Purdue

Tips for making sure GradeScope can read your exam:

1. Make sure your name and PUID are clearly written at the top of every page, including any additional blank pages you use.
2. Write only on the front of the exam pages.
3. Add any additional pages used to the back of the exam before turning it in.
4. Ensure that all pages are facing the same direction.
5. Answer all questions in the area designated for that answer. Do not run over into the next question space.

Midterm \#3 of ECE 301-004, (CRN: 13890)
8-9pm, Thursday, April 5, 2022, FRNY G140.

1. Do not write answers on the back of pages!
2. After the exam ended, you will have 5 additional minutes to write down your name and Purdue ID on each of the pages.
3. If you need additional sheets to write down your answers, please let the instructor/TA know. We will hand out additional answer sheets then.
4. Enter your student ID number, and signature in the space provided on this page.
5. This is a closed book exam.
6. This exam contains only work-out questions. You have one hour to complete it. The students are suggested not spending too much time on a single question, and first working on those that you know how to solve.
7. If needed and requested by students, the instructor/TA will hand out loose sheets of paper for the rough work.
8. Neither calculators nor help sheets are allowed.

Name:

Student ID:

As a Boiler Maker pursuing academic excellence, I pledge to be honest and true in all that I do. Accountable together - We are Purdue.

Date:

Question 1: [16\%, Work-out question]
Consider the following periodic signal

$$
x(t)= \begin{cases}t & \text { if } 0 \leq t<3 \tag{1}\\ 3 & \text { if } 3 \leq t<4 \\ 15-3 t & \text { if } 4 \leq t<5 \\ \text { periodic with period } T=5 & \end{cases}
$$

Define $y(t)=\frac{d}{d t} x(t)$.

1. [3\%] Plot $y(t)$ for the range of $-5 \leq t \leq 5$.
2. [7\%] Denote the CTFS of $y(t)$ by $\left(b_{k}, \omega_{y}\right)$. Find the b_{4} value.

Hint: Your answer can be of the following form:

$$
\begin{equation*}
b_{4}=\frac{1}{10}\left(\frac{e^{3.5 \pi}-1}{0.25 \pi}+\frac{e^{5 \pi}-1}{0.5 \pi}\right) \tag{2}
\end{equation*}
$$

There is no need to further simplify it.
3. [6\%] Denote the CTFS of $x(t)$ by $\left(a_{k}, \omega_{x}\right)$. Find the values of a_{4} and a_{0}, respectively. Hint: If you do not know the answer to Q1.2, you can assume $b_{k}=k e^{-k \cdot(j+1)}$. You will receive full credit of Q1.3 if your answer is correct.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 1.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 1.

Question 2: $[14 \%$, Work-out question $]$ Consider a DT signal $x[n]$:

$$
x[n]= \begin{cases}n+j & \text { if } 0 \leq n \leq 3 \tag{3}\\ -2 j & \text { if } 4 \leq n \leq 5 \\ 0 & \text { if } 6 \leq n \leq 7 \\ \text { periodic with period } N=8 & \end{cases}
$$

Denote its DTFS by $\left(a_{k}, \frac{2 \pi}{8}\right)$ where a_{k} is the DTFS coefficient.

1. [7\%] Find the value of $\sum_{k=-6}^{-3} a_{k}+\sum_{k=6}^{9} a_{k}$
2. [7\%] Find the value of $\sum_{k=0}^{7}\left|a_{k}\right|^{2}$

Last Name:
First Name:
Purdue ID:
This sheet is for Question 2.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 2.

Question 3: [16\%, Work-out question]
Consider two DT signals $x[n]=\cos \left(\frac{3 \pi}{5} n\right)$ and $y[n]=\sin \left(\frac{11 \pi}{5} n\right)$. Define $z[n]=x[n] \cdot y[n]$.
Denote the DTFS of $x[n]$ by $\left(a_{k}, \frac{2 \pi}{N_{x}}\right)$, denote the DTFS of $y[n]$ by $\left(b_{k}, \frac{2 \pi}{N_{y}}\right)$, and denote the DTFS of $z[n]$ by $\left(c_{k}, \frac{2 \pi}{N_{z}}\right)$.

