ECE 301-001&003, Final Exam 1–3pm, Thursday, May 4, 2023, PHYS 203 and BHEE 170.

- 1. Do not write answers on the back of pages!
- 2. After the exam ends, you will have 5 additional minutes to write down your name and Purdue ID on each of the pages.
- 3. If you need additional sheets of paper to write down your answers, please let one of the proctors know. We will hand out additional answer sheets as needed.
- 4. Write your student ID number and signature in the space provided on this page.
- 5. This is a closed book exam. Neither calculators nor help sheets are allowed. A separate formula packet has been provided to you.
- 6. You have 120 minutes to complete the exam. There are 8 multi-part questions.
- 7. You must **show all work** used to arrive at your answer. This is required to receive full credit, and also is helpful for you in getting partial credit.

Name:
Student ID:

As a Boilermaker pursuing academic excellence, I pledge to be honest and true in all that I do. Accountable together — We are Purdue.

Signature: Date: 2023/5/4

First Name:

Purdue ID:

Question 1: [12%]

Consider a continuous time system with input x(t) and output y(t) related as:

$$y(t) = \int_{s=-\infty}^{t} x(s-\pi)e^{(3+j)(t-s)}ds$$

- (a) [4%] Is the above system linear? Please carefully justify your answer. A correct answer without any justification will receive only 1.5 points.
- (b) [3%] Is the above system causal? Please carefully justify your answer. A correct answer without any justification will receive only 1.5 points.
- (c) [5%] Find the expression of the impulse response of the above system.

(a) Let
$$y_1(t) = \int_{s=-\infty}^{t} x_1(s-\pi)e^{(3+j)(t-s)} ds$$

$$y_2(t) = \int_{s=-\infty}^{t} x_2(s-\pi)e^{(3+j)(t-s)} ds$$
and $x_3(t) = ax_1(t) + bx_2(t)$ where a and b are any complex constant.

$$y_3(t) = \int_{s=-\infty}^{t} x_3(s-\pi)e^{(3+j)(t-s)} ds = \int_{s=-\infty}^{t} (ax_1(s-\pi)+bx_2(s-\pi))e^{(3+j)(t-s)} ds$$

$$= a \int_{s=-\infty}^{t} x_1(s-\pi)e^{(3+j)(t-s)} ds + b \int_{s=-\infty}^{t} x_2(s-\pi)e^{(3+j)(t-s)} ds$$

$$= a y_1(t) + b y_2(t)$$
The system is linear. t

First Name:

Purdue ID:

This sheet is for Question 1.

- Yes, the system is causal because the output y(t) depends only on the present and/or the past input. Specifically, since the integration is over the range of s < t and the input $x(s-\pi)$ inside the integral will have the maximum range being $x(t-\pi)$. Therefore, it won't depend on the future, say something like x(t+1).
- (c) Note that when x(t) = J(t), y(t) = h(t). $h(t) = \int_{s=-\infty}^{t} J(s-\pi) e^{(3+j)(t-s)} ds$ $= \begin{cases} 0 & \text{when } t < \pi \\ \int_{s=-\infty}^{t} J(s-\pi) e^{(3+j)(t-s)} ds & \text{when } t \geq \pi \end{cases}$ $= \frac{(3+j)(t-\pi)}{t} u(t-\pi)$

T	N.T.
ast	Name:
11000	r (correct

First Name:

Purdue ID:

This sheet is for Question 1.

Question 2: [11.5%]

Consider the CT-LTI system shown in the figure below, which is comprised of two LTI sub-systems with impulse responses $h_1(t)$ and $h_2(t)$:

Let us define $h_1(t)$ and $h_2(t)$ as follows:

$$h_1(t) = \begin{cases} 2 & -1 \le t < 0 \\ 0 & \text{else} \end{cases}$$

$$h_2(t) = \begin{cases} 2 & 0 \le t \le 1\\ 0 & \text{else} \end{cases}$$

(a) [7%] Find the output of the system, y(t), when the input x(t) is defined as:

$$x(t) = \begin{cases} t & -1 \le t \le 1\\ 0 & \text{else} \end{cases}$$

[Hint: You may find it useful to first specify the impulse response of the overall system.]

