ECE 301-001 and 301-003, Midterm \#3
8-9:30pm, Thursday, April 6, 2023, FRNY G140 and RHPH 172.

1. Do not write answers on the back of pages!
2. After the exam ends, you will have 5 additional minutes to write down your name and Purdue ID on each of the pages.
3. If you need additional sheets of paper to write down your answers, please let one of the proctors know. We will hand out additional answer sheets as needed.
4. Write your student ID number and signature in the space provided on this page.
5. This is a closed book exam. Neither calculators nor help sheets are allowed. A separate formula packet has been provided to you.
6. You have $\mathbf{9 0}$ minutes to complete the exam. There are 6 multi-part questions.
7. You must show all work used to arrive at your answer. This is required to receive full credit, and also is helpful for you in getting partial credit.

Name:

Student ID:

As a Boilermaker pursuing academic excellence, I pledge to be honest and true in all that I do. Accountable together - We are Purdue.

Signature:
Date:

Question 1: [18\%]
Consider the following periodic waveform $x(t)$:

(a) $[10 \%]$ Let $\left\{a_{k}\right\}$ denote the Fourier series coefficients of $x(t)$. Determine the coefficients and write out the Fourier series expansion of $x(t)$.
(b) [8\%] Plot the magnitude $\left|a_{k}\right|$ of the coefficients, for $-2 \leq k \leq 2$. Be sure to clearly label your axes.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 1.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 1.

Question 2: [20\%]
Consider a periodic signal $x(t)$ defined as follows:

$$
x(t)= \begin{cases}2 t+2 & \text { if }|t| \leq 1 \\ 0 & \text { if } 1<|t| \leq 8 \\ \text { periodic with period } 16 & \end{cases}
$$

This signal has $\omega_{0}=\frac{\pi}{8}$ and Fourier series coefficients

$$
a_{0}=0.25, \quad a_{k}=j \frac{2 \cos (k \pi / 8)}{k \pi}+\frac{2 \sin (k \pi / 8)}{k \pi}\left(1-\frac{8 j}{k \pi}\right) \quad k \neq 0
$$

(a) [3\%] Plot $x(t)$ for the range of $-20<t<20$.
(b) [7\%] Find the value of $\int_{t=0}^{16} x(t) e^{j 0.5 \pi t} d t$.

Now, consider a different signal $y(t)$:

$$
y(t)= \begin{cases}2 t & \text { if } 0 \leq t<2 \\ 2 t+4 & \text { if }-2 \leq t<0 \\ 0 & \text { if } 2 \leq|t| \leq 8 \\ \text { periodic with period } 16 & \end{cases}
$$

Denote its Fourier series coefficients by b_{k}.
(c) [4\%] Plot $y(t)$ for the range of $-20<t<20$.
(d) $[6 \%]$ Find the value of b_{-11}.
[Hint 1: Your answer for b_{-11} should be an explicit value, say something like $b_{-11}=j \sin (12.7 \pi) \cos ^{2}(-\sqrt{\pi}) / \sqrt{2}$.]
[Hint 2: If you do not know how to find the value of b_{-11}, you can state the general relationship between b_{k} and a_{k}. You will receive 4.5 points if your answer is correct.]

Last Name:
First Name:
Purdue ID:
This sheet is for Question 2.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 2.

Question 3: [17\%]
Consider a periodic discrete-time signal $x[n]$ which has the following Fourier series coefficients $\left\{a_{k}\right\}$:

Notice that the DTFS sequence $\left\{a_{k}\right\}$ is periodic with a fundamental period of 3 .
(a) $[3 \%]$ What is the fundamental period of $x[n]$? Explain in 1 sentence.
(b) $[6 \%]$ Write out the Fourier series expansion of $x[n]$.
(c) $[5 \%]$ Let $y[n]=x[-n]$, and let $\left\{b_{k}\right\}$ be the Fourier series coefficients of $y[n]$. Plot $\left|b_{k}\right|$ for $-3 \leq k \leq 5$.
(d) $[3 \%]$ Express the Fourier series of $x[n]$ from (b) in the simplified form

$$
x[n]=A+B \sin \left(k_{B} \omega_{0} n+\phi_{B}\right)+C e^{j\left(k_{C} \omega_{0} n+\phi_{C}\right)}
$$

where ω_{0} is the fundamental frequency and $A, B, C, k_{B}, \phi_{B}, k_{C}, \phi_{C}$ are values that you have determined.
[Hint: Consider coming back to do (d) after you finish the rest of the exam, because it is only 3% and may take some time.]

