

	The 2nd drawback:
	The 2nd drawback: Require "synchronous carriers"
	That is consider the case that we multiply sin (wct) in the Rx instead of cos(wct)
	$\widehat{\chi}(t) = y(t) \sin(\omega ct)$
	$\sin(\omega_{et}) = \frac{1}{2j} \left(e^{j\omega_{et}} - e^{-j\omega_{et}} \right)$
	reg Shift to free shift the right to the left.
	$-\omega_c$
	$\chi(j\omega)$ ω_c
Ţ	2000
	2006
	cancel each other
	So after the LPF, the receiver has "nothing"
	The receiver has to have a carrier signal that is "synchronous" (or equivalently "phase coherent" to the cosine signal used in the transmitter.
	TX

If the carrier signal oscillates much faster than x(t), then x(t) is the "envelope" of the wave form, which can be obtained by "half-wave rectification" (see p. 590-594).

asynchronous demod (envelope detector), identical to

=> X(t) by Asynch

However, since the "phase" at "t>0" changes, a shnchronous detector knows that the signal changes from x(t) = -1 for t < 0 to x(t) = 1 for t > 0.

	How to fix this problem?
	Ans: Add some DC component to shift
•	How to fix this problem? Ans: Add some DC component to shift the original X(t) to be above zero X'(t)=X(t)+K, y(t)=X'(t)cos(wct)=(X(t)+K)cos(wct)
	XH / XH
	y(t)
•	
	What is the "price" of adding some DC component?

Ans: We need additional transmission power at the radio station.

Note: Nowadays, asynchronous demodulation is seldom used.

-reg division multiplexing -DM)

An even more practical scenario:

An antenna tower may like to broadcast several radio stations at the same time. How to achieve this goal?

Ans: Frequency-Division Multiplexing (FDM)

Multiplexing: Different users/signal sources would like to "share" the same media with minimal quality degradation.

FDM: A special type of multiplexiing such that multplexing is achieved by dividing the usage of the media by "frequencies."