ECE 301-001 and 301-003, Midterm #3 8–9:30pm, Thursday, April 6, 2023, FRNY G140 and RHPH 172.

- 1. Do not write answers on the back of pages!
- 2. After the exam ends, you will have 5 additional minutes to write down your name and Purdue ID on each of the pages.
- 3. If you need additional sheets of paper to write down your answers, please let one of the proctors know. We will hand out additional answer sheets as needed.
- 4. Write your student ID number and signature in the space provided on this page.
- 5. This is a closed book exam. Neither calculators nor help sheets are allowed. A separate formula packet has been provided to you.
- 6. You have **90 minutes** to complete the exam. There are 6 multi-part questions.
- 7. You must **show all work** used to arrive at your answer. This is required to receive full credit, and also is helpful for you in getting partial credit.

Name:

Student ID:

As a Boilermaker pursuing academic excellence, I pledge to be honest and true in all that I do. Accountable together — We are Purdue.

Signature:

Date:

Question 1: [18%]

Consider the following periodic waveform x(t):

- (a) [10%] Let $\{a_k\}$ denote the Fourier series coefficients of x(t). Determine the coefficients and write out the Fourier series expansion of x(t).
- (b) [8%] Plot the magnitude $|a_k|$ of the coefficients, for $-2 \le k \le 2$. Be sure to clearly label your axes.

Last Name:	First Name:	Purdue ID:
This sheet is for Question 1.		

Last Name:	First Name:	Purdue ID:
This sheet is for Question 1.		

Question 2: [20%]

Consider a periodic signal x(t) defined as follows:

$$x(t) = \begin{cases} 2t+2 & \text{if } |t| \le 1\\ 0 & \text{if } 1 < |t| \le 8\\ \text{periodic with period 16} \end{cases}$$

This signal has $\omega_0 = \frac{\pi}{8}$ and Fourier series coefficients

$$a_0 = 0.25, \qquad a_k = j \frac{2\cos(k\pi/8)}{k\pi} + \frac{2\sin(k\pi/8)}{k\pi} \left(1 - \frac{8j}{k\pi}\right) \quad k \neq 0$$

(a) [3%] Plot x(t) for the range of -20 < t < 20.

(b) [7%] Find the value of $\int_{t=0}^{16} x(t) e^{j0.5\pi t} dt$.

Now, consider a different signal y(t):

$$y(t) = \begin{cases} 2t & \text{if } 0 \le t < 2\\ 2t + 4 & \text{if } -2 \le t < 0\\ 0 & \text{if } 2 \le |t| \le 8\\ \text{periodic with period 16} \end{cases}$$

Denote its Fourier series coefficients by b_k .

- (c) [4%] Plot y(t) for the range of -20 < t < 20.
- (d) [6%] Find the value of b_{-11} .

[Hint 1: Your answer for b_{-11} should be an explicit value, say something like $b_{-11} = j \sin(12.7\pi) \cos^2(-\sqrt{\pi})/\sqrt{2}$.]

[Hint 2: If you do not know how to find the value of b_{-11} , you can state the general relationship between b_k and a_k . You will receive 4.5 points if your answer is correct.]

Last Name:	First Name:	Purdue ID:
This sheet is for Question 2.		

Last Name:	First Name:	Purdue ID:
This sheet is for Question 2.		

Question 3: [17%]

Consider a periodic discrete-time signal x[n] which has the following Fourier series coefficients $\{a_k\}$:

Notice that the DTFS sequence $\{a_k\}$ is periodic with a fundamental period of 3.

- (a) [3%] What is the fundamental period of x[n]? Explain in 1 sentence.
- (b) [6%] Write out the Fourier series expansion of x[n].
- (c) [5%] Let y[n] = x[-n], and let $\{b_k\}$ be the Fourier series coefficients of y[n]. Plot $|b_k|$ for $-3 \le k \le 5$.
- (d) [3%] Express the Fourier series of x[n] from (b) in the simplified form

$$x[n] = A + B\sin(k_B\omega_0 n + \phi_B) + Ce^{j(k_C\omega_0 n + \phi_C)}$$

where ω_0 is the fundamental frequency and $A, B, C, k_B, \phi_B, k_C, \phi_C$ are values that you have determined.

