Purdue

Tips for making sure GradeScope can read your exam:

1. Make sure your name and PUID are clearly written at the top of every page, including any additional blank pages you use.
2. Write only on the front of the exam pages.
3. Add any additional pages used to the back of the exam before turning it in.
4. Ensure that all pages are facing the same direction.
5. Answer all questions in the area designated for that answer. Do not run over into the next question space.

Midterm \#2 of ECE 301-004, (CRN: 13890)
8-9pm, Tuesday, March 1, 2022, FRNY G140.

1. Do not write answers on the back of pages!
2. After the exam ended, you will have 5 additional minutes to write down your name and Purdue ID on each of the pages.
3. If you need additional sheets to write down your answers, please let the instructor/TA know. We will hand out additional answer sheets then.
4. Enter your student ID number, and signature in the space provided on this page.
5. This is a closed book exam.
6. This exam contains multiple-choice questions and work-out questions. For multiple choice questions, there is no need to justify your answers. You have one hour to complete it. The students are suggested not spending too much time on a single question, and first working on those that you know how to solve.
7. The instructor/TA will hand out loose sheets of paper for the rough work.
8. Neither calculators nor help sheets are allowed.

Name:

Student ID:

As a Boiler Maker pursuing academic excellence, I pledge to be honest and true in all that I do. Accountable together - We are Purdue.

Date:

Question 1: [16\%, Work-out question]
Consider the following signal

$$
x(t)= \begin{cases}\cos (t+4)+j \sin (t+4) & \text { if } 1 \leq t \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

Also consider a CT-LTI system with impulse response being

$$
h(t)= \begin{cases}e^{2 t} & \text { if } t>3 \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

1. [2\%] What is the definition of an impulse response?
2. [14\%] Find the output signal $y(t)$ when we feed $x(t)$ to the above CT-LTI system as input.
Hint: Your answer can be of the following form $\frac{e^{j \pi t+4}}{3}-\frac{e^{-j \pi+4 t}}{5}+\frac{e^{2 j t-2}}{3}$. There is no need to further simplify it.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 1.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 1.
Last Name: First Name: Purdue ID:

Question 2: [20\%, Work-out question]

1. [14\%] Consider a DT-LTI system and we know that if the input is

$$
x[n]= \begin{cases}1 & \text { if } 0 \leq n \tag{3}\\ 0 & \text { otherwise }\end{cases}
$$

then the output is

$$
y[n]= \begin{cases}1 & \text { if }-1 \leq n \leq 2 \tag{4}\\ 0 & \text { otherwise }\end{cases}
$$

Plot the output $y_{\text {new }}[n]$ for the range of $-10 \leq n \leq 10$ when the input is

$$
x_{\mathrm{new}}[n]= \begin{cases}1 & \text { if } 0 \leq n \leq 2 \tag{5}\\ 2 & \text { if } 3 \leq n \leq 5 \\ 0 & \text { otherwise }\end{cases}
$$

Hint 1: If you do not know how to solve this question, solve the following question instead. We know that $\delta[n]$ can be expressed as $\delta[n]=\sum_{k=-\infty}^{\infty} a_{k} \cdot U[n-k]$ where $U[n]$ is the unit step signal. Find the coefficient a_{k} for all k. You will receive 5 points if your answer for the alternative Q2.1 is correct.
2. [6\%] Consider a CT-LTI system with impulse response $h(t)=(\cos (t)+j \sin (t)) U(t)$ where $U(t)$ is the unit step signal. Is such a system stable?
This is a work-out question and you need to carefully justify your answer. An answer without justification would not receive any point.
Hint 2: If you do not know the answer to this question, please write down the definition of "stable systems". You will receive 3 points if your answer is correct.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 2.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 2.

Question 3: [15\%, Work-out question]
Consider two CT-LTI systems. The first CT-LTI system has its impulse response being

$$
\begin{equation*}
h_{1}(t)=U(t)-U(t-1) \tag{6}
\end{equation*}
$$

and the second CT-LTI system has its impulse response being

$$
\begin{equation*}
h_{2}(t)=e^{-t} U(t) \tag{7}
\end{equation*}
$$

Consider a new signal $x(t)=e^{-j 2.5 t}$. We pass $x(t)$ through the first system and denote its output by $y(t)$. We then use the output of the first system $y(t)$ as the input to the second system and denote the final output by $z(t)$. That is, $z(t)$ is the final output if we use $x(t)$ as the input to the sequentially concatenated system.