1. [5\%] Find the DTFS coefficients a_{k} of $x[n]$.
2. [5\%] Find the DTFS coefficients b_{k} of $y[n]$.
3. [6\%] Find the values of c_{1} and c_{4}, respectively.

Hint: If you do not know the answers to Q3.1 and Q3.2, you may assume $a_{k}=$ $\sin (0.2 \pi k)$ and $b_{k}=\cos (0.2 \pi k)$. You will receive 5 points for Q3.3 if your answers are correct (using the given a_{k} and b_{k} values).

Last Name:
First Name:
Purdue ID:
This sheet is for Question 3.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 3.

Question 4: [18\%, Work-out question] Consider a CT-LTI system with impulse response

$$
\begin{equation*}
h(t)=\sqrt{2} e^{-|t|} \tag{4}
\end{equation*}
$$

We use the signal $x(t)=\sum_{k=1}^{10} \cos \left(k^{2}(0.2 \pi t)\right)$ as the input to the above LTI system and denote the corresponding output by $y(t)$. Find the expression of $y(t)$.

Hint 1: If you do not know how to solve this question, you can assume $x(t)=\cos (3 \pi t)$ and use this simpler $x(t)$ to find the output $y(t)$. You will receive 15 points out of 18 points if your answer is correct.

Hint 2: Your answer could be something of the following form:
E.g., $y(t)=\sum_{k=3}^{20} \frac{1}{1+j k} e^{k \cdot 3 \cdot \pi t-k}$

Last Name:
First Name:
Purdue ID:
This sheet is for Question 4.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 4.

Question 5: [18\%, Work-out question]
Consider the following CT signal $x(t)$:

$$
\begin{equation*}
x(t)=\sum_{k=-\infty}^{\infty} \delta(t-4 k+1) \tag{5}
\end{equation*}
$$

1. [2\%] Plot $x(t)$ for the range of $-10 \leq t \leq 10$.
2. [11\%] Find the expression of $X(j \omega)$.

Hint: If you don't know how to solve Q5.2, you can find the CTFS of $x(t)$ instead. You will receive 10 points if your answer is correct.
3. [5\%] Plot $X(j \omega)$ for the range of $-0.6 \pi<\omega<0.6 \pi$.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 5.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 5.

Question 6: [18\%, Work-out question]
Consider the following two CT signals:

$$
\begin{align*}
& x(t)=\frac{\sin (2 t)}{\pi t} \tag{6}\\
& y(t)=\frac{\sin (10 t)}{\pi t} \tag{7}
\end{align*}
$$

Define $z(t)=((x(t) \cdot \sin (5 t)) \cdot \cos (5 t)) * y(t)$.

1. [18\%] Plot $Z(j \omega)$ for the range of $-15 \leq \omega \leq 15$.

Hint: You may want to find $X(j \omega)$ first and then gradually find $Z(j \omega)$. You will receive partial credit if you do it step-by-step.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 6.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 6.

Discrete-time Fourier series

$$
\begin{align*}
x[n] & =\sum_{k=\langle N\rangle} a_{k} e^{j k(2 \pi / N) n} \tag{1}\\
a_{k} & =\frac{1}{N} \sum_{n=\langle N\rangle} x[n] e^{-j k(2 \pi / N) n} \tag{2}
\end{align*}
$$

Continuous-time Fourier series

$$
\begin{align*}
x(t) & =\sum_{k=-\infty}^{\infty} a_{k} e^{j k(2 \pi / T) t} \tag{3}\\
a_{k} & =\frac{1}{T} \int_{T} x(t) e^{-j k(2 \pi / T) t} d t \tag{4}
\end{align*}
$$

Continuous-time Fourier transform

$$
\begin{align*}
x(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega \tag{5}\\
X(j \omega) & =\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \tag{6}
\end{align*}
$$

Discrete-time Fourier transform

$$
\begin{align*}
x[n] & =\frac{1}{2 \pi} \int_{2 \pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega \tag{7}\\
X\left(e^{j \omega}\right) & =\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \tag{8}
\end{align*}
$$

Laplace transform

$$
\begin{align*}
x(t) & =\frac{1}{2 \pi} e^{\sigma t} \int_{-\infty}^{\infty} X(\sigma+j \omega) e^{j \omega t} d \omega \tag{9}\\
X(s) & =\int_{-\infty}^{\infty} x(t) e^{-s t} d t \tag{10}
\end{align*}
$$

