* As a result, for linear systems, there is an alternative way to cOmpute the output That is. Suppose we know some "test signals" x_{1}, \cdots, x_{n} \&e the corresponding outports y_{1}, \ldots, y_{n}
Zest Signals
A new signal
 Weighted sum of the corresponding outputs using the same weights $\left.\alpha_{1}, \ldots, \alpha_{n}\right)$
Q: Why use (2.1) + (2.2) instead of D ?

A: (1) Since most systems are "black boxes." It may be had to use the mechanism inside the black box to directly compute the output. On the other hand it might be easier to find the weights $\alpha_{1}, \ldots, \alpha_{n}$ so that we can "assemble" the now y without knowing what is inside the black box.
(2) The test signals help you understand the system even before applying the real signals of interest
Ex: If we know a image-processing program is linear and the output of red and blue pixels are $\xrightarrow{\text { Red }} \xrightarrow{S_{x s}} \xrightarrow{\text { Green }}$
$Q: \xrightarrow{\text { Slue Syst }} \rightarrow$
$A: \because$ Purple $=R+B \therefore$ the output is $G+B=$ teal

* For linear systems, once we know the aitputs of the test signals, we know how to construct the output of "any" signal.

Q: How to choose good/convenient test signals?

Ex: R, G, B, are good choices for images
Q: What about other systems?
A: Convolution integral \& Fourier transform.

* Classification of different signals
* Classification \#1: Discrete-Tine (DT) vs. Continuous - Time (CT)
- Discrete -Time:

Real $\xlongequal{(\text { (-valued) }}$ signals $/$ Complex sights
$x[0]=$

$$
x[0]=0+j
$$

$$
x[1]=\quad \frac{1}{2}
$$

$$
x[1]=\frac{1}{2}-j
$$

$$
\left.\begin{array}{rl}
x[n]=\frac{n}{2} & x[n]
\end{array}=\frac{n}{2}+(1-2 n) j\right] ~ 土 x_{\operatorname{Re}}[n]+j x_{I_{n}[n]} .
$$

Visualization:

- Continuous -Time (CT)

Real

$$
x(t)=\frac{t}{2}
$$

$$
x(t)=\frac{t}{2}+(1-2 t) j
$$

$$
=\chi_{\text {Re }}(t)+j \chi_{I_{m}}(t)
$$

$$
X\left(\frac{1}{3}\right)=\frac{1}{6}
$$

$$
x(\pi)=\frac{\pi}{2}
$$

$$
x(\pi)=\frac{\pi}{2}+(1-2 \pi) j
$$

visualization

* Classification \#2: By energy \& by power infinite (∞) finite
 signals (Four different types)