Question: Find the expression of $z(t)$.
Hint 1: Your answer can be of the following form $\frac{e^{j \pi t+4}}{3} \cdot \frac{e^{-j \pi+4}}{5} \cdot \frac{e^{2 j-2}}{3}$. There is no need to further simplify it.

Hint 2: If you do not know the answer to this question, please find the period of $y(t)$. You will receive 6 points if your answer is correct.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 3.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 3.

Question 4: [17\%, Work-out question] Consider a periodic CT signals

$$
x(t)= \begin{cases}2 & \text { if } 0 \leq t<1 \tag{8}\\ -1 & \text { if } 1 \leq t<2 \\ 2 & \text { if } 2 \leq t<6 \\ \text { periodic with period } T=6 & \end{cases}
$$

We denote the Fourier series of $x(t)$ by $\left(a_{k}, \omega_{0}\right)$.

1. [5\%] Find the value of a_{0}.
2. [12\%] Find the general expression of a_{k} for all $k \neq 0$.

Hint: If may be easier to do the following three steps: (1) First express $x(t)$ as some kind of transformation of a different signal $y(t) ;(2)$ find the CTFS of $y(t)$; and (3) finally find the CTFS of $x(t)$.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 4.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 4.

Question 5: [12\%, Work-out question]
Consider a CT signal $x(t)$ of period $T=8$. Suppose we know that the corresponding Fourier series coefficients are $a_{3}=1+j$ and $a_{-3}=1-j$ and all other $a_{k}=0$.

1. [12\%] Find the expression of the real-part of $x(t)$.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 5.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 5.

Question 6: [20\%, Multiple Choices]
The following questions are multiple-choice questions and there is no need to justify your answers. Consider the following two systems:

System 1: When the input is $x_{1}(t)$, the output is

$$
\begin{equation*}
y_{1}(t)=\int_{s=2 t-1}^{2 t+1}|x(0.5 s)|+x(0.5 s) d s \tag{9}
\end{equation*}
$$

System 2: When the input is $x_{2}[n]$, the output is

$$
\begin{equation*}
y_{2}[n]=\int_{s=0}^{\left|x_{2}[n]\right|}(n-s) d s \tag{10}
\end{equation*}
$$

Answer the following questions

1. [4\%] Is System 1 memoryless? Is System 2 memoryless?
2. [4\%] Is System 1 causal? Is System 2 causal?
3. [4\%] Is System 1 stable? Is System 2 stable?
4. [4\%] Is System 1 linear? Is System 2 linear?
5. [4\%] Is System 1 time-invariant? Is System 2 time-invariant?

Last Name:
First Name:
Purdue ID:
This sheet is for Question 6.

Discrete-time Fourier series

$$
\begin{align*}
x[n] & =\sum_{k=\langle N\rangle} a_{k} e^{j k(2 \pi / N) n} \tag{1}\\
a_{k} & =\frac{1}{N} \sum_{n=\langle N\rangle} x[n] e^{-j k(2 \pi / N) n} \tag{2}
\end{align*}
$$

Continuous-time Fourier series

$$
\begin{align*}
x(t) & =\sum_{k=-\infty}^{\infty} a_{k} e^{j k(2 \pi / T) t} \tag{3}\\
a_{k} & =\frac{1}{T} \int_{T} x(t) e^{-j k(2 \pi / T) t} d t \tag{4}
\end{align*}
$$

Continuous-time Fourier transform

$$
\begin{align*}
x(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega \tag{5}\\
X(j \omega) & =\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \tag{6}
\end{align*}
$$

Discrete-time Fourier transform

$$
\begin{align*}
x[n] & =\frac{1}{2 \pi} \int_{2 \pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega \tag{7}\\
X\left(e^{j \omega}\right) & =\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \tag{8}
\end{align*}
$$

