],[4]
 [3] U. S. Department of Defense, ``The Orange Book", 1985
 [4] J. Wray, An Analysis of Covert Timing Channels, 1991

Exponential Service Timing Channel

- ESTC: Service times S₁, S₂, ... are *iid* exponential random variables with parameter μ.
- Capacity of ESTC:

 $C_{ESTC} = e^{-1}\mu \quad nats$

- Capacity of others: $C \geq C_{ESTC}$
 - Deterministic Service Timing Channels have <u>infinite</u> capacity, even if <u>service time is large</u>.

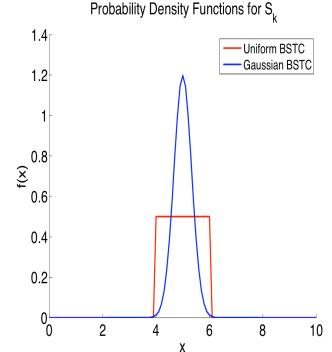
A. Anantharam and S. Verdu, "Bits through Queues,", 1996

Bounded Service Timing Channels

- BSTC: service times S₁, S₂, …, S_n are *iid* with bounded support.
 - General BSTC: $P(a < S_k < a + \Delta) = 1$ Symmetric BSTC

$$P(\frac{1}{\mu} - \epsilon < S_k < \frac{1}{\mu} + \epsilon) = 1$$

- Examples of BSTC:
 - Uniform BSTC
 - Gaussian BSTC



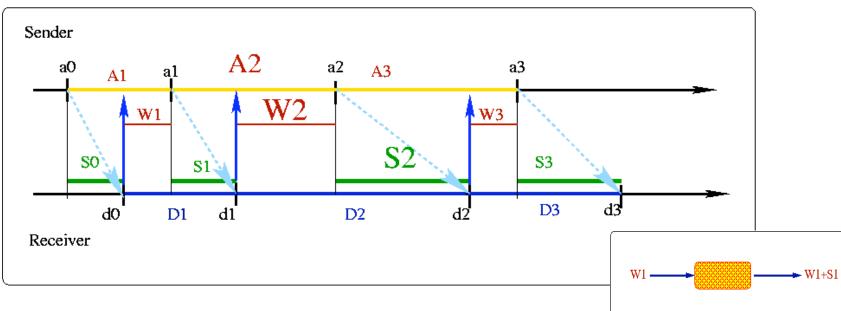
Lowest capacity BSTC?

- Is there a particular BSTC that serves a role similar to that of ESTC?
 - That is, it has the *lowest* capacity among all BSTC with same service rate and support interval.

Our Contributions

- An upper bound $C_{U,P_S}: C_{U,P_S} \ge C_{BSTC,P_S}$
- Two lower bounds $C_{L,1}$ and $C_{L,2}$
 - $C_{L,1}$: $C_{L,1} \leq C_{BSTC,P_S}$ for all P_S .
 - $C_{L,2}$: $C_{L,2} \leq C_{BSTC,P_S}$ for all P_S .
- For the uniform BSTC,
 - $C_{U.BSTC}$ $C_{L,2}$ \rightarrow 0 as $\epsilon \rightarrow$ 0
 - $C_{U.BSTC}$ $C_{L,1}$ < const. for all ϵ
 - $C_{U.BSTC}$ < C_{BSTC} : serves role similar to ESTC

Timing Channels with feedback



- With Feedback:
 - The sender knows d_{k-1} before deciding a_k
 - Thus, the sender has full control of W_k
 - FB channel is reduced to a sequentially juxtaposed iid channel:

