*	Convergence of the Fourier Series.
	Q: Do all CT periodic signals x(t) have a Fourier series representation, i.e. can every periodic signal be written as
	p jkwst ?
	X(t) = \(\sigma \) \(\text{\$\frac{1}{k} = -\omega} \)
	k=-10
	A: The answer is no. However, we can get close in most cases.
X	We can find the Fourier series representation for the following types of signals:
	(1) Any "continous" signal x(t) that has no abrupt changes can be expressed as
	p jkwot
	X(t) = Z Qz e j kwst
	k=-10
	(2) If a "mostly continuous" signal x(t) does not go to infinity and has a finite number of
	abrupt points in a single period T, then only at those points, we have
	20 p jkwst
	7/(t) # 2 Q/2 C°
	$\chi(t) \neq \sum_{k=-\infty}^{\infty} k\omega_{s}t$ For all those "continuous" regions, the FS representation holds.
*	See Conditions I to 3 in P, 197 of the
	textbook for detailed discussion

*	Properties of the CT FS. P.083
	n(t) = 2 ap e jhwot k=-w
	$\frac{k=-\omega}{Qk-\frac{1}{T}\int_{-\infty}^{\infty}\chi(t)e^{-jk\omega st}dt}$ That is F ?
	X(t) = FS (Qk, Wo)
	time-domain freq-domain representation
_	Given X(t), we find ap by Dinspection
	or ① direct computation. Suppose $1/2(t) = x(t-t_0)$ is a shiften
	Version of the original XXX) In we
	have spent a lot of time to compute ap
	X(t) 2 direct computation ale wo
	$\chi_2(t)=\chi(t-t_0)$
(2: Can we directly compute be from ab

* Proporties of FS. (see Table 3.1 for a
Complete list of proporties.
O Linearity: Suppose both x(t) & y(t)
have period T. X(t) < > Ak,
$y(t) \leftarrow \rightarrow b_{k}$
3(t) = Ax(t) + By(t)
3(t) < > Ck,
PH 0