(b) [4.5%] With x(t) from part (a), sketch a plot of the signal z(t) defined as

$$z(t) = x(-2t+1) + 1$$

for the range $-2 \le t \le 2$.

First Name:

Purdue ID:

This sheet is for Question 2.

The overall system $h(t) = h_1(t) + h_2(t) = \begin{cases} 2, -1 \le t \le 1 \\ 0, \text{ else} \end{cases}$

 $\frac{2}{h(t)}$

 $y(t) = \chi(t) + h(t) = \int_{-\infty}^{\infty} \chi(z) h(t-z) dz$

1° when t < -2, y(t) =0

2° when $-2 \le t < 0$, $y(t) = \int_{-1}^{t+1} 2\tau d\tau = \tau^2 \Big|_{-1}^{t+1}$ = $(t+1)^2 - 1 = t^2 + 2t$

3° when $0 \le t < 2$, $y(t) = \int_{t-1}^{1} 2z \, dz = z^2 \Big|_{t-1}^{1}$ = $1 - (t-1)^2 = -t^2 + 2t$

 4° when $t \ge 2$, y(t) = 0

 $y(t) = \begin{cases} t^2 + 2t & \text{when } -2 \le t < 0 \\ -t^2 + 2t & \text{when } 0 \le t < 2 \end{cases}$ $0 \quad \text{else}$

First Name:

Purdue ID:

This sheet is for Question 2.

(b) Recall that if we want cx(at+b), the order of operations is b, a, c. x(-2t+1)

 $Z(t) = \chi(-2t+1)+1$ $\frac{1}{2}$ $\frac{1}{-2}$ $\frac{1}{-1}$

First Name:

Purdue ID:

Question 3: [13%]

Consider the following cascade of two CT-LTI systems, with the composite system referred to as System c:

When we input

$$x(t) = te^{-4t}u(t)$$

to System 1, we observe an output

$$y_1(t) = t^2 e^{-4t} u(t)$$

from System 1.

- (a) [7%] Find the frequency response $H_1(j\omega)$.
- (b) [3%] Suppose the frequency response of System 2 is

$$H_2(j\omega) = 10$$

Is System c invertible? Please carefully justify your answer.

(c) [3%] Repeat part (b) if

$$H_2(j\omega) = \sum_{k=-\infty}^{\infty} \delta(\omega - k\pi)$$

First Name:

Purdue ID:

This sheet is for Question 3.

- (b) $H_c(j\omega) = H_1(j\omega) H_2(j\omega) = \frac{20}{4+j\omega}$ Yes, System c is invertible because $H_c(j\omega) \neq 0$ for all ω .
- (c) $H_{c}(j\omega) = H_{l}(j\omega)H_{2}(j\omega) = \frac{2}{4+j\omega}\left(\sum_{k=-\infty}^{\infty}\int(\omega-k\pi)\right)$ No, System c is not invertible because $H_{c}(j\omega) = 0$ when $\omega \neq k\pi$ for $k \in \mathbb{Z}$

т .	3.7
agt	Name:
Labo	ranic.

First Name:

Purdue ID:

This sheet is for Question 3.

Question 4: [13%]

Consider the following periodic signal x(t) consisting of impulses alternating between weights of 2 and -1:

- (a) [2%] Is x(t) even, odd, or neither? Please carefully justify your answer.
- (b) [2%] Let $\{a_k\}$ denote the Fourier series coefficients of x(t). Will the magnitude $|a_k|$ be even, odd, or neither? You must carefully justify your answer without performing any calculations.
- (c) [2%] Again without performing any calculations, can we conclude that the phase $\angle a_k = 0$ for all k? Please carefully justify your answer.
- (d) [7%] Compute $\{a_k\}$, and use them to write x(t) as its Fourier series synthesis.

First Name:

Purdue ID:

This sheet is for Question 4.

- (a) x(t) is even x(t) = x(-t)
- (b) Since x(t) is even, $a_k = a_{-k}$. $\Rightarrow |a_k| = |a_{-k}|$ $|a_k|$ is even.
- (c) Yes, Jak=0 for all & : X(t) is real and even.