Last Name:
First Name:
Purdue ID:
This sheet is for Question 3.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 3.
Last Name: First Name: Purdue ID:

Question 4: $[14 \%]$
Consider a DT LTI system with impulse response

$$
h[n]= \begin{cases}2.5 & \text { if } 0 \leq n \leq 19 \\ 0 & \text { otherwise }\end{cases}
$$

(a) [7\%] Compute the following summation: $\sum_{n=-\infty}^{\infty} h[n] e^{-j \omega n}$

Hint: The geometric series formula may be useful: if $r \neq 1$, then we have

$$
\sum_{k=1}^{K} a r^{k-1}=\frac{a\left(1-r^{K}\right)}{1-r}
$$

Also consider a DT periodic signal $x[n]$ with period 80 and

$$
x[n]= \begin{cases}n & 1 \leq n \leq 80 \\ \text { periodic with period } 80 & \end{cases}
$$

Suppose we use $x[n]$ as the input to the above system. Denote the output by $y[n]$.
(b) $[7 \%]$ Denote the DTFS coefficients of $y[n]$ by $\left\{b_{k}\right\}$. Show that $b_{8}=0$.
[Hint 1: You don't need to find the DTFS coefficients of $x[n]$ or the general expression for b_{k} to solve this question. All you need to show is that $b_{8}=0$.]
[Hint 2: If you don't know how to answer to this question, please find the output of the above LTI system, denoted by $y_{2}[n]$, when the input is $x_{2}[n]=e^{j \frac{2 \pi}{5} n}$. You will receive 5.5 points if your answer is correct.]

Last Name:
First Name:
Purdue ID:
This sheet is for Question 4.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 4.

Question 5: [12\%]
Consider a CT aperiodic signal

$$
x(t)= \begin{cases}12 & \text { if }-3 \leq t \leq 3 \\ 0 & \text { otherwise }\end{cases}
$$

(a) [7\%] Denote the CTFT of $x(t)$ by $X(j \omega)$. Plot $X(j \omega)$ for the range of $-\pi \leq \omega \leq \pi$. Please carefully mark the intersecting points to the horizontal and vertical axes.

Consider a second CT aperiodic signal

$$
y(t)= \begin{cases}12 e^{j \frac{2 \pi}{3} t} & \text { if }-3 \leq t \leq 3 \\ 0 & \text { otherwise }\end{cases}
$$

(b) [5\%] Denote the CTFT of $y(t)$ by $Y(j \omega)$. Plot $Y(j \omega)$ for the range of $-\pi \leq \omega \leq \pi$. [Hint: If you do not know how to draw the plot in (b), you can write down the relationship between $X(j \omega)$ and $Y(j \omega)$ and you will receive 4 points if your answer is correct.]

Last Name:
First Name:
Purdue ID:
This sheet is for Question 5.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 5.

Question 6: [19\%]

Consider a CT LTI system with frequency response

$$
H(j \omega)=\frac{1}{2+j \omega}
$$

(a) [4\%] Is the system invertible? Justify your answer.
(b) [5\%] Determine the impulse response $h(t)$ of the system.
[Hint: In this part and the rest of Q6, you are strongly encouraged to use the Fourier transform tables.]

Now, suppose we send an input

$$
x(t)=e^{-3 t} u(t)
$$

through the system to get an output $y(t)$.
(c) [5\%] Determine the frequency spectrum $Y(j \omega)$ of the output.