Z transform

$$
\begin{align*}
x[n] & =r^{n} \mathcal{F}^{-1}\left(X\left(r e^{j \omega}\right)\right) \tag{11}\\
X(z) & =\sum_{n=-\infty}^{\infty} x[n] z^{-n} \tag{12}
\end{align*}
$$

Property	Section	Periodic Signal	Fourier Series Coefficients
		$x(t)\}$ Periodic with period T and	a_{k}
		$y(t)\}$ fundamental frequency $\omega_{0}=2 \pi / T$	
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal Time Scaling		$\begin{aligned} & A x(t)+B y(t) \\ & x\left(t-t_{0}\right) \\ & e^{j M \omega_{0} t} x(t)=e^{j M(2 \pi / T) t} x(t) \\ & x^{*}(t) \\ & x(-t) \\ & x(\alpha t), \alpha>0(\text { periodic with period } T / \alpha) \end{aligned}$	$A a_{k}+B b_{k}$
	3.5.1		$a_{k} e^{-j k \omega_{0} t_{0}}=a_{k} e^{-j k(2 \pi / T)_{0}}$
	3.5.2		a_{k-M}
			a_{-k}^{*}
	3.5.6		a_{-k}
	3.5.5.4		a_{k}
Periodic Convolution	3.5 .5	$\int_{T} x(\tau) y(t-\tau) d \tau$	$T a_{k} b_{k}$
		$x(t) y(t)$	$\sum_{l=-\infty}^{+\infty} a_{l} b_{k-l}$
		$\underline{d x(t)}$	$j k \omega_{0} a_{k}=j k \frac{2 \pi}{T} a_{k}$
Differentiation		$\int^{t} x(t) d t \stackrel{(\text { finite valued and }}{\text { nerindic only if } \left.a_{0}=0\right)}$	$\left(\frac{1}{j k \omega_{0}}\right) a_{k}=\left(\frac{1}{j k(2 \pi / T)}\right) a_{2}$
Conjugate Symmetry for Real Signals	3.5 .6	$x(t)$ real	$\left\{\begin{array}{l} a_{k}=a_{-k}^{*} \\ \mathcal{Q e}_{\mathcal{L}}\left\{a_{k}\right\}=\mathcal{R e}_{\mathscr{L}}\left\{a_{-k}\right\} \\ \mathfrak{g}_{n}\left\{a_{k}\right\}=-\mathfrak{S n}_{n}\left\{a_{-k}\right\} \\ \left\|a_{k}\right\|=\left\|a_{-k}\right\| \\ \Varangle a_{k}=-\Varangle a_{-k} \end{array}\right.$
Real and Even Signals Real and Odd Signals Even-Odd Decomposition of Real Signals	$\begin{aligned} & 3.5 .6 \\ & 3.5 .6 \end{aligned}$	$x(t)$ real and even $x(t)$ real and odd $\begin{cases}x_{o}(t)=\mathcal{E}_{v}\{x(t)\} & {[x(t) \text { real }]} \\ x_{o}(t)=\mathcal{O} d\{x(t)\} & {[x(t) \text { real }]}\end{cases}$	a_{k} real and even a_{k} purely imaginary and dd $\mathfrak{R e}\left\{a_{k}\right\}$ $j \mathfrak{g}_{n}\left\{a_{k}\right\}$

Parseval's Relation for Periodic Signals

$$
\frac{1}{T} \int_{T}|x(t)|^{2} d t=\sum_{k=-\infty}^{+\infty}\left|a_{k}\right|^{2}
$$

three examples, we illustrate this. The last example in this section then demonstratestir properties of a signal can be used to characterize the signal in great detail.

Example 3.6

Consider the signal $g(t)$ with a fundamental period of 4 , shown in Figure 3.10 . could determine the Fourier series representation of $g(t)$ directly from the analysiser tion (3.39). Instead, we will use the relationship of $g(t)$ to the symmetric periodic $4=$ wave $x(t)$ in Example 3.5. Referring to that example, we see that, with $T=t=$ $T_{1}=1$,

$$
g(t)=x(t-1)-1 / 2
$$

Thus, in general, none of the finite partial sums in eq. (3.52) yield the exact values of $x(t)$, and convergence issues, such as those considered in Section 3.4, arise as we consider the problem of evaluating the limit as the number of terms approaches infinity.