(d)
$$a_k = -\int_{T} x(t) e^{-jk} \left(\frac{2\pi}{T}\right) t dt$$

$$T = 2$$
For $k=0$

$$\dot{a}_0 = \frac{1}{2} \int_{t=-\frac{1}{2}}^{\frac{3}{2}} (2f(t) - f(t-1)) e^{-jo\pi t} dt = \frac{1}{2}$$

For
$$k \neq 0$$

$$ak = \frac{1}{2} \int_{t=-\frac{1}{2}}^{3/2} (2f(t) - f(t-1)) e^{-jk\pi t} dt$$

$$= \frac{1}{2} (2 - e^{-jk\pi}) = \frac{1}{2} (2 - (-1)^k)$$

$$\chi(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\pi t} = \sum_{k=-\infty}^{\infty} \left(\frac{1}{2}(2-(-1)^k)\right) e^{jk\pi t}$$

Last Name:	First Name:
Carrier of the Control of the	675 Ø

Purdue ID:

This sheet is for Question 4.

First Name:

Purdue ID:

Question 5: [12%]

Consider a discrete time signal

$$x[n] = \begin{cases} e^{j\frac{14\pi}{3}n} + \delta[n] & \text{if } 0 \le |n| \le 3 \\ \text{periodic with period 6} \end{cases}.$$

Let $\{a_k\}$ denote the DTFS coefficients of x[n].

(a) [8%] Plot a_k for the range of $0 \le k \le 3$.

[Hint: Try breaking down $x[n] = x_1[n] + x_2[n]$ to solve this question.]

Consider a discrete-time ideal low-pass filter with cutoff frequency $W=0.4\pi$ rad/sec. Namely, its frequency response satisfies

$$H(e^{j\omega}) = \begin{cases} 1 & \text{if } |\omega| \le 0.4\pi \\ 0 & \text{if } 0.4\pi < |\omega| \le \pi \end{cases}$$

Let y[n] denote the output when feeding x[n] through the above discrete-time low pass filter.

- (b) [4%] Let $\{b_k\}$ denote the DTFS coefficients of the output y[n]. Answer the following yes/no questions,
 - i) Is $b_0 = 0$?
 - ii) Is $b_1 = 0$?
 - iii) Is $b_2 = 0$?
 - iv) Is $b_3 = 0$?
 - v) Is $b_4 = 0$?
 - vi) Is $b_5 = 0$?

and briefly explain your answers.

[Hint: If you do not know the answer to this subquestion, you can write down the relationship between b_k and a_k in terms of $H(e^{j\omega})$. You will receive 1.5 points for this subquestion if your answer is correct.]

First Name:

Purdue ID:

This sheet is for Question 5.

(a) Let $X_1[n] = e^{j\frac{14\pi}{3}n}$ and $X_2[n] = J[n]$,

Denote $\{Ck\}$ the DTFS coefficients of $X_1[n]$ and $\{dk\}$ the DTFS coefficients of $X_2[n]$ By TABLE 5.2,

for $X_1[n]: W_0 = \frac{14\pi}{3} = \frac{2\pi \cdot 14}{6}$ $\Rightarrow C_k = \begin{cases} 1, k = 14, 14\pm6, 14\pm12, \dots \\ 0, \text{ otherwise}. \end{cases}$

for X2[n]: $dk = \frac{1}{6} \text{ for all } k$

ak = Ck + dk $\frac{1}{6}$ $\frac{1}{6}$

First Name:

Purdue ID:

This sheet is for Question 5.