Finally, suppose we pass another input $x_{2}(t)$ to the system and measure a frequency spectrum at the output of

$$
Y_{2}(j \omega)=3-\delta(\omega-5 \pi)-\delta(\omega+5 \pi)+\frac{9}{(6+3 j \omega)^{2}}
$$

(d) $[5 \%]$ Find an expression for the output $y_{2}(t)$.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 6.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 6.

Discrete-time Fourier series

$$
\begin{gather*}
x[n]=\sum_{k=<N>} a_{k} e^{j k(2 \pi / N) n} \tag{1}\\
a_{k}=\frac{1}{N} \sum_{n=<N>} x[n] e^{-j k(2 \pi / N) n} \tag{2}
\end{gather*}
$$

Continuous-time Fourier series

$$
\begin{gather*}
x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k(2 \pi / T) t} \tag{3}\\
a_{k}=\frac{1}{T} \int_{T} x(t) e^{-j k(2 \pi / T) t} d t \tag{4}
\end{gather*}
$$

Continuous-time Fourier transform

$$
\begin{gather*}
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega \tag{5}\\
X(j \omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \tag{6}
\end{gather*}
$$

Discrete-time Fourier transform

$$
\begin{align*}
& x[n]=\frac{1}{2 \pi} \int_{2 \pi} X\left(e^{j \omega}\right) e^{j \omega n} \tag{7}\\
& X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \tag{8}
\end{align*}
$$

Laplace transform

$$
\begin{gather*}
x(t)=\frac{1}{2 \pi} e^{\sigma t} \int_{-\infty}^{\infty} X(\sigma+j \omega) e^{j \omega t} d \omega \tag{9}\\
X(s)=\int_{-\infty}^{\infty} x(t) e^{-s t} d t \tag{10}
\end{gather*}
$$

Z transform

$$
\begin{gather*}
x[n]=r^{n} \mathcal{F}^{-1}\left(X\left(r e^{j \omega}\right)\right) \tag{11}\\
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n} \tag{12}
\end{gather*}
$$

TABLE 3.1 PROPERTIES OF CONTINUOUS-TIME FOURIER SERIES

Property	Section	Periodic Signal	Fourier Series Coefficients
		$\left.\begin{array}{l} x(t) \\ y(t) \end{array}\right\} \begin{aligned} & \text { Periodic with period } \mathrm{T} \text { and } \\ & \text { fundamental frequency } \omega_{0}=2 \pi / T \end{aligned}$	$\begin{aligned} & a_{k} \\ & b_{k} \end{aligned}$
Linearity	3.5.1	$A x(t)+B y(t)$	$A a_{k}+B b_{k}$
Time Shifting	3.5.2	$x\left(t-t_{0}\right)$	$a_{k} e^{-j k \omega_{0} t_{0}}=a_{k} e^{-}$
Frequency Shifting		$e^{j M \omega_{0} t} x(t)=e^{j M(2 \pi / T) t} x(t)$	a_{k-M}
Conjugation	3.5.6	$x^{*}(t)$	a_{-k}^{*}
Time Reversal	3.5.3	$x(-t)$	a_{-k}
Time Scaling	3.5.4	$x(\alpha t), \alpha>0($ periodic with period $T / \alpha)$	a_{k}
Periodic Convolution		$\int_{T} x(\tau) y(t-\tau) d \tau$	$T a_{k} b_{k}$
Multiplication	3.5.5	$x(t) y(t)$	$\sum_{l=-\infty}^{+\infty} a_{l} b_{k-l}$
Differentiation		$\frac{d x(t)}{d t}$	$j k \omega_{0} a_{k}=j k \frac{2 \pi}{T} a_{k}$
Integration		$\int_{-\infty}^{t} x(t) d t \quad\left(\begin{array}{l} \text { finite valued and } \\ \text { periodic only if } \left.a_{0}=0\right) \end{array}\right.$	$\left(\frac{1}{j k \omega_{0}}\right) a_{k}=\left(\frac{1}{j k(2 \pi / T)}\right) a_{k}$
Conjugate Symmetry for Real Signals	3.5.6	$x(t)$ real	$\left\{\begin{array}{l} a_{k}=a_{-k}^{*} \\ \mathcal{R e}_{e}\left\{a_{k}\right\}=\mathcal{R e}_{2}\left\{a_{-k}\right\} \\ \mathfrak{S n}_{n}\left\{a_{k}\right\}=-\mathfrak{I n}_{7}\left\{a_{-k}\right\} \\ \left\|a_{k}\right\|=\left\|a_{-k}\right\| \\ \Varangle a_{k}=-\Varangle a_{-k} \end{array}\right.$
Real and Even Signals	3.5.6	$x(t)$ real and even	a_{k} real and even
Real and Odd Signals	3,5.6	$x(t)$ real and odd	a_{k} purely imaginary and odd
Even-Odd Decomposition of Real Signals		$\begin{cases}x_{e}(t)=\mathcal{E}\{x(t)\} & {[x(t) \text { real }]} \\ x_{o}(t)=\mathcal{O d}\{x(t)\} & {[x(t) \text { real }]}\end{cases}$	$\begin{aligned} & \operatorname{Re}\left\{a_{k}\right\} \\ & j \mathcal{I}_{m}\left\{a_{k}\right\} \end{aligned}$

