
X	Other Applications of the convolution property:
'	Characterizing / Identifying LTI systems
	Recall: In the past, we record h(t) by sending input $S(+)$. Then
	we compute $H(j\omega)$
	,
	An alternative way is to find $H(j'w)$ directly
	directly
	Namely, arbitrarily choose XLL and
	Namely, arbitrarily choose X(t) and send it through the sys.
	N/41 Record 4(t)
	X(t) Junknown LTI y(t) > Record y(t)
	Find X(jw) & T(yw) by F.T, which can be done by computer.
	can be done by computer.
	$ (j\omega) = X(j\omega) \cdot H(j\omega) $
	$\therefore H(jw) = -Y(jw)$
	$\times(1\omega)$
	$\Rightarrow h(t) = \mathcal{F}'(H(jw))$
	$=$ $f(f-f(J\omega))$
	We do not need to feed an impuse signal to an LTI system.
	Note that an "impulse" is very hard to generate since it has \sum amplitude.
	And the first arrangement is very hard to generate since it has $V \cup V$

2. Inverting LTI sys.
Recall: If a sys is invertible
$\frac{\chi(t)}{\Rightarrow xh(t) } = h_{xv}(t) \xrightarrow{\chi(t)}$
\Rightarrow The impulse verponse of the concatenated $Q: \mathcal{F}(S(t))=?$ Ans:
In summany, given h(t), the hind(t) can be found as follows.
Example: $h(t) = e^{-t}U(t)$, find the inverse system Solh:

P(1)29	+ An LTI	sys. is	invertible	A H(jw)	+0 for all w.
Note Tit	L. Using 1	Involution in	time = m	uttiplication is	1 (4/2012)
	Example:	Te !	$y(t) = \int_{t-1}^{t} E_{t}$	nttiplication in system. Ti X(s) ds	invertible
	Anc.		_	·	
	210-				
	1	1	sin (Mt)	0	
	Example:	h(t) = -	π t	for some tible?	W>0
	Is	this sys	tem inven	tible?	
	Ans:				

4. Freg-based manipulation of the signal to
France:
An ideal low-mx filter (IPF) will O hoop
Example: An ideal low-pass filter (LPF) will O keep any freq component within I w < W intact
(also known as the bandwidth of a LPF) @ Completely supress any frez component outside (i.e w >W)
@ Completely supress any free component
outside (i.e (w/>W)
Since the output is
V(2) \(\langle \(\langle \)
$Y(j\omega) = X(j\omega) \cdot [-(j\omega)]$
=> HIdeal, LPF (jw)
July Land Control
So it we can design on LTI system with
So if we can design an LTI system with htt) satisfying $H(jw) = H_{Ideal, LPF}(w)$, then
we have the ideal LPF
$\Rightarrow h(t) =$
7 mi j