[Hint: Consider coming back to do (d) after you finish the rest of the exam, because it is only 3% and may take some time.]

Last Name:	First Name:	Purdue ID:
This sheet is for Question 3.		

Last Name:	First Name:	Purdue ID:
This sheet is for Question 3.		

First Name:

Question 4: [14%]

Consider a DT LTI system with impulse response

$$h[n] = \begin{cases} 2.5 & \text{if } 0 \le n \le 19\\ 0 & \text{otherwise} \end{cases}$$

(a) [7%] Compute the following summation: $\sum_{n=-\infty}^{\infty} h[n]e^{-j\omega n}$ Hint: The geometric series formula may be useful: if $r \neq 1$, then we have

$$\sum_{k=1}^{K} ar^{k-1} = \frac{a(1-r^K)}{1-r}$$

Also consider a DT periodic signal x[n] with period 80 and

$$x[n] = \begin{cases} n & 1 \le 80\\ \text{periodic with period } 80 \end{cases}$$

Suppose we use x[n] as the input to the above system. Denote the output by y[n].

(b) [7%] Denote the DTFS coefficients of y[n] by $\{b_k\}$. Show that $b_8 = 0$.

[Hint 1: You don't need to find the DTFS coefficients of x[n] or the general expression for b_k to solve this question. All you need to show is that $b_8 = 0$.]

[Hint 2: If you don't know how to answer to this question, please find the output of the above LTI system, denoted by $y_2[n]$, when the input is $x_2[n] = e^{j\frac{2\pi}{5}n}$. You will receive 5.5 points if your answer is correct.]

Last Name:	First Name:	Purdue ID:
This sheet is for Question 4.		

Last Name:	First Name:	Purdue ID:
This sheet is for Question 4.		

Last Name:

First Name:

Purdue ID:

Question 5: [12%]

Consider a CT aperiodic signal

$$x(t) = \begin{cases} 12 & \text{if } -3 \le t \le 3\\ 0 & \text{otherwise} \end{cases}$$

(a) [7%] Denote the CTFT of x(t) by $X(j\omega)$. Plot $X(j\omega)$ for the range of $-\pi \le \omega \le \pi$. Please carefully mark the intersecting points to the horizontal and vertical axes.

Consider a second CT aperiodic signal

$$y(t) = \begin{cases} 12e^{j\frac{2\pi}{3}t} & \text{if } -3 \le t \le 3\\ 0 & \text{otherwise} \end{cases}$$

(b) [5%] Denote the CTFT of y(t) by $Y(j\omega)$. Plot $Y(j\omega)$ for the range of $-\pi \le \omega \le \pi$. [Hint: If you do not know how to draw the plot in (b), you can write down the relationship between $X(j\omega)$ and $Y(j\omega)$ and you will receive 4 points if your answer is correct.]

Last Name:	First Name:	Purdue ID:
This sheet is for Question 5.		

Last Name:	First Name:	Purdue ID:
This sheet is for Question 5.		

First Name:

Question 6: [19%]

Consider a CT LTI system with frequency response

$$H(j\omega) = \frac{1}{2+j\omega}$$

- (a) [4%] Is the system invertible? Justify your answer.
- (b) [5%] Determine the impulse response h(t) of the system.
 [Hint: In this part and the rest of Q6, you are strongly encouraged to use the Fourier transform tables.]

Now, suppose we send an input

$$x(t) = e^{-3t}u(t)$$

through the system to get an output y(t).

(c) [5%] Determine the frequency spectrum $Y(j\omega)$ of the output.

