f eqs. iodic M=1; sequence in (3.106), the ns, we have (3.100) onclude from f values or o represer 100 Thus, in general, none of the finite partial sums in eq. (3.52) yield the exact values of x(t), and convergence issues, such as those considered in Section 3.4, arise as we consider the problem of evaluating the limit as the number of terms approaches infinity. ## 3.7 PROPERTIES OF DISCRETE-TIME FOURIER SERIES There are strong similarities between the properties of discrete-time and continuous-time Fourier series. This can be readily seen by comparing the discrete-time Fourier series properties summarized in Table 3.2 with their continuous-time counterparts in Table 3.1. TABLE 3.2 PROPERTIES OF DISCRETE-TIME FOURIER SERIES | Property | Periodic Signal | Fourier Series Coefficient | |--|---|--| | | $x[n]$ Periodic with period N and $y[n]$ fundamental frequency $\omega_0 = 2\pi/N$ | $\begin{bmatrix} a_k \\ b_k \end{bmatrix}$ Periodic with | | Linearity Time Shifting Frequency Shifting Conjugation Time Reversal | $Ax[n] + By[n]$ $x[n - n_0]$ $e^{jM(2\pi l/N)n}x[n]$ $x^*[n]$ $x[-n]$ | $Aa_k + Bb_k$ $a_k e^{-jk(2\pi lN)n_0}$ a_{k-M} a_{-k} a_{-k} | | Time Scaling | $x_{(m)}[n] = \begin{cases} x[n/m], & \text{if } n \text{ is a multiple of } m \\ 0, & \text{if } n \text{ is not a multiple of } m \end{cases}$ (periodic with period mN) | $\frac{1}{m}a_k$ (viewed as periodic) with period mN | | Periodic Convolution | $\sum_{r=\langle N\rangle} x[r]y[n-r]$ | Na_kb_k | | Multiplication | x[n]y[n] | $\sum_{l=\langle N\rangle} a_l b_{k-l}$ | | First Difference | x[n] - x[n-1] | $(1 - e^{-jk(2\pi/N)})a_{\nu}$ | | Running Sum | $\sum_{k=-\infty}^{n} x[k] \begin{pmatrix} \text{finite valued and periodic only} \\ \text{if } a_0 = 0 \end{pmatrix}$ | $\left(\frac{1}{(1-e^{-jk(2\pi/N)})}\right)a_k$ | | Conjugate Symmetry for Real Signals | x[n] real | $egin{array}{l} a_k &= a_{-k}^* \ \Re e\{a_k\} &= \Re e\{a_{-k}\} \ \Im m\{a_k\} &= -\Im m\{a_{-k}\} \ a_k &= a_{-k} \ orall a_k &= - otin a_{-k} \end{array}$ | | Real and Even Signals
Real and Odd Signals | x[n] real and even $x[n]$ real and odd | a_k real and even a_k purely imaginary and odd | | Even-Odd Decomposition of Real Signals | $\begin{cases} x_e[n] = 8v\{x[n]\} & [x[n] \text{ real}] \\ x_o[n] = 9d\{x[n]\} & [x[n] \text{ real}] \end{cases}$ | $\Re\{a_k\}$ $j\mathfrak{I}m\{a_k\}$ | | | Parseval's Relation for Periodic Signals | | | | $\frac{1}{N}\sum_{n=\langle N\rangle} x[n] ^2=\sum_{k=\langle N\rangle} a_k ^2$ | | $$\frac{1}{N}\sum_{n=\langle N\rangle}|x[n]|^2=\sum_{k=\langle N\rangle}|a_k|^2$$