ECE 301-001\&003, Final Exam
1-3pm, Thursday, May 4, 2023, PHYS 203 and BHEE 170.

1. Do not write answers on the back of pages!
2. After the exam ends, you will have 5 additional minutes to write down your name and Purdue ID on each of the pages.
3. If you need additional sheets of paper to write down your answers, please let one of the proctors know. We will hand out additional answer sheets as needed.
4. Write your student ID number and signature in the space provided on this page.
5. This is a closed book exam. Neither calculators nor help sheets are allowed. A separate formula packet has been provided to you.
6. You have $\mathbf{1 2 0}$ minutes to complete the exam. There are 8 multi-part questions.
7. You must show all work used to arrive at your answer. This is required to receive full credit, and also is helpful for you in getting partial credit.

Name:

Student ID:

As a Boilermaker pursuing academic excellence, I pledge to be honest and true in all that I do. Accountable together - We are Purdue.

Signature:
Date:

Question 1: [12\%]
Consider a continuous time system with input $x(t)$ and output $y(t)$ related as:

$$
y(t)=\int_{s=-\infty}^{t} x(s-\pi) e^{(3+j)(t-s)} d s
$$

(a) [4\%] Is the above system linear? Please carefully justify your answer. A correct answer without any justification will receive only 1.5 points.
(b) [3\%] Is the above system causal? Please carefully justify your answer. A correct answer without any justification will receive only 1.5 points.
(c) [5\%] Find the expression of the impulse response of the above system.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 1.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 1.

Question 2: [11.5\%]
Consider the CT-LTI system shown in the figure below, which is comprised of two LTI sub-systems with impulse responses $h_{1}(t)$ and $h_{2}(t)$:

Let us define $h_{1}(t)$ and $h_{2}(t)$ as follows:

$$
\begin{aligned}
h_{1}(t) & = \begin{cases}2 & -1 \leq t<0 \\
0 & \text { else }\end{cases} \\
h_{2}(t) & = \begin{cases}2 & 0 \leq t \leq 1 \\
0 & \text { else }\end{cases}
\end{aligned}
$$

(a) [7\%] Find the output of the system, $y(t)$, when the input $x(t)$ is defined as:

$$
x(t)= \begin{cases}t & -1 \leq t \leq 1 \\ 0 & \text { else }\end{cases}
$$

[Hint: You may find it useful to first specify the impulse response of the overall system.]
(b) [4.5\%] With $x(t)$ from part (a), sketch a plot of the signal $z(t)$ defined as

$$
z(t)=x(-2 t+1)+1
$$

for the range $-2 \leq t \leq 2$.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 2.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 2.

Question 3: [13\%]
Consider the following cascade of two CT-LTI systems, with the composite system referred to as System c :

When we input

$$
x(t)=t e^{-4 t} u(t)
$$

to System 1, we observe an output

$$
y_{1}(t)=t^{2} e^{-4 t} u(t)
$$

from System 1.
(a) [7\%] Find the frequency response $H_{1}(j \omega)$.
(b) [3\%] Suppose the frequency response of System 2 is

$$
H_{2}(j \omega)=10
$$

Is System c invertible? Please carefully justify your answer.
(c) [3\%] Repeat part (b) if

$$
H_{2}(j \omega)=\sum_{k=-\infty}^{\infty} \delta(\omega-k \pi)
$$

Last Name:
First Name:
Purdue ID:
This sheet is for Question 3.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 3.

Question 4: [13\%]
Consider the following periodic signal $x(t)$ consisting of impulses alternating between weights of 2 and -1 :

(a) [2\%] Is $x(t)$ even, odd, or neither? Please carefully justify your answer.
(b) [2\%] Let $\left\{a_{k}\right\}$ denote the Fourier series coefficients of $x(t)$. Will the magnitude $\left|a_{k}\right|$ be even, odd, or neither? You must carefully justify your answer without performing any calculations.
(c) [2\%] Again without performing any calculations, can we conclude that the phase $\angle a_{k}=0$ for all k ? Please carefully justify your answer.
(d) $[7 \%]$ Compute $\left\{a_{k}\right\}$, and use them to write $x(t)$ as its Fourier series synthesis.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 4.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 4.
Last Name: First Name: Purdue ID:

Question 5: [12\%]
Consider a discrete time signal

$$
x[n]= \begin{cases}e^{j \frac{14 \pi}{3} n}+\delta[n] & \text { if } 0 \leq|n| \leq 3 \\ \text { periodic with period } 6\end{cases}
$$