Finally, suppose we pass another input $x_2(t)$ to the system and measure a frequency spectrum at the output of

$$Y_2(j\omega) = 3 - \delta(\omega - 5\pi) - \delta(\omega + 5\pi) + \frac{9}{(6+3j\omega)^2}$$

(d) [5%] Find an expression for the output $y_2(t)$.

Last Name:	First Name:	Purdue ID:
This sheet is for Question 6.		

Last Name:	First Name:	Purdue ID:
This sheet is for Question 6.		

Discrete-time Fourier series

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n} \tag{1}$$

$$a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk(2\pi/N)n}$$
(2)

Continuous-time Fourier series

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk(2\pi/T)t}$$
(3)

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk(2\pi/T)t} dt$$
(4)

Continuous-time Fourier transform

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$
(5)

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$$
(6)

Discrete-time Fourier transform

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} \tag{7}$$

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
(8)

Laplace transform

$$x(t) = \frac{1}{2\pi} e^{\sigma t} \int_{-\infty}^{\infty} X(\sigma + j\omega) e^{j\omega t} d\omega$$
(9)

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st} dt$$
(10)

Z transform

$$x[n] = r^{n} \mathcal{F}^{-1}(X(re^{j\omega})) \tag{11}$$

$$X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$
(12)

Property	Section	Periodic Signal	Fourier Series Coefficients
		x(t) Periodic with period T and $y(t)$ fundamental frequency $\omega_0 = 2\pi/T$	$a_k \\ b_k$
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal Time Scaling	3.5.1 3.5.2 3.5.6 3.5.3 3.5.4	$Ax(t) + By(t)$ $x(t - t_0)$ $e^{jM\omega_0 t}x(t) = e^{jM(2\pi/T)t}x(t)$ $x^*(t)$ $x(-t)$ $x(\alpha t), \alpha > 0 \text{ (periodic with period } T/\alpha)$	$Aa_{k} + Bb_{k}$ $a_{k}e^{-jk\omega_{0}t_{0}} = a_{k}e^{-jk(2\pi/T)t_{0}}$ a_{k-M} a_{-k}^{*} a_{k}
Periodic Convolution		$\int_{T} x(\tau) y(t-\tau) d\tau$	$Ta_k b_k$
Multiplication	3.5.5	x(t)y(t)	$\sum_{l=-\infty}^{+\infty} a_l b_{k-l}$
Differentiation		$\frac{dx(t)}{dt}$	$jk\omega_0a_k = jk\frac{2\pi}{T}a_k$
Integration		$\int_{-\infty}^{t} x(t) dt $ (finite valued and periodic only if $a_0 = 0$)	$\left(\frac{1}{jk\omega_0}\right)a_k = \left(\frac{1}{jk(2\pi/T)}\right)a_k$
Conjugate Symmetry for Real Signals	3.5.6	x(t) real	$\left\{egin{aligned} a_k &= a^*_{-k} \ \Re e\{a_k\} &= \Re e\{a_{-k}\} \ \Im m\{a_k\} &= -\Im m\{a_{-k}\} \ a_k &= a_{-k} \ \measuredangle a_k &= -\measuredangle a_{-k} \end{aligned} ight.$
Real and Even Signals Real and Odd Signals Even-Odd Decomposition of Real Signals	3.5.6 3.5.6	$x(t) \text{ real and even}$ $x(t) \text{ real and odd}$ $\begin{cases} x_e(t) = \mathcal{E} \Psi\{x(t)\} & [x(t) \text{ real}] \\ x_o(t) = \mathcal{O} d\{x(t)\} & [x(t) \text{ real}] \end{cases}$	a_k real and even a_k purely imaginary and odd $\Re e\{a_k\}$ $j \Im m\{a_k\}$