(b)
$$bk = ak \cdot H(e^{jk\frac{2\pi}{6}})$$

ii) No, :
$$b = a_1 \cdot H(e^{i\frac{\pi}{3}}) = a_1 \cdot 1 + 0$$

iv) Yes, :
$$b_3 = a_3 \cdot H(e^{j\pi}) = a_3 \cdot 0 = 0$$

v) Yes, :
$$b_4 = b_{-2} = a_{-2} \cdot H(e^{j(-\frac{2}{3})\pi}) = 0$$

vi) No, :
$$b_5 = b_1 = a_1 \cdot H(e^{j(-\frac{1}{3})\pi}) = a_1 \cdot 1 + 0$$

Question 6: [13%]

Consider a causal DT-LTI system characterized by the difference equation

$$y[n] + \frac{1}{4}y[n-1] - \frac{1}{8}y[n-2] = 2x[n-1].$$

- (a) [6%] Determine the frequency response $H(e^{j\omega})$ of the system.
- (b) [4%] Determine the impulse response h[n] of the system.
- (c) [3%] Is the system stable? Justify your answer. A correct answer without any justification will receive only 1 point.

(a)
$$Y(e^{j\omega}) + \frac{1}{4}e^{-j\omega}Y(e^{j\omega}) - \frac{1}{8}e^{-j2\omega}Y(e^{j\omega})$$

 $= 2e^{-j\omega}X(e^{j\omega})$
 $\Rightarrow H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{2e^{-j\omega}}{1 + \frac{1}{4}e^{-j\omega} - \frac{1}{8}e^{-j2\omega}}$
Let $H(e^{j\omega}) = \frac{2e^{-j\omega}}{1 + \frac{1}{4}e^{-j\omega}} = \frac{A}{(1 - \frac{1}{4}e^{-j\omega})} + \frac{B}{(1 + \frac{1}{2}e^{-j\omega})}$
 $A(1 + \frac{1}{2}e^{-j\omega}) + B(1 - \frac{1}{4}e^{-j\omega}) = 2e^{-j\omega}$
Let $e^{-j\omega} = -2$, $\frac{3}{2}B = -4 \Rightarrow B = -\frac{8}{3}$
Let $e^{-j\omega} = 4$, $3A = 8 \Rightarrow A = \frac{8}{3}$
Hence, $H(e^{j\omega}) = \frac{\frac{8}{3}}{(1 - \frac{1}{4}e^{-j\omega})} + \frac{-\frac{8}{3}}{(1 + \frac{1}{2}e^{-j\omega})}$

First Name:

Purdue ID:

This sheet is for Question 6.

By TABLE 5.2,
$$h[n] = \frac{8}{3} \left(\frac{1}{4}\right)^n u[n] - \frac{8}{3} \left(-\frac{1}{2}\right)^n u[n] + \frac{1}{3} \left(-\frac{1}{2}\right)^n u[n]$$

Yes, the system is stable.

$$\sum_{n=-\infty}^{\infty} |h[n]| = \frac{8}{3} \sum_{n=0}^{\infty} \left| \left(\frac{1}{4}\right)^n - \left(-\frac{1}{2}\right)^n \right| \\
< \frac{8}{3} \left(\sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n + \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n\right) \\
< \infty$$

Last Name:	First Name:	Purdue ID:
This sheet is for Question 6.		

First Name:

Purdue ID:

Question 7: [13.5%]

Suppose we feed the above system with the following continuous time signal x(t):

$$x(t) = \sin(t)$$

(a) [2%] Plot $X(j\omega)$ for the range of $-12 < \omega < 12$. Please carefully mark both the horizontal and vertical axes of your figure. For simplicity, if the value $X(j\omega)$ is 3j, then you can mark the vertical axis as 3j.

[Hint 1: If you do not know how to plot $X(j\omega)$, you can simply find the expression of $X(j\omega)$. You will receive 1.5 points if your answer is correct.]

Define $y(t) = x(t) \cdot \sin(5t)$.

(b) [5%] Plot $Y(j\omega)$ for the range of $-12 < \omega < 12$. Please carefully mark both the horizontal and vertical axes of your figure, as in part (a).

[Hint 2: If you do not know how to solve this subquestion, please write down the relationship between $Y(j\omega)$ and $X(j\omega)$. You will receive 3 points if your answer is correct.]

Define $z(t) = y(t) \cdot \cos(4t)$.

(c) [6.5%] Plot $Z(j\omega)$ for the range of $-12 < \omega < 12$. Please carefully mark both the horizontal and vertical axes of your figure, as in part (a).

