Q: Why study signals & systems? A: Fundamental to solving engineering problems * Model the problem of interest as a system Often involves writing down the mathematical description of the input/output signals on their relationship. * Analze the <u>system</u>: Usually involves the study of various possible signals associated with the system

* Design a new system: Requires deciding

a suitable system architecture as well

as finding good system parameters.

* Implement and test the system:

Check the system & the imput/output signals

to see whether the performance is satisfactory.

*	The scope of this course
	!
	Signals
	O Signals Vs. LTI systems.
	5
	(S) 11 . 1 To 6:
	2 New Analytical Took:
	^
	Fourier transform, Laplace transform
	m
	3-transform, convolution integral
	S (700) OTTO COCION (17 (Cegrad -
	"Convolution sum" as in convolutional neural networks in
	machine learning.
	3) Important appliantions:
	\mathcal{L} ECE 440. VIP Beyond-5G
	Filters, AM/FM radios ECE 440, VIP Beyond-5G team, ECE544
	Shamatication Committee
	grantization, sampling,
	digital signal processing, etc.
	ECE 438, ECE538

P 0 0 ' (
Delinition: We say a system is linear
Q: How to check whether a system
is linear or hol?
Example: Consider a 2×2 matrix A.
h a system $y = Ax$
ha system

hasystem
$$y = Ax$$
input $x = (x_1)$ output $y = (y_1) = A(x_1)$

	A: Step 1:
	1 - 0 (ep 2
(· 1	
(00	not assign any value to X X X2
MQ	want to use XI, Xx to represent any
sign	not assign any value to \$\frac{7}{2} & \$\frac{7}{2}\$ want to use \$\frac{7}{2}, \$\frac{7}{2}\$ to represent any als)
U	
	Step 2:
	sup 2