Laplace transform

$$
\begin{align*}
x(t) & =\frac{1}{2 \pi} e^{\sigma t} \int_{-\infty}^{\infty} X(\sigma+j \omega) e^{j \omega t} d \omega \tag{9}\\
X(s) & =\int_{-\infty}^{\infty} x(t) e^{-s t} d t \tag{10}
\end{align*}
$$

Z transform

$$
\begin{align*}
x[n] & =r^{n} \mathcal{F}^{-1}\left(X\left(r e^{j \omega}\right)\right) \tag{11}\\
X(z) & =\sum_{n=-\infty}^{\infty} x[n] z^{-n} \tag{12}
\end{align*}
$$

Property	Section	Periodic Signal	Fourier Series Coefficients
		$x(t)\}$ Periodic with period T and	a_{k}
		$y(t)\}$ fundamental frequency $\omega_{0}=2 \pi / T$	
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal Time Scaling		$\begin{aligned} & A x(t)+B y(t) \\ & x\left(t-t_{0}\right) \\ & e^{j M \omega_{0} t} x(t)=e^{j M(2 \pi / T) t} x(t) \\ & x^{*}(t) \\ & x(-t) \\ & x(\alpha t), \alpha>0(\text { periodic with period } T / \alpha) \end{aligned}$	$A a_{k}+B b_{k}$
	3.5.1		$a_{k} e^{-j k \omega_{0} t_{0}}=a_{k} e^{-j k(2 \pi / T)_{0}}$
	3.5.2		a_{k-M}
			a_{-k}^{*}
	3.5.6		a_{-k}
	3.5.5.4		a_{k}
Periodic Convolution	3.5 .5	$\int_{T} x(\tau) y(t-\tau) d \tau$	$T a_{k} b_{k}$
		$x(t) y(t)$	$\sum_{l=-\infty}^{+\infty} a_{l} b_{k-l}$
		$\underline{d x(t)}$	$j k \omega_{0} a_{k}=j k \frac{2 \pi}{T} a_{k}$
Differentiation		$\int^{t} x(t) d t \stackrel{(\text { finite valued and }}{\text { nerindic only if } \left.a_{0}=0\right)}$	$\left(\frac{1}{j k \omega_{0}}\right) a_{k}=\left(\frac{1}{j k(2 \pi / T)}\right) a_{2}$
Conjugate Symmetry for Real Signals	3.5 .6	$x(t)$ real	$\left\{\begin{array}{l} a_{k}=a_{-k}^{*} \\ \mathcal{Q e}_{\mathcal{L}}\left\{a_{k}\right\}=\mathcal{R e}_{\mathscr{L}}\left\{a_{-k}\right\} \\ \mathfrak{g}_{n}\left\{a_{k}\right\}=-\mathfrak{S n}_{n}\left\{a_{-k}\right\} \\ \left\|a_{k}\right\|=\left\|a_{-k}\right\| \\ \Varangle a_{k}=-\Varangle a_{-k} \end{array}\right.$
Real and Even Signals Real and Odd Signals Even-Odd Decomposition of Real Signals	$\begin{aligned} & 3.5 .6 \\ & 3.5 .6 \end{aligned}$	$x(t)$ real and even $x(t)$ real and odd $\begin{cases}x_{o}(t)=\mathcal{E}_{v}\{x(t)\} & {[x(t) \text { real }]} \\ x_{o}(t)=\mathcal{O} d\{x(t)\} & {[x(t) \text { real }]}\end{cases}$	a_{k} real and even a_{k} purely imaginary and dd $\mathfrak{R e}\left\{a_{k}\right\}$ $j \mathfrak{g}_{n}\left\{a_{k}\right\}$

Parseval's Relation for Periodic Signals

$$
\frac{1}{T} \int_{T}|x(t)|^{2} d t=\sum_{k=-\infty}^{+\infty}\left|a_{k}\right|^{2}
$$

three examples, we illustrate this. The last example in this section then demonstratestir properties of a signal can be used to characterize the signal in great detail.