Parseval's Relation for Periodic Signals

$$
\frac{1}{T} \int_{T}|x(t)|^{2} d t=\sum_{k=-\infty}^{+\infty}\left|a_{k}\right|^{2}
$$

TABLE 3.2 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

Property	Periodic Signal	Fourier Series Coefficients
	$\left.\begin{array}{l} x[n] \\ y[n] \end{array}\right\} \begin{aligned} & \text { Periodic with period } N \text { and } \\ & \text { fundamental frequency } \omega_{0}=2 \pi / N \end{aligned}$	$\left.\begin{array}{c} a_{k} \\ b_{k} \end{array}\right\} \begin{aligned} & \text { Periodic with } \\ & \text { period } N \end{aligned}$
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal	$\begin{aligned} & A x[n]+B y[n] \\ & x\left[n-n_{0}\right] \\ & e^{j M(2 \pi / N) n} x[n] \\ & x^{m}[n] \\ & x[-n] \end{aligned}$	$\begin{aligned} & A a_{k}+B b_{k} \\ & a_{k} e^{-j k(2 \pi / N) n_{0}} \\ & a_{k-M} \\ & a_{-k}^{*} \\ & a_{-k}^{*} \end{aligned}$
Time Scaling	$\begin{aligned} & x_{(m)}[n]= \begin{cases}x[n / m], & \text { if } n \text { is a multiple of } m \\ 0, & \text { if } n \text { is not a multiple of } m\end{cases} \\ & \text { (periodic with period } m N \text {) } \end{aligned}$	$\frac{1}{m} a_{k}\binom{$ viewed as periodic }{ with period $m N}$
Periodic Convolution	$\sum_{r=\{N\rangle} x[r] y[n-r]$	$N a_{k} b_{k}$
Multiplication	$x[n] y[n]$	$\sum a_{l} b_{k-l}$
First Difference	$x[n]-x[n-1]$	$\left(1-e^{-j k(2 \pi / N)}\right) a_{k}$
Running Sum	$\sum_{k=-\infty}^{n} x[k]\binom{$ finite valued and periodic only }{ if $a_{0}=0}$	$\left(\frac{1}{\left(1-e^{-/ / k(2 \pi / N)}\right)}\right) a_{k}$
Conjugate Symmetry for Real Signals	$x[n]$ real	$\left\{\begin{array}{l} a_{k}=a_{-k}^{*} \\ \mathcal{P}_{\mathscr{L}}\left\{a_{k}\right\}=\mathcal{R}_{\mathscr{C}}\left\{a_{-k}\right\} \\ \mathscr{I m}_{m}\left\{a_{k}\right\}=-\mathscr{S n}_{n}\left\{a_{-k}\right\} \\ \left\|a_{k}\right\|=\left\|a_{-k}\right\| \\ \Varangle a_{k}=-\Varangle a_{-k} \end{array}\right.$
Real and Even Signals Real and Odd Signals	$x[n]$ real and even $x[n]$ real and odd	a_{k} real and even a_{k} purely imaginary and odd
Even-Odd Decomposition of Real Signals	$\begin{cases}x_{e}[n]=\mathcal{E}_{v}\{x[n]\} & {[\mathrm{x}[\mathrm{n}] \text { real }]} \\ x_{o}[n]=\mathcal{O} d\{x[n]\} & {[\mathrm{x}[\mathrm{n}] \text { real }]}\end{cases}$	$\begin{aligned} & \mathbb{R}_{\mathscr{L}}\left\{a_{k}\right\} \\ & j \mathscr{H}_{\pi}\left\{a_{k}\right\} \end{aligned}$