3.7 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

There are strong similarities between the properties of discrete-time and continuous-time Fourier series. This can be readily seen by comparing the discrete-time Fourier series properties summarized in Table 3.2 with their continuous-time counterparts in Table 3.1.

TABLE 3.2 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

Property	Periodic Signal	Fourier Series Coefficients
	$\left.\begin{array}{l} x[n] \\ y[n] \end{array}\right\} \begin{aligned} & \text { Periodic with period } N \text { and } \\ & \text { fundamental frequency } \omega_{0}=2 \pi / N \end{aligned}$	$\left.\begin{array}{l} a_{k} \\ b_{k} \end{array}\right\} \begin{aligned} & \text { Periodic with } \\ & \text { period } N \end{aligned}$
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal	$\begin{aligned} & A x[n]+B y[n] \\ & x\left[n-n_{0}\right] \\ & e^{j M(2 \pi / N) n} x[n] \\ & x^{*}[n] \\ & x[-n] \end{aligned}$	$\begin{aligned} & A a_{k}+B b_{k} \\ & a_{k} e^{-j k(2 \pi N) n_{0}} \\ & a_{k-M} \\ & a_{-k}^{*} \\ & a_{-k} \end{aligned}$
Time Scaling	$x_{(m)}[n]= \begin{cases}x[n / m], & \text { if } n \text { is a multiple of } m \\ 0, & \text { if } n \text { is not a multiple of } m\end{cases}$ (periodic with period $m N$)	$\frac{1}{m} a_{k}\binom{$ viewed as periodic }{ with period $m N}$
Periodic Convolution	$\sum_{r=(N)} x[r] y[n-r]$	$N a_{k} b_{k}$
Multiplication	$x[n] y[n]$	$\sum_{l=\{N\rangle} a_{l} b_{k-l}$
First Difference	$x[n]-x[n-1]$	$\left(1-e^{-j k(2 \pi / N)}\right) a_{k}$
Running Sum Conjugate Symmetry for Real Signals	$\sum_{k=-\infty}^{n} x[k]\binom{\text { finite valued and periodic only }}{\text { if } a_{0}=0}$	$\begin{aligned} & \left(\frac{1}{\left(1-e^{-j k(2 \pi / N)}\right)}\right) a_{k} \\ & \left\{\begin{array}{l} a_{k}=a_{-k}^{*} \\ \mathcal{P}_{e}\left\{a_{k}\right\}=\mathcal{R} e\left\{a_{-k}\right\} \end{array}\right. \end{aligned}$
	$x[n]$ real	$\left\{\begin{array}{l} \mathscr{S}_{n}\left\{a_{k}\right\}=\left\{a_{k}\right\}=-\mathfrak{I n}_{n}\left\{a_{-k}\right\} \\ \left\|a_{k}\right\|=\left\|a_{-k}\right\| \\ \Varangle a_{k}=-\Varangle a_{-k} \end{array}\right.$
Real and Even Signals Real and Odd Signals	$x[n]$ real and even $x[n]$ real and odd	a_{k} real and even a_{k} purely imaginary and odd
en-Odd Decomposition of Real Signals	$\begin{cases}x_{e}[n]=\mathcal{E}_{\ell}\{x[n]\} & {[\mathrm{x}[\mathrm{n}] \text { real }]} \\ x_{o}[n]=0 d\{x[n]\} & {[\mathrm{x}[\mathrm{n}] \text { real }]}\end{cases}$	$\begin{aligned} & \mathcal{R e}_{e}\left\{a_{k}\right\} \\ & j \mathscr{S}_{m}\left\{a_{k}\right\} \end{aligned}$
	Parseval's Relation for Periodic Signals $\frac{1}{N} \sum_{n=\{N\rangle}\|x[n]\|^{2}=\sum_{k=\{N\rangle}\left\|a_{k}\right\|^{2}$	

4.6 TABLES OF FOURIER PROPERTIES AND OF BASIC FOURIER TRANSFORM PAIRS

In the preceding sections and in the problems at the end of the chapter, we have considered some of the important properties of the Fourier transform. These are summarized in Table 4.1, in which we have also indicated the section of this chapter in which each property has been discussed.