TABLE 3.1 PROPERTIES OF CONTINUOUS-TIME FOURIER SERIES

Parseval's Relation for Periodic Signals

$$\frac{1}{T}\int_T |x(t)|^2 dt = \sum_{k=-\infty}^{+\infty} |a_k|^2$$

Property	Periodic Signal	Fourier Series Coefficients
	$x[n]$ Periodic with period N and $y[n]$ fundamental frequency $\omega_0 = 2\pi/N$	$\left. \begin{array}{c} a_k \\ b_k \end{array} \right\}$ Periodic with $\left. \begin{array}{c} b_k \end{array} \right\}$ period N
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal Time Scaling	$Ax[n] + By[n]$ $x[n - n_0]$ $e^{jM(2\pi/N)n}x[n]$ $x^*[n]$ $x[-n]$ $x_{(m)}[n] = \begin{cases} x[n/m], & \text{if } n \text{ is a multiple of } m \\ 0, & \text{if } n \text{ is not a multiple of } m \end{cases}$ (periodic with period mN)	$Aa_{k} + Bb_{k}$ $a_{k}e^{-jk(2\pi/N)n_{0}}$ a_{k-M} a_{-k}^{*} a_{-k} $\frac{1}{m}a_{k}$ (viewed as periodic) with period mN)
Periodic Convolution	$\sum x[r]y[n-r]$	Na.h.
Multiplication	$\frac{\overline{r}=\langle N\rangle}{x[n]y[n]}$	$\sum a_k b_k$
First Difference	x[n] - x[n-1]	$\sum_{l=\langle N \rangle} a_l b_{k-l}$ $(1 - e^{-jk(2\pi/N)})a_l$
Running Sum	$\sum_{k=-\infty}^{n} x[k] \left(\begin{array}{c} \text{finite valued and periodic only} \\ \text{if } a_0 = 0 \end{array} \right)$	$\left(\frac{1}{(1-e^{-/k(2\pi/N)})}\right)a_k$
Conjugate Symmetry for Real Signals	x[n] real	$\left\{egin{aligned} a_k &= a_{-k}^* \ \Re e\{a_k\} &= \Re e\{a_{-k}\} \ \Im m\{a_k\} &= -\Im m\{a_{-k}\} \ a_k &= a_{-k} \ \preccurlyeq a_k &= - \preccurlyeq a_{-k} \end{aligned} ight.$
Real and Even Signals Real and Odd Signals	x[n] real and even x[n] real and odd	a_k real and even
Even-Odd Decomposition of Real Signals	$\begin{cases} x_e[n] = \mathcal{E} \{x[n]\} & [x[n] \text{ real}] \\ x_o[n] = \mathcal{O} d\{x[n]\} & [x[n] \text{ real}] \end{cases}$	$\mathfrak{Re}\{a_k\}$ $\mathfrak{ga}_{m}\{a_k\}$
	Parseval's Relation for Periodic Signals	
	$\frac{1}{N}\sum_{n=\langle N\rangle} x[n] ^2 = \sum_{k=\langle N\rangle} a_k ^2$	

