ECE 301-001 and 301-003, Midterm #1 8–9:30pm, Wednesday, February 8, 2023, CL50 Rm224.

- 1. Do not write answers on the back of pages!
- 2. After the exam ended, you will have 5 additional minutes to write down your name and Purdue ID on each of the pages.
- 3. If you need additional sheets to write down your answers, please let the instructor/TA know. We will hand out additional answer sheets then.
- 4. Enter your student ID number, and signature in the space provided on this page.
- 5. This is a closed book exam.
- 6. This exam contains multiple-choice questions and work-out questions. For multiple choice questions, there is no need to justify your answers. You have **90 minutes** to complete it. The students are suggested not spending too much time on a single question, and first working on those that you know how to solve.
- 7. The instructor/TA will hand out loose sheets of paper for the rough work.

8. Neither calculators nor help sheets are allowed.	
Name:	
Student ID:	
As a Boiler Maker pursuing academic honest and true in all that I do. Accour Purdue.	
Signature:	Date:

Question 1: [14%, Energy and power]

Consider the following signal:

$$x[n] = \begin{cases} e^{-(n-3)}(\cos(0.25\pi n) + j\sin(0.25\pi n)) & \text{if } n \ge 3\\ e^{n-3}(\cos(0.25\pi n) + j\sin(0.25\pi n)) & \text{if } n \le 2 \end{cases}$$

- (a) What is the total energy of x[n]?
- (b) What is the overall average power of x[n]?

Hint: If |r| < 1, then we have the following formulas for computing the infinite sum of a geometric sequence:

$$\sum_{\substack{k=1\\\infty}}^{\infty} ar^{k-1} = \frac{a}{1-r}$$

$$\sum_{k=1}^{\infty} kar^{k-1} = \frac{a}{(1-r)^2}.$$

If $r \neq 1$, then we have the following formula for computing the finite sum of a geometric sequence:

$$\sum_{k=1}^{K} ar^{k-1} = \frac{a(1-r^K)}{1-r}.$$

Last Name:	First Name:	Purdue ID:
This sheet is for Question 1.		

Last Name:	First Name:	Purdue ID:
This sheet is for Question 1.		

Question 2: [15%, Linearity]

Determine whether the following systems are linear or not. Be sure to justify your reasoning in each case.

(a) The system with input x(t) and output

$$y(t) = \int_{\tau=0}^{10} x(t-\tau)u(\tau)d\tau,$$

where u(t) is the unit step signal.

(b) The system with input x[n] and output

$$y[n] = e^{x[n]}.$$

Last Name:	First Name:	Purdue ID:
This sheet is for Question 2.		

Last Name:	First Name:	Purdue ID:
This sheet is for Question 2.		

Last Name:

First Name:

Purdue ID:

Question 3: [14%, Algebra of signals]

Consider two signals

$$x(t) = e^{j\omega t}$$

$$h(t) = u(t+1) - u(t-2)$$

- (a) Find mathematical expressions for the signals $\frac{dx(t)}{dt}$ and $\frac{dh(t)}{dt}$.
- (b) Determine y(t) for a system that takes x(t) as input and has the input-output relationship

$$y(t) = \int_{\tau = -\infty}^{\infty} x(\tau)h(t - \tau)d\tau.$$

Last Name:	First Name:	Purdue ID:
	r iist ivallie.	I didde iD.
This sheet is for Question 3.		

Last Name:	First Name:	Purdue ID:
	r iist ivallie.	I didde iD.
This sheet is for Question 3.		

Last Name:

First Name:

Purdue ID:

Question 4: [15%, HRCEs]

Recall that a family of discrete-time harmonically-related complex exponentials (DT HRCEs) is given by:

$$x_k[n] = e^{j\frac{2\pi k}{N}n}, \quad k = 0, ..., N-1$$

and a family of continuous-time HRCEs (CT HRCEs) is given by:

$$x_k(t) = e^{j\frac{2\pi k}{T}t}, \quad k = 0, \pm 1, \pm 2, \dots$$

- (a) Consider a fundamental frequency $\omega_0 = \frac{\pi}{8}$.
 - i. Write the expression for the DT HRCE signal family. What is the value of N?
 - ii. Which signal index k in the DT HRCE family has the highest rate of oscillation? Write the formula for this signal $x_k[n]$ in its most simplified form.
 - iii. Does the index k identified in (a)-ii also have the highest rate of oscillation for the corresponding CT HRCE family? Explain your answer.
- (b) Next, consider a fundamental frequency $\omega_0 = \frac{1}{4}$.
 - i. Does the CT HRCE family exist? If so, write its expression and determine the value of T. Explain your answer.
 - ii. Does the DT HRCE family exist? If so, write its expression and determine the value of N. Explain your answer.

Last Name:	First Name:	Purdue ID:
This sheet is for Question 4.		

Last Name:	First Name:	Purdue ID:
This sheet is for Question 4.		

Last Name: Purdue ID:

Question 5: [15%, Time transformations]

Consider the two signals, $x_1(t)$ and $x_2[n]$, as pictured below.

- (a) Sketch a plot of $x_1(-\frac{1}{2}(t-1))$.
- (b) Sketch a plot of $x_2[-2+2n]$.

Figure 1: Plot of $x_1(t)$.

Figure 2: Plot of $x_2[n]$.

Last Name:	First Name:	Purdue ID:
This sheet is for Question 5.		

Last Name:	First Name:	Purdue ID:
This sheet is for Question 5.		

Question 6: [14%, Periodicity]

(a) Is the signal

$$x(t) = \sum_{k=-\infty}^{\infty} (\delta(t-4k) + \delta(t-4k-1)) + e^{j\frac{3\pi}{2}t} + \sin\left(\frac{\pi}{3}t + \frac{\pi}{6}\right)$$

periodic? If so, determine its fundamental period.

(b) Repeat (a) for the signal

$$x[n] = \cos\left(\frac{n-\pi}{5}\right) + e^{j6\pi n}.$$

Last Name:	First Name:	Purdue ID:
This sheet is for Question 6.		

Last Name:	First Name:	Purdue ID:
This sheet is for Question 6.		

Question 7: [13%, Even-odd decomposition]

Consider the signal x[n] depicted below.

- (a) Is x[n] even, odd, or neither?
- (b) Decompose $x[n] = x_{even}[n] + x_{odd}[n]$ into its even and odd signal components. Give plots of $x_{even}[n]$ and $x_{odd}[n]$.

Last Name:	First Name:	Purdue ID:
This sheet is for Question 7.		

Last Name:	First Name:	Purdue ID:
This sheet is for Question 7.		