10.5.9	10.5.8 Differentiation in the z-domain	10.5.7 Accumulation	10.5.6 Conjugation 10.5.7 Convolution 10.5.7 First difference	10.5.5 Time expansion	10.5.4 Time reversal	10.5.3 Scaling in the z-domain	10.5.1 Linearity 10.5.2 Time shifting		TABLE 10.1 PROPERTIES Section Property
Initial Value Theorem If $x[n] = 0$ for $n < 0$, then $x[0] = \lim_{z \to \infty} X(z)$	nx[n]	$\sum_{k=-\infty}^{n} x[k]$	$x^*[n]$ $x_1[n] * x_2[n]$ x[n] - x[n-1]	$x_{(k)}[n] = \begin{cases} x[r], & n = rk \\ 0, & n \neq rk \end{cases}$	x[-n]	$egin{array}{lll} ext{lomain} & e^{j\omega_0\eta}x[n] \ & z_0^ax[n] \ & a^nx[n] \end{array}$	$ax_{1}[n] + bx_{2}[n] x[n - n_{0}]$	$egin{array}{c} x[n] & & \\ x_1[n] & & \\ x_2[n] & & \end{array}$	PROPERTIES OF THE z-TRANSFORM Signal
	$-z \frac{dz}{dz}$	$\frac{1}{1-z^{-1}}X(z)$ $dX(z)$	$X_1(z)X_2(z) = (1-z^{-1})X(z)$	for some integer $r X(z^k)$ $V^*(z^k)$	$X(z^{-1})$	$X(e^{-j\omega_0}Z) \ X\left(rac{z}{z_0} ight) \ X(a^{-1}Z)$	$aX_1(z) + bX_2(z) \ z^{-n_0}X(z)$	$X(z)$ $X_1(z)$ $X_2(z)$	ansform
		At least the intersection of \mathbf{x} and $ z >1$	At least the intersection of R_1 and R_2 At least the intersection of R and $ z > 0$	$R^{1/k}$ (i.e., the set of points z^{-} , where z is in R)	Inverted x (1.5., x) points z^{-1} , where z is in R)	Scaled version of R (i.e., $ a R$ = the set of points $\{ a z\}$ for z in R)	At least the intersection of κ_1 and κ_2 R , except for the possible addition or deletion of the origin	R_1 R_2	ROC

, and impulse the frequency the frequency to have, from the complex eigenfunction is response.

e poles, zeros, e poles, zeros, llustrate some llustrate some have manned an important

(96.01)

tesentation of '7.5.01 noi

ransforms of ransforms of a ransforms of a rate properand 5 follow 0.18. These, crions 10.5.4 airs 9 and 10 airs 9 and 10 ang properties

ss of the 5xample 10.3.

Chap, 10