Parseval's Relation for Periodic Signals

$$
\frac{1}{N} \sum_{n=\langle N\rangle}|x[n]|^{2}=\sum_{k=\langle N\rangle}\left|a_{k}\right|^{2}
$$

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM

\begin{tabular}{|c|c|c|c|}
\hline \& Property \& Aperiodic signal \& Fourier transform

\hline Section \& \& \& $X(j \omega)$

\hline \& \& $$
\begin{aligned}
& x(t) \\
& y(t)
\end{aligned}
$$ \& $Y(j \omega)$

\hline \& \& $a x(t)+b y(t)$ \& $$
a X(j \omega)+b Y(j \omega)
$$

\hline 4.3.1
4.3.2 \& Time Shifting \& $x\left(t-t_{0}\right)$ \& $$
\begin{aligned}
& e^{-j \omega \omega_{0}} X(j \omega) \\
& X\left(j\left(\omega-\omega_{0}\right)\right)
\end{aligned}
$$

\hline 4.3.6 \& Frequency Shifting \& $e^{j \omega_{0} t} x(t)$ \& $X^{*}(-j \omega)$

\hline 4.3.3 \& Conjugation \& $x *(t)$ \& $X(-j \omega)$

\hline 4.3.5 \& Time Reversal \& $x(-t)$ \& ${ }_{1}^{1} \times(\underline{j \omega}$

\hline . 5 \& Time and Frequency \& $x(a t)$ \& $\overline{|a|}^{x}\left(\frac{j}{a}\right)$

\hline \& Scaling \& \& $X(j \omega) Y(j \omega)$

\hline 4.4 \& Convolution \& $x(t) * y(t)$ \& $\frac{1}{2 \pi} \int_{-\infty}^{+\infty} X(j \theta) Y(j(\omega-\theta) d \theta$

\hline 4.5 \& Multiplication \& $x(t) y(t)$ \&

\hline 4.3.4 \& Differentiation in Time \& $\frac{d}{d t} x(t)$ \& $j \omega X(j \omega)$

\hline 4.3.4 \& Integration \& $\int_{-\infty}^{t} x(t) d t$ \& $$
\begin{aligned}
& \frac{1}{j \omega} X(j \omega)+\pi X(0) \delta(\omega) \\
& j \frac{d}{d} X(j \omega)
\end{aligned}
$$

\hline 4.3.6 \& Differentiation in Frequency \& $t x(t)$ \& $$
\int X(j \omega)=X^{*}(-j \omega)
$$

\hline 4.3.3 \& Conjugate Symmetry for Real Signals \& $x(t)$ real

$x(t)$ real and even \& | $\left\{\begin{array}{l} X(J \omega) \\ \mathfrak{R e}\{X(j \omega)\}=\operatorname{Re}\{X(-j \omega) \mid \\ \mathscr{I n}_{n}\{X(j \omega)\}=-\mathfrak{S n}_{\{ }\{X(-j \omega) \mid \\ \|X(j \omega)\|=\|X(-j \omega)\| \\ \Varangle X(j \omega)=-\Varangle X(-j \omega) \end{array}\right.$ |
| :--- |
| $X(j \omega)$ real and even |

