TABLE 5.1 PROPERTIES OF THE DISCRETE-TIME FOURIER TRANSFORM

Section	Property	Aperiodic Signal		Fourier Transform
		x[n]		$X(e^{j\omega})$ periodic with
		y[n]		$Y(e^{j\omega})$ period 2π
5.3.2	Linearity	ax[n] + by[n]		$aX(e^{j\omega}) + bY(e^{j\omega})$
5.3.3	Time Shifting	$x[n-n_0]$		$e^{-j\omega n_0}X(e^{j\omega})$
5.3.3	Frequency Shifting	$e^{j\omega_0 n}x[n]$		$X(e^{j(\omega-\omega_0)})$
5.3.4	Conjugation	$x^*[n]$		$X^{\bullet}(e^{-j\omega})$
5.3.6	Time Reversal	x[-n]	if $n = \text{multiple of } k$ if $n \neq \text{multiple of } k$	$X(e^{-j\omega})$
5.3.7	Time Expansion	$x_{(k)}[n] = \begin{cases} x[n/k], \\ 0. \end{cases}$		$X(e^{jk\omega})$
5.4	Convolution	x[n] * y[n]		$X(e^{j\omega})Y(e^{j\omega})$
5.5	Multiplication	x[n]y[n]		$\frac{1}{2\pi}\int_{2\pi}X(e^{j\theta})Y(e^{j(\omega-\theta)})d\theta$
5.3.5	Differencing in Time	x[n]-x[n-1]		$(1-e^{-j\omega})X(e^{j\omega})$
5.3.5	Accumulation	$\sum_{k=-\infty}^{n} x[k]$		$\frac{1}{1-e^{-j\omega}}X(e^{j\omega})$
5.3.8	Differentiation in Frequency	nx[n]		$+\pi X(e^{j0}) \sum_{k=-\infty}^{+\infty} \delta(\omega - 2\pi k)$ $j \frac{dX(e^{j\omega})}{d\omega}$
5.3.4	Conjugate Symmetry for Real Signals	x[n] real		$\begin{cases} X(e^{j\omega}) = X^*(e^{-j\omega}) \\ \Re \{X(e^{j\omega})\} = \Re \{X(e^{-j\omega})\} \\ \Im \{X(e^{j\omega})\} = -\Im \{X(e^{-j\omega})\} \\ X(e^{j\omega}) = X(e^{-j\omega}) \end{cases}$
				$ \left($
5.3.4	Symmetry for Real, Even Signals	x[n] real an even		$X(e^{j\omega})$ real and even
5.3.4	Symmetry for Real, Odd Signals	x[n] real and odd		$X(e^{j\omega})$ purely imaginary and odd
5.3.4	Even-odd Decomposition	$x_e[n] = \mathcal{E}\nu\{x[n]\}$	[x[n] real]	$\Re\{X(e^{j\omega})\}$
	of Real Signals	$x_0[n] = \mathbb{O}d\{x[n]\}$		$i \mathcal{G}m\{X(e^{j\omega})\}$
5.3.9	Parseval's Relation for Aperiodic Signals		J - 11 (4 - 17)	
•	1 44	$x^2 = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) ^2 dt$		

a duality relationship between the discrete-time Fourier transform and the continuous-time Fourier series. This relation is discussed in Section 5.7.2.

5.7.1 Duality in the Discrete-Time Fourier Series

Since the Fourier series coefficients a_k of a periodic signal x[n] are themselves a periodic sequence, we can expand the sequence a_k in a Fourier series. The duality property for discrete-time Fourier series implies that the Fourier series coefficients for the periodic sequence a_k are the values of (1/N)x[-n] (i.e., are proportional to the values of the original

nd $X_2(e^{j\omega})$. The periodic convolu-

nple 5.15.

crete-time Fourier
1. In Table 5.2, we
r transform pairs

nmetry or duality to corresponding tion (5.8) for the rete-time Found addition, there is