$$W_k \rightarrow W_k + S_k = D_k$$

W2+S2

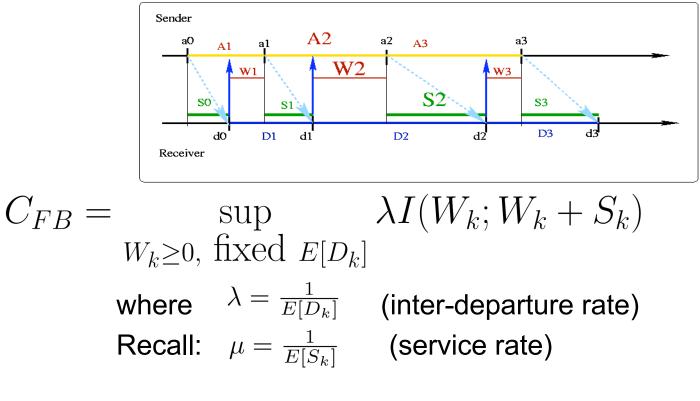
Wn+Sn

W2

Wn

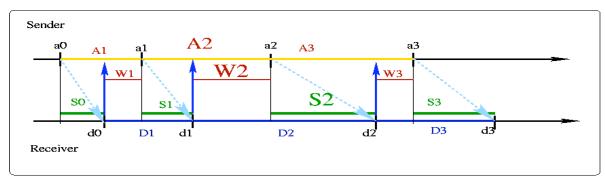
An Upper Bound on the Capacity CWSR

New i.i.d Channels: $W_k \rightarrow W_k + S_k$



 $E[D_k] = E[W_k + S_k] = E[W_k] + 1/\mu \Rightarrow E[W_k] = 1/\mu - 1/\lambda$

An Upper Bound



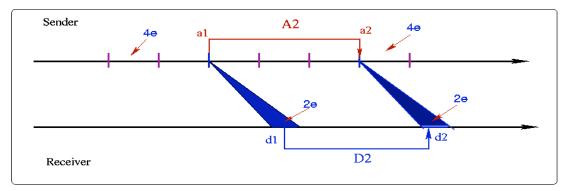
$$C_{U,P_S} = C_{FB} = \sup_{W_k \ge 0} \lambda I(W_k; W_k + S_k)$$

 $C_{U,P_S}(\epsilon) = \mu \sup_{0 < \gamma < 1} G(\epsilon, \gamma) \text{ bits/sec,}$

where $\gamma = \lambda/\mu$ and

 $G(\epsilon, \gamma) = \gamma [\log_2(\epsilon \mu + 1/\gamma - 1) + \log_2(e) - \log_2(\mu) - h(S_k)]$

Achievability: Scheme 1

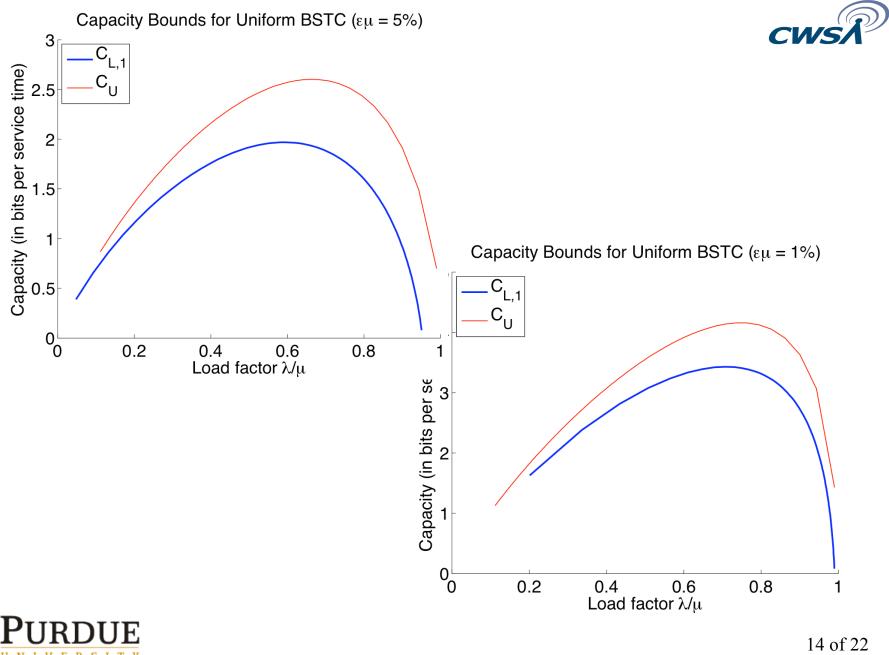


- A_k : geometric r.v.
 - $A_k \geq 1/\mu + \epsilon$ to avoid queueing
 - $D_k = (a_k + 1/\mu + /_{-} \epsilon) (a_{k-1} + 1/\mu + /_{-} \epsilon) = A_k + /_{-} 2 \epsilon$
 - Values for A_k are spaced 4 ϵ apart for error-free decoding

$$P\{A_k = (1/\mu + \epsilon) + i(4\epsilon)\} = p_1(1 - p_1)^i, \quad i = 0, 1, 2\cdots$$