\hline 4.3.3 \& Symmetry for Real and Even Signals \& \& $X(j \omega)$ purely imaginary and ${ }^{2}$ d

\hline 4.3.3 \& Symmetry for Real and Odd Signals \& \& $\mathfrak{R e}\{X(j \omega)\}$

\hline 4.3.3 \& Even-Odd Decomposition for Real Signals \& \& ${ }_{j} \mathcal{S}_{n}\{X X(j \omega)\}$

\hline
\end{tabular}

Signal	Fourier transform	Fourier series coefficients (if periodic)
$\sum_{k=-\infty}^{+\infty} a_{k} e^{j k \omega_{0} t}$	$2 \pi \sum_{k=-\infty}^{+\infty} a_{k} \delta\left(\omega-k \omega_{0}\right)$	a_{k}
$e^{j \omega_{0} t}$	$2 \pi \delta\left(\omega-\omega_{0}\right)$	$\begin{aligned} & a_{1}=1 \\ & a_{k}=0, \quad \text { otherwise } \end{aligned}$
$\cos \omega_{0} t$	$\pi\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right]$	$\begin{aligned} & a_{1}=a_{-1}=\frac{1}{2} \\ & a_{k}=0, \quad \text { otherwise } \end{aligned}$
$\sin \omega_{0} t$	$\frac{\pi}{j}\left[\delta\left(\omega-\omega_{0}\right)-\delta\left(\omega+\omega_{0}\right)\right]$	$\begin{aligned} & a_{1}=-a_{-1}=\frac{1}{2 j} \\ & a_{k}=0, \quad \text { otherwise } \end{aligned}$
$x(t)=1$	$2 \pi \delta(\omega)$	$\begin{aligned} & a_{0}=1, \quad a_{k}=0, k \neq 0 \\ & \text { (this is the Fourier series representation for } \\ & \text { any choice of } T>0 \end{aligned}$
Periodic square wave $x(t)= \begin{cases}1, & \|t\|<T_{1} \\ 0, & T_{1}<\|t\| \leq \frac{T}{2}\end{cases}$ and $x(t+T)=x(t)$	$\sum_{k=-\infty}^{+\infty} \frac{2 \sin k \omega_{0} T_{1}}{k} \delta\left(\omega-k \omega_{0}\right)$	$\frac{\omega_{0} T_{1}}{\pi} \operatorname{sinc}\left(\frac{k \omega_{0} T_{1}}{\pi}\right)=\frac{\sin k \omega_{0} T_{1}}{k \pi}$
$\sum_{n=-\infty}^{+\infty} \delta(t-n T)$	$\frac{2 \pi}{T} \sum_{k=-\infty}^{+\infty} \delta\left(\omega-\frac{2 \pi k}{T}\right)$	$a_{k}=\frac{1}{T}$ for all k
$x(t) \begin{cases}1, & \|t\|<T_{1} \\ 0, & \|t\|>T_{1}\end{cases}$	$\frac{2 \sin \omega T_{1}}{\omega}$	-
$\frac{\sin W t}{\pi t}$	$X(j \omega)= \begin{cases}1, & \|\omega\|<W \\ 0, & \|\omega\|>W\end{cases}$	-
$\delta(t)$	1	-
$u(t)$	$\frac{1}{j \omega}+\pi \delta(\omega)$	-
$\delta\left(t-t_{0}\right)$	$e^{-j \omega t_{0}}$	-
$e^{-a t} u(t), \mathcal{G} e\{a\}>0$	$\frac{1}{a+j \omega}$	-
$t e^{-a t} u(t), \mathcal{R} ¢\{a\}>0$	$\frac{1}{(a+j \omega)^{2}}$	-
$\begin{aligned} & \frac{t^{n-1}}{(n-i)!} e^{-a t} u(t), \\ & \mathcal{P}_{e}\{a\}>0 \end{aligned}$	$\frac{1}{(a+j \omega)^{n}}$	-