In Table 4.2, we have assembled a list of many of the basic and important Fourier transform pairs. We will encounter many of these repeatedly as we apply the tools of

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM

Parseval's Relation for Aperiodic Signals

$$
\int_{-\infty}^{+\infty}|x(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}|X(j \omega)|^{2} d \omega
$$

FORM PAIRS

, we have consid. re summarized in which each prop. important Fourier upply the tools of
transform
; ω)
, $-\theta) d \theta$
$\cdot(0) \delta(\omega)$

$-j \omega)$

$\mathcal{P}_{\mathcal{e}}\{X(-j \omega)\}$
$-\mathscr{S}_{n}\{X(-j \omega)\}$
$-j \omega) \mid$
$\lceil X(-j \omega)$
ven
tginary and odd

TABLE 4.2 BASIC FOURIER TRANSFORM PAIRS

Signal	Fourier transform	Fourier series coefficients (if periodic)
$\sum_{k=-\infty}^{+\infty} a_{k} e^{j k \omega_{0 j} t}$	$2 \pi \sum_{k=-\infty}^{+\infty} a_{k} \delta\left(\omega-k \omega_{0}\right)$	a_{k}
$e^{j \omega_{0}{ }^{\prime}}$	$2 \pi \delta\left(\omega-\omega_{0}\right)$	$\begin{aligned} & a_{1}=1 \\ & a_{k}=0, \quad \text { otherwise } \end{aligned}$
$\cos \omega_{0} t$	$\pi\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right]$	$\begin{aligned} & a_{1}=a_{-1}=\frac{1}{2} \\ & a_{k}=0, \quad \text { otherwise } \end{aligned}$
$\sin \omega_{0} t$	$\frac{\pi}{j}\left[\delta\left(\omega-\omega_{0}\right)-\delta\left(\omega+\omega_{0}\right)\right]$	$\begin{aligned} & a_{1}=-a_{-1}=\frac{1}{2 j} \\ & a_{k}=0, \quad \text { otherwise } \end{aligned}$
$x(t)=1$	$2 \pi \delta(\omega)$	$a_{0}=1, \quad a_{k}=0, k \neq 0$ (this is the Fourier series representation for)
Periodic square wave $x(t)= \begin{cases}1, & \|t\|<T_{1} \\ 0, & T_{1}<\|t\| \leq \frac{T}{2}\end{cases}$ and $x(t+T)=x(t)$	$\sum_{k=-\infty}^{+\infty} \frac{2 \sin k \omega_{0} T_{1}}{k} \delta\left(\omega-k \omega_{0}\right)$	$\frac{\omega_{0} T_{1}}{\pi} \operatorname{sinc}\left(\frac{k \omega_{0} T_{1}}{\pi}\right)=\frac{\sin k \omega_{0} T_{1}}{k \pi}$
$\sum_{n=-\infty}^{+\infty} \delta(t-n T)$	$\frac{2 \pi}{T} \sum_{k=-\infty}^{+\infty} \delta\left(\omega-\frac{2 \pi k}{T}\right)$	$a_{k}=\frac{1}{T}$ for all k
$x(t) \begin{cases}1, & \|t\|<T_{1} \\ 0, & \|t\|>T_{1}\end{cases}$	$\frac{2 \sin \omega T_{1}}{\omega}$	-
$\frac{\sin W t}{\pi t}$	$X(j \omega)= \begin{cases}1, & \|\omega\|<W \\ 0, & \|\omega\|>W\end{cases}$	-
$\delta(t)$	1	-
$u(t)$	$\frac{1}{j \omega}+\pi \delta(\omega)$	-
$\delta\left(t-t_{0}\right)$	$e^{-j \omega t_{0}}$	-
$e^{-a t} u(t), \mathcal{R} e\{a\}>0$	$\frac{1}{a+j \omega}$	-
$t e^{-a t} u(t), \mathcal{R e}\{a\}>0$	$\frac{1}{(a+j \omega)^{2}}$	-
$\begin{aligned} & \frac{n^{n-1}}{(n-1)!} e^{-a t} u(t), \\ & \mathfrak{Q}\{a\}>0 \end{aligned}$	$\frac{1}{(a+j \omega)^{n}}$	-