Example 3.6

Consider the signal $g(t)$ with a fundamental period of 4 , shown in Figure 3.10 . could determine the Fourier series representation of $g(t)$ directly from the analysiser tion (3.39). Instead, we will use the relationship of $g(t)$ to the symmetric periodic $4=$ wave $x(t)$ in Example 3.5. Referring to that example, we see that, with $T=t=$ $T_{1}=1$,

$$
g(t)=x(t-1)-1 / 2
$$

Thus, in general, none of the finite partial sums in eq. (3.52) yield the exact values of $x(t)$, and convergence issues, such as those considered in Section 3.4, arise as we consider the problem of evaluating the limit as the number of terms approaches infinity.

3.7 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

There are strong similarities between the properties of discrete-time and continuous-time Fourier series. This can be readily seen by comparing the discrete-time Fourier series properties summarized in Table 3.2 with their continuous-time counterparts in Table 3.1.

TABLE 3.2 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

Property	Periodic Signal	Fourier Series Coefficients
	$\left.\begin{array}{l} x[n] \\ y[n] \end{array}\right\} \begin{aligned} & \text { Periodic with period } N \text { and } \\ & \text { fundamental frequency } \omega_{0}=2 \pi / N \end{aligned}$	$\left.\begin{array}{l} a_{k} \\ b_{k} \end{array}\right\} \begin{aligned} & \text { Periodic with } \\ & \text { period } N \end{aligned}$
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal	$\begin{aligned} & A x[n]+B y[n] \\ & x\left[n-n_{0}\right] \\ & e^{j M(2 \pi / N) n} x[n] \\ & x^{*}[n] \\ & x[-n] \end{aligned}$	$\begin{aligned} & A a_{k}+B b_{k} \\ & a_{k} e^{-j k(2 \pi N) n_{0}} \\ & a_{k-M} \\ & a_{-k}^{*} \\ & a_{-k} \end{aligned}$
Time Scaling	$x_{(m)}[n]= \begin{cases}x[n / m], & \text { if } n \text { is a multiple of } m \\ 0, & \text { if } n \text { is not a multiple of } m\end{cases}$ (periodic with period $m N$)	$\frac{1}{m} a_{k}\binom{$ viewed as periodic }{ with period $m N}$
Periodic Convolution	$\sum_{r=(N)} x[r] y[n-r]$	$N a_{k} b_{k}$
Multiplication	$x[n] y[n]$	$\sum_{l=\{N\rangle} a_{l} b_{k-l}$
First Difference	$x[n]-x[n-1]$	$\left(1-e^{-j k(2 \pi / N)}\right) a_{k}$
Running Sum Conjugate Symmetry for Real Signals	$\sum_{k=-\infty}^{n} x[k]\binom{\text { finite valued and periodic only }}{\text { if } a_{0}=0}$	$\begin{aligned} & \left(\frac{1}{\left(1-e^{-j k(2 \pi / N)}\right)}\right) a_{k} \\ & \left\{\begin{array}{l} a_{k}=a_{-k}^{*} \\ \mathcal{P}_{e}\left\{a_{k}\right\}=\mathcal{R} e\left\{a_{-k}\right\} \end{array}\right. \end{aligned}$
	$x[n]$ real	$\left\{\begin{array}{l} \mathscr{S}_{n}\left\{a_{k}\right\}=\left\{a_{k}\right\}=-\mathfrak{I n}_{n}\left\{a_{-k}\right\} \\ \left\|a_{k}\right\|=\left\|a_{-k}\right\| \\ \Varangle a_{k}=-\Varangle a_{-k} \end{array}\right.$
Real and Even Signals Real and Odd Signals	$x[n]$ real and even $x[n]$ real and odd	a_{k} real and even a_{k} purely imaginary and odd
en-Odd Decomposition of Real Signals	$\begin{cases}x_{e}[n]=\mathcal{E}_{\ell}\{x[n]\} & {[\mathrm{x}[\mathrm{n}] \text { real }]} \\ x_{o}[n]=0 d\{x[n]\} & {[\mathrm{x}[\mathrm{n}] \text { real }]}\end{cases}$	$\begin{aligned} & \mathcal{R e}_{e}\left\{a_{k}\right\} \\ & j \mathscr{S}_{m}\left\{a_{k}\right\} \end{aligned}$
	Parseval's Relation for Periodic Signals $\frac{1}{N} \sum_{n=\{N\rangle}\|x[n]\|^{2}=\sum_{k=\{N\rangle}\left\|a_{k}\right\|^{2}$	