• Error-free rate of scheme 1: • $C_{L,1}(\epsilon) = \mu \sup_{\substack{0 < \gamma < 1/(1+\epsilon \ \mu)}} \gamma [H(p_1)/p_1]$ bits/sec where $p_1 = (4\epsilon\mu) / (1/\gamma - 1 + 3\epsilon\mu)$

$C_{L,1}(\epsilon) \leq C_{BSTC,P_S}$ for all P_S .



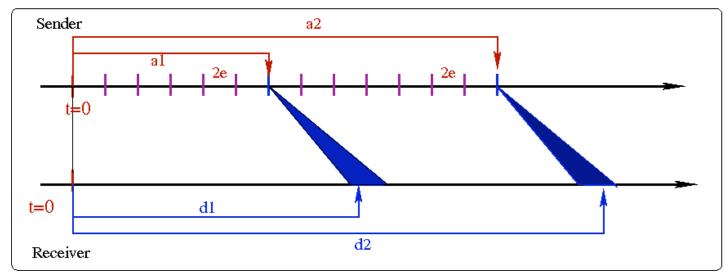
RSITY

E

UN

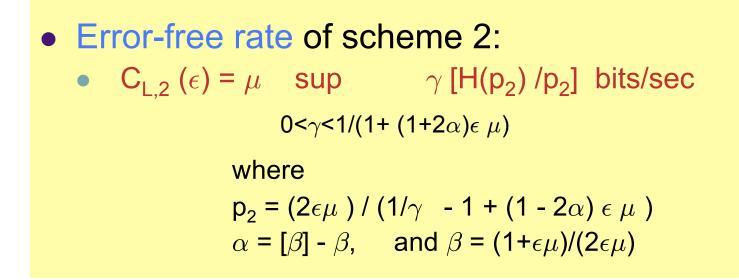
Achievability: Scheme 2

• If the *absolute timing* information is *available* to both sender and receiver.

