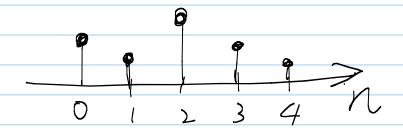
Visualization:



· Continuous - Time (CT)

Complex

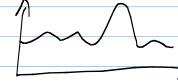
$$\chi(t) = \frac{t}{2} + (1-2t) \int_{0}^{t} dt$$

$$\chi(\frac{1}{3}) = \frac{1}{6}$$

$$\mathcal{X}(\frac{1}{3}) = \frac{1}{6} + \frac{1}{3} \frac{1}{3}$$

$$X(\pi) = \frac{\pi}{2}$$

Voralization XLt)



* Classification #2:

By energy

& by power

signals

infinite (D)

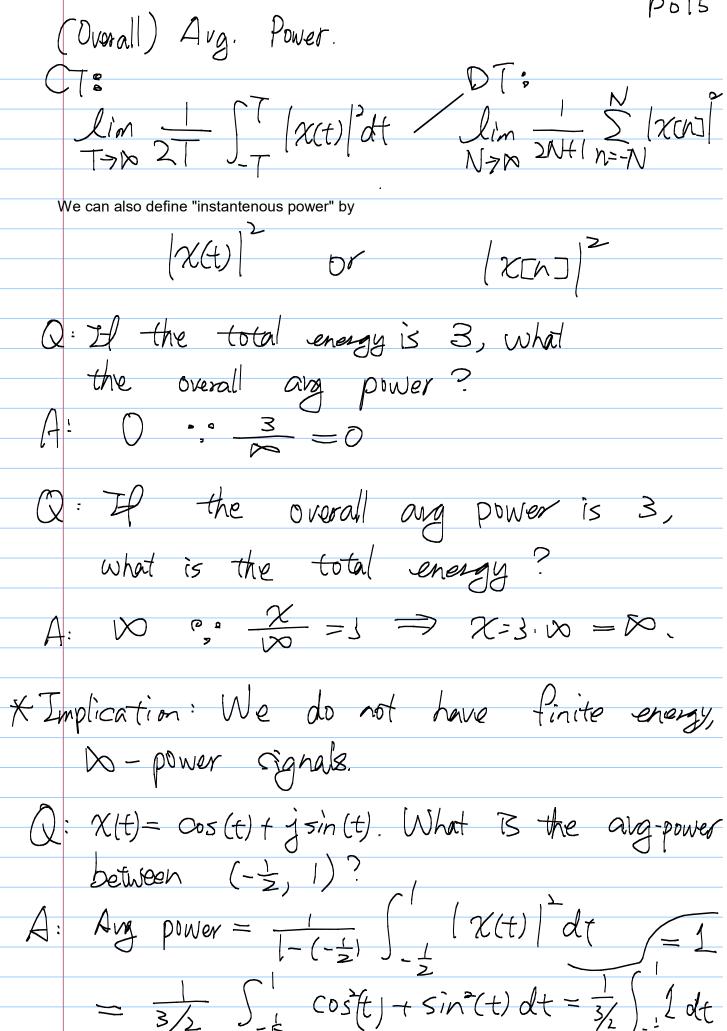
Pinite

energy

power

(Four different types)

* Definition: Energy for CT signals Energy between (t, t) interval is St. | X(t) | 2 dt = St. (Keelt) + XIm(t)) dt $a+bj = a^2+b^2$ For DT signals: Energy between [n, nz] interval $\sum_{n=1}^{2} \left| \chi_{n} \right|^{2} = \sum_{n=1}^{1} \left(\chi_{n} \right) + \chi_{n}^{2} \left[\chi_{n} \right]$ • Total Energy (between $(-\infty, \infty)$) $\int_{-\infty}^{\infty} |\chi(t)|^2 dt \qquad \sum_{n=-\infty}^{\infty} |\chi(n)|^2$ Aug prwer between (t_i,t_i) between $[n_1,n_2]$ Ct: $\int_{t_i}^{t_i} |\chi(t)|^2 dt$ $\frac{1}{n_2-n_1+1} \frac{\sum_{i=n_1}^{n_2-n_1+1} |\chi(n_i)|^2}{n_2-n_1+1}$



P016

Note Title

* Let us briefly digress to the "algebra of signals"

* Signals Ove just functions. So given

two signals XI, XI (can be Xitt) XI(t)

We can write,

New signals Old signals

 $Q \qquad Q \qquad = \qquad \chi_1 + \chi_2$

means $y(t) = \chi_1(t) + \chi_2(t)$ for all t.

 $0 \quad y = \alpha \chi_1 \implies y \quad [n] = \alpha \chi_1 \quad [n]$ for all n

These operations are used/implemented quite ofton in a real system. Ex: amplifiers in a linear circuit. Ex: Graplic Processing Unit (GPU)

Ex: Voltage artifled amplifier.