[Hint 3: If you do not know how to solve this subquestion, please solve the following question instead. Suppose $z_3(t) = (\sin(5t))^2$. Find out the corresponding Fourier transform $Z_3(j\omega)$. You will receive 5 points if your answer is correct.]

First Name:

Purdue ID:

This sheet is for Question 7.

(a) By TABLE 4.2,
$$X(j\omega) = \frac{\pi}{j} [J(\omega-1) - J(\omega+1)]$$

$$\frac{\pi}{j} \left(\frac{\pi}{j} \right) = \frac{\pi}{j} \left[\frac{J(\omega-1) - J(\omega+1)}{J(\omega+1)} \right]$$

(b)
$$y(t) = x(t) \cdot \sin(5t) = x(t) \cdot \frac{1}{2\bar{j}} \left(e^{j5t} - e^{-j5t} \right)$$

$$Y(j\omega) = \frac{1}{2\bar{j}} \left(x \left(j(\omega - 5) \right) - x \left(j(\omega + 5) \right) \right)$$

$$= -\frac{\pi}{2} \left[\int (\omega - 6) - \int (\omega - 4) - \int (\omega + 4) + \int (\omega + 6) \right]$$

$$= \frac{\pi}{2} \left[-\int (\omega - 6) + \int (\omega - 4) + \int (\omega + 4) - \int (\omega + 6) \right]$$

$$Y(j\omega)$$

$$\uparrow \frac{\pi}{2}$$

First Name:

Purdue ID:

This sheet is for Question 7.

(c)
$$Z(t) = y(t) \cdot \omega s(4t) = y(t) \cdot \frac{1}{2} \left(e^{j4t} + e^{-j4t} \right)$$

$$Z(j\omega) = \frac{1}{2} \left(Y(j(\omega-4)) + Y(j(\omega+4)) \right)$$

$$= \frac{\pi}{4} \left[-J(\omega-10) + J(\omega-8) + J(\omega) - J(\omega+2) - J(\omega+2) - J(\omega-2) + J(\omega) \right]$$

$$= \frac{\pi}{4} \left[-J(\omega-10) + J(\omega-8) - J(\omega-2) + J(\omega) - J(\omega+2) + J(\omega) \right]$$

$$Z(j\omega)$$

$$Z(j\omega)$$

$$\frac{\pi}{4}$$

$$Z(j\omega)$$

First Name:

Purdue ID:

Question 8: [12%]

Let us define a DT signal x[n] as

$$x[n] = e^{j\pi n} \cdot (u[n+2] - u[n-3])$$

- (a) [6%] Find the DTFT $X(e^{j\omega})$.
- (b) [6%] Find the value of the expression

$$\int_{\pi}^{3\pi} |X(e^{j\omega})|^2 d\omega$$

[Hint: Consider how this expression relates to total energy.]

Let
$$X_{1}[n] = U[n+2] - U[n-3] = \begin{cases} 1, |n| \leq 2 \\ 0, |n| > 2 \end{cases}$$

By TABLE $5, 2$,

$$X_{1}(e^{j\omega}) = \frac{\sin[\omega(2+\frac{1}{2})]}{\sin(\omega/2)} = \frac{\sin(\frac{1}{2}\omega)}{\sin(\frac{1}{2}\omega)}$$

Applying the frequency shifting property,

$$X(e^{j\omega}) = X_{1}(e^{j(\omega-\pi)}) = \frac{\sin(\frac{1}{2}(\omega-\pi))}{\sin(\frac{1}{2}(\omega-\pi))}$$

First Name:

Purdue ID:

This sheet is for Question 8.

(b) By Parseval's Relation for Aperiodiz Signals
$$\int_{\pi}^{3\pi} |\chi(e^{j\omega})|^2 d\omega = 2\pi \sum_{n=-\infty}^{\infty} |\chi(n)|^2$$

$$= 2\pi \left(\frac{2}{n-2} 1\right) = 10\pi$$

Last Name:	First Name:	Purdue ID:
$TL: L \to C \cap C \to C$		

This sheet is for Question 8.