TABLE 3.2 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

		A pariodic signal	Fourier transform
Section	Property	Aperioun signar	V(jw)
	ر ز	$\mathbf{x}(t)$ $\mathbf{y}(t)$	$X(j\omega)$ $Y(j\omega)$
4.3.1	Linearity	ax(t) + by(t)	$aX(j\omega) + bY(j\omega)$ $e^{-j\omega t_0}X(j\omega)$
4.3.2 4.3.6 4.3.3	Time Shifting Frequency Shifting Conjugation	$ \begin{array}{c} x(t-t_0) \\ e^{j\omega_0 t} x(t) \\ x^*(t) \end{array} $	$X(j(\omega - \omega_0))$ $X^*(-j\omega)$ $X(-j\omega)$
4.3.5	Time Reversal	x(-t)	$\frac{1}{1-1}X\left(\frac{j\omega}{\omega}\right)$
4.3.5	Time and Frequency Scaling	x(at) x(t) * y(t)	$ a \langle a \rangle$ $X(j\omega)Y(j\omega)$
4.4 4.5	Convolution	x(t)y(t)	$\frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\theta) Y(j(\omega - \theta)) d\theta$
4.3.4	Differentiation in Time	$\frac{d}{dt}x(t)$	jωX(jω)
4.3.4	Integration	$\int_{-\infty}^{t} x(t) dt$	$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$ $i \frac{d}{d-X(j\omega)}$
4.3.6	Differentiation in Frequency	tx(t)	$\int \frac{d\omega}{d\omega} X(j\omega)$ $\begin{cases} X(j\omega) = X^*(-j\omega) \\ \mathcal{O}_{\sigma}(X(j\omega)) = (\Re e\{X(-j\omega)\}) \end{cases}$
4.3.3	Conjugate Symmetry for Real Signals	x(t) real	$\begin{cases} (\eta e\{X(j\omega)\} = -\Im m\{X(-j\omega)\} \\ g_{m}\{X(j\omega)\} = -\Im m\{X(-j\omega)\} \\ X(j\omega) = X(-j\omega) \\ \ll X(j\omega) = - \ll X(-j\omega) \end{cases}$
4.3.3	Symmetry for Real and Even Signals	x(t) real and even	$X(j\omega)$ rear and σ
4.3.3	Symmetry for Real and Odd Signals	x(t) real and odd (i) $S_{tr}(x(t)) = [x(t) real$	$(j\omega) \neq i$ $(Re{X(j\omega)})$
4.3.3	Even-Odd Decompo- sition for Real Sig- nals	$\begin{aligned} x_e(t) &= \Im(\chi(t)) [\chi(t) \text{ real} \\ x_o(t) &= \Im d\{\chi(t)\} [\chi(t) \text{ real}] \end{aligned}$	1] jIm{X(jω)}
4.3.7	Parseval's Rela $\int_{-\infty}^{+\infty} x(t) ^2 dt$	tion for Aperiodic Signals = $\frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) ^2 d\omega$	

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM

Signal	Fourier transform	Fourier series coefficients (if periodic)
$\sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$	$2\pi\sum_{k=-\infty}^{+\infty}a_k\delta(\omega-k\omega_0)$	a _k
e ^{jw} u ¹	$2\pi\delta(\omega-\omega_0)$	$a_1 = 1$ $a_k = 0$, otherwise
$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	$a_1 = a_{-1} = \frac{1}{2}$ $a_k = 0$, otherwise
$\sin \omega_0 t$	$\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$	$a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0, \text{otherwise}$
x(t) = 1	$2\pi\delta(\omega)$	$a_0 = 1, a_k = 0, \ k \neq 0$ (this is the Fourier series representation for) any choice of $T > 0$
Periodic square wave $x(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \le \frac{T}{2} \end{cases}$ and x(t+T) = x(t)	$\sum_{k=-\infty}^{+\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega-k\omega_0)$	$\frac{\omega_0 T_1}{\pi} \operatorname{sinc} \left(\frac{k \omega_0 T_1}{\pi} \right) = \frac{\sin k \omega_0 T_1}{k \pi}$
$\sum_{n=-\infty}^{+\infty} \delta(t-nT)$	$\frac{2\pi}{T}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{T}\right)$	$a_k = \frac{1}{T}$ for all k
$x(t) \begin{cases} 1, & t < T_1 \\ 0, & t > T_1 \end{cases}$	$\frac{2\sin\omega T_1}{\omega}$	
$\frac{\sin Wt}{\pi t}$	$X(j\omega) = \begin{cases} 1, & \omega < W \\ 0, & \omega > W \end{cases}$	
$\delta(t)$	1	
<i>u</i> (<i>t</i>)	$\frac{1}{j\omega} + \pi\delta(\omega)$	
$\delta(t-t_0)$	$e^{-j\omega t_0}$	
$e^{-at}u(t), (\Re e\{a\} > 0$	$\frac{1}{a+j\omega}$	
$te^{-at}u(t), \Re e\{a\} > 0$	$\frac{1}{(a+j\omega)^2}$	
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t),$ (Re{a} > 0	$\frac{1}{(a+j\omega)^n}$	

TABLE 4.2 BASIC FOURIER TRANSFORM PAIRS