Let $\left\{a_{k}\right\}$ denote the DTFS coefficients of $x[n]$.
(a) [8%] Plot a_{k} for the range of $0 \leq k \leq 3$.
[Hint: Try breaking down $x[n]=x_{1}[n]+x_{2}[n]$ to solve this question.]
Consider a discrete-time ideal low-pass filter with cutoff frequency $W=0.4 \pi \mathrm{rad} / \mathrm{sec}$. Namely, its frequency response satisfies

$$
H\left(e^{j \omega}\right)= \begin{cases}1 & \text { if }|\omega| \leq 0.4 \pi \\ 0 & \text { if } 0.4 \pi<|\omega| \leq \pi\end{cases}
$$

Let $y[n]$ denote the output when feeding $x[n]$ through the above discrete-time low pass filter.
(b) [4\%] Let $\left\{b_{k}\right\}$ denote the DTFS coefficients of the output $y[n]$. Answer the following yes/no questions,
i) Is $b_{0}=0$?
ii) Is $b_{1}=0$?
iii) Is $b_{2}=0$?
iv) Is $b_{3}=0$?
v) Is $b_{4}=0$?
vi) Is $b_{5}=0$?
and briefly explain your answers.
[Hint: If you do not know the answer to this subquestion, you can write down the relationship between b_{k} and a_{k} in terms of $H\left(e^{j \omega}\right)$. You will receive 1.5 points for this subquestion if your answer is correct.]

Last Name:
First Name:
Purdue ID:
This sheet is for Question 5.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 5.

Question 6: [13\%]
Consider a causal DT-LTI system characterized by the difference equation

$$
y[n]+\frac{1}{4} y[n-1]-\frac{1}{8} y[n-2]=2 x[n-1] .
$$

(a) [6\%] Determine the frequency response $H\left(e^{j \omega}\right)$ of the system.
(b) [4\%] Determine the impulse response $h[n]$ of the system.
(c) [3\%] Is the system stable? Justify your answer. A correct answer without any justification will receive only 1 point.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 6.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 6.
Last Name: First Name: Purdue ID:

Question 7: [13.5\%]

Suppose we feed the above system with the following continuous time signal $x(t)$:

$$
x(t)=\sin (t)
$$

(a) [2\%] Plot $X(j \omega)$ for the range of $-12<\omega<12$. Please carefully mark both the horizontal and vertical axes of your figure. For simplicity, if the value $X(j \omega)$ is $3 j$, then you can mark the vertical axis as $3 j$.
[Hint 1: If you do not know how to plot $X(j \omega)$, you can simply find the expression of $X(j \omega)$. You will receive 1.5 points if your answer is correct.]

Define $y(t)=x(t) \cdot \sin (5 t)$.
(b) [5\%] Plot $Y(j \omega)$ for the range of $-12<\omega<12$. Please carefully mark both the horizontal and vertical axes of your figure, as in part (a).
[Hint 2: If you do not know how to solve this subquestion, please write down the relationship between $Y(j \omega)$ and $X(j \omega)$. You will receive 3 points if your answer is correct.]

Define $z(t)=y(t) \cdot \cos (4 t)$.
(c) [6.5\%] Plot $Z(j \omega)$ for the range of $-12<\omega<12$. Please carefully mark both the horizontal and vertical axes of your figure, as in part (a).
[Hint 3: If you do not know how to solve this subquestion, please solve the following question instead. Suppose $z_{3}(t)=(\sin (5 t))^{2}$. Find out the corresponding Fourier transform $Z_{3}(j \omega)$. You will receive 5 points if your answer is correct.]

Last Name:
First Name:
Purdue ID:
This sheet is for Question 7.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 7.

Question 8: [12\%]
Let us define a DT signal $x[n]$ as

$$
x[n]=e^{j \pi n} \cdot(u[n+2]-u[n-3])
$$

(a) $[6 \%]$ Find the DTFT $X\left(e^{j \omega}\right)$.
(b) [6\%] Find the value of the expression

$$
\int_{\pi}^{3 \pi}\left|X\left(e^{j \omega}\right)\right|^{2} d \omega
$$

[Hint: Consider how this expression relates to total energy.]

Last Name:
First Name:
Purdue ID:
This sheet is for Question 8.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 8.