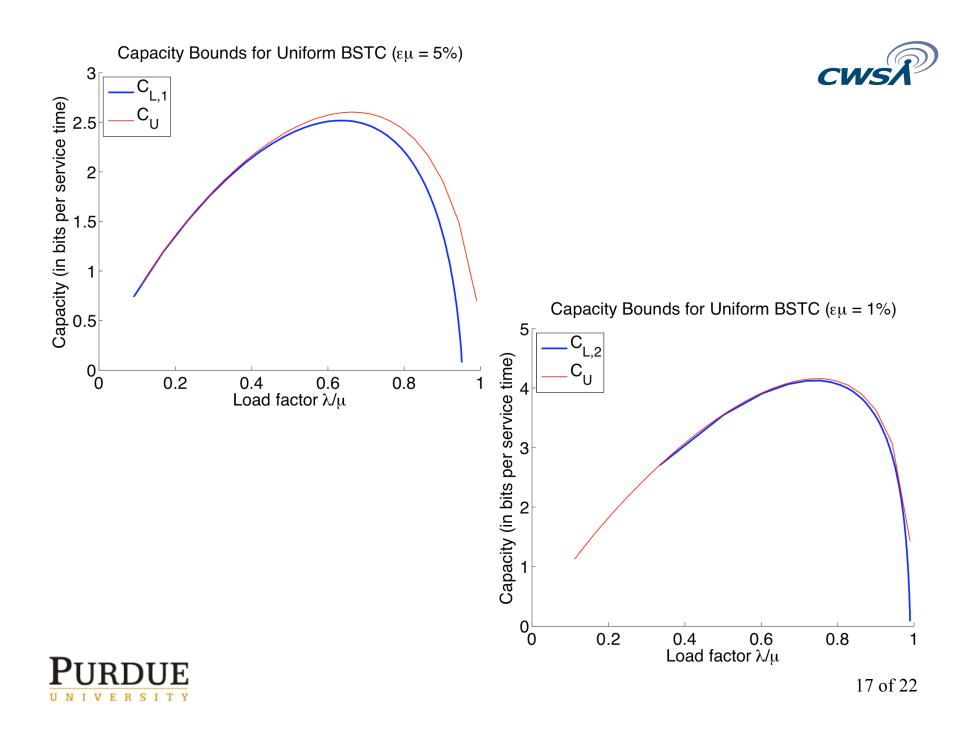


- $d_k = a_k + \frac{1}{2} \epsilon$ for k = 1, 2, $\cdots \Rightarrow$ error-free decoding
- With long codeword length, the absolute timing can be obtained with arbitrary precision.

$C_{L,2}(\epsilon)$: The Second Lower Bound



$$C_{L,2}(\epsilon) \leq C_{BSTC,P_S}$$
 for all P_S .



Optimality of Our Schemes

• Define:

- $\Delta C_1(\epsilon) = C_u(\epsilon) C_{L,1}(\epsilon)$
- $\Delta C_2(\epsilon) = C_u(\epsilon) C_{L,2}(\epsilon)$
- Results on Uniform BSTC:
 - $\Delta C_1(\epsilon) < \log_2(e) \mu$ bits/sec
 - $\Delta C_2(\epsilon)
 ightarrow 0$ as $\epsilon
 ightarrow 0$

Capacity of a Uniform BSTC

- For a uniform BSTC
 - $\Delta C_1(\epsilon) < \log_2(e) \mu$ bits/sec

 $\Rightarrow C_{U.BSTC}(\epsilon) = C_{L,1}(\epsilon) + O(1)$

• $\varDelta C_2(\epsilon) \rightarrow 0$ as $\epsilon \rightarrow 0$

$$\Rightarrow C_{U.BSTC}(\epsilon) = C_{L,2}(\epsilon) + o(1)$$

Scheme 2 is optimal;

* When ϵ is small, the uniform BSTC has the smallest capacity among all BSTCs with same μ and ϵ .

Gaussian BSTC

• $C = C_{L,2} + o(1)$ does not hold for G. BSTC.

	AII	Uniform BSTC		Gaussian BSTC	
$\epsilon \mu$	C_{L2}	Cu	ΔC_2	C _U	ΔC_2
0.1	1.9109	2.0314	0.1198	2.3927	0.4812
0.01	4.1240	4.1582	0.0342	4.5833	0.4593
0.001	6.7384	6.7469	0.0086	7.2127	0.4743

Summary

- Obtained one upper bound (C_U) and two error-free lower bounds ($C_{L,1}$ and $C_{L,2}$) on the capacity of BSTC.
- These bounds are asymptotically tight for the uniform BSTC:
 - $C_U (U.BSTC) = C_{L,1} + O(1) \Rightarrow C_{U.BSTC} = C_{L,1} + O(1)$
 - $C_U (U.BSTC) = C_{L,2} + o(1) \Rightarrow C_{U.BSTC} = C_{L,2} + o(1)$
 - For any distribution-independent scheme, you cannot do better than Scheme 2.
- When ϵ is small,

 $C_{BSTC}(\epsilon) \ge C_{U.BSTC}(\epsilon)$

- S. Sellke, C-C. Wang, N.B. Shroff, and S. Bagchi, *Covert Timing Channels* over TCP/IP networks: from Theory to Practice, 2007
 - Practical Design and Implementation of a covert timing channel over TCP/IP networks.
 - Experiments on computers at Purdue and Princeton
 - Network Delay Characteristics: Small Jitter (3-5%)
 - Rate of the TCP/IP Timing Channel:
 - Up to 80 bit/sec, 5 times improvement over the on-off channels.
 - What's more?
 - For BSTC, a non-detectable scheme mimicking the normal traffic pattern.
 - Error-control coding for timing channel.

