Purdue

Tips for making sure GradeScope can read your exam:

1. Make sure your name and PUID are clearly written at the top of every page, including any additional blank pages you use.
2. Write only on the front of the exam pages.
3. Add any additional pages used to the back of the exam before turning it in.
4. Ensure that all pages are facing the same direction.
5. Answer all questions in the area designated for that answer. Do not run over into the next question space.

Midterm \#2 of ECE 301-004, (CRN: 17102)
8-9pm, Tuesday, October 19, 2021, FRNY G140.

1. Enter your student ID number, and signature in the space provided on this page now!
2. This is a closed book exam.
3. This exam contains multiple-choice questions and work-out questions. For multiple choice questions, there is no need to justify your answers. You have one hour to complete it. The students are suggested not spending too much time on a single question, and first working on those that you know how to solve.
4. The instructor/TA will hand out loose sheets of paper for the rough work.
5. If you need additional sheets to write down your answers, please let the instructor/TA know. We will hand out additional answer sheets then.
6. Neither calculators nor help sheets are allowed.

Name:

Student ID:

As a Boiler Maker pursuing academic excellence, I pledge to be honest and true in all that I do. Accountable together - We are Purdue.

Question 1: [20\%, Work-out question]
Consider a DT-LTI system for which we know that if the input is

$$
x_{1}[n]= \begin{cases}2 & \text { if } n=1 \tag{1}\\ 0 & \text { if } n \neq 1\end{cases}
$$

then the output is

$$
y_{1}[n]= \begin{cases}2 & \text { if } 1 \leq n \tag{2}\\ 2 e^{n-1} & \text { if } n \leq 0\end{cases}
$$

1. [6\%] Find the impulse response $h[n]$ of this system.

Hint 1: If you do not know the answer to this question, please write down (i) What is the definition of impulse response; (ii) what does "LTI" stand for? If your answers are correct, you will receive 3 points; (iii) Plot $x_{1}[n]$ for the range of $-2 \leq n \leq 2$.
Hint 2: Your answer to (i), (ii), and (iii) in the above hint plays an important role when solving Q1.1 as well.
2. [14\%] If the input to this DT-LTI system is $x_{2}[n]=e^{-n} U[n]$, find the corresponding output $y_{2}[n]$.
Hint 3: If you do not know the answer of the impulse response in Q1.1, you can assume $h[n]=y_{1}[n]$ (even though it is not true) and use $h[n]=y_{1}[n]$ when solving this question. You will receive full credit if your answer (under this false assumption) is correct.
Hint 4: You may need the following formulas:

$$
\begin{align*}
& \text { if }|r|<1 \text {, then } \sum_{k=1}^{\infty} a \cdot r^{k-1}=\frac{a}{1-r} \tag{3}\\
& \text { if } r \neq 1 \text {, then } \sum_{k=1}^{K} a \cdot r^{k-1}=\frac{a \cdot\left(1-r^{K}\right)}{1-r} \tag{4}
\end{align*}
$$

Last Name: First Name:
Purdue ID:
This sheet is for Question 1.

Last Name: First Name:
Purdue ID:
This sheet is for Question 1.
Last Name: First Name: Purdue ID:

Question 2: [14\%, Work-out question] Consider a CT system with the following input/output relationship:

$$
\begin{equation*}
y(t)=\int_{-4}^{2} x(t-s) e^{-s} e^{j s} d s \tag{5}
\end{equation*}
$$

Find the expression of the impulse response $h(t)$.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 2.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 2.

Question 3: [14\%, Work-out question]
Consider a CT-LTI system with the impulse response being $h(t)=e^{(-j+5) t} U(-t)$. Let $y(t)$ denote the output when the input is $x(t)=e^{j 4 t}$. Find the absolute value of $y(3)$, i.e., find $|y(3)|$, and also find the angle of $y(3)$, i.e., find $\angle y(3)$.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 3.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 3.

Question 4: [18\%, Work-out question] Consider a periodic CT signals

$$
x(t)= \begin{cases}-2+j & \text { if } 5 \leq t<25 \tag{6}\\ 0-2 j & \text { if } 25 \leq t<35 \\ 1 & \text { if } 35 \leq t<45 \\ \text { periodic with period } T=40 & \end{cases}
$$

We denote the Fourier series of $x(t)$ by $\left(a_{k}, \omega_{0}\right)$ where $\omega_{0}=\frac{2 \pi}{40}$.

1. [6\%] Find the value of a_{0}.
2. [6\%] Find the value of $\sum_{k=-\infty}^{\infty} a_{k}$.

Hint: We know that the CTFS synthesis formula is $x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t}$.
3. $[6 \%]$ Find the value of $\sum_{k=-\infty}^{\infty}\left|a_{k}\right|^{2}$.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 4.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 4.
Last Name: First Name: Purdue ID:

Question 5: [14\%, Work-out question] Consider a DT periodic signal $x[n]$. We know that

$$
\begin{equation*}
x[n]=\sin \left(\frac{7 \pi}{3} n\right) \tag{7}
\end{equation*}
$$

Define a_{k} as the DTFS coefficients of $x[n]$.

1. [8\%] Find the period N and the DTFS coefficients a_{k} of $x[n]$.

Consider another signal $y[n]$. We do not know the values of $y[n]$ explicitly. But we do know that $y[n]$ has period 6 and its DTFS coefficients are b_{0} to b_{5} being $b_{k}=k$. Namely, $b_{0}=0, b_{1}=1, b_{2}=2, b_{3}=3, b_{4}=4$, and $b_{5}=5$. Define $z[n]=x[n] \cdot y[n]$.
2. [6\%] Find the DTFS coefficient c_{2} of $z[n]$. Namely, you do not need to find the value for general c_{k}. Instead, we only need to find the c_{k} when $k=2$.
Hint 1: You would need the multiplication property of DTFS.
Hint 2: If you do not know the answer to the previous question, you can assume $a_{2}=a_{4}=3$, and $a_{0}=a_{1}=a_{3}=a_{5}=0$. You will receive 5 points if your answer is correct.

Last Name: First Name:
Purdue ID:
This sheet is for Question 5.

Last Name: First Name:
Purdue ID:
This sheet is for Question 5.

Question 6: [20\%, Multiple Choices]
The following questions are multiple-choice questions and there is no need to justify your answers. Consider the following two systems:

System 1: When the input is $x_{1}(t)$, the output is

$$
y_{1}(t)= \begin{cases}\int_{0}^{20} e^{-x_{1}(t-s)} d s & \text { if } x_{1}(t+1)>0 \tag{8}\\ \int_{0}^{20} e^{+x_{1}(t-s)} d s & \text { if } x_{1}(t+1) \leq 0\end{cases}
$$

System 2: When the input is $x_{2}[n]$, the output is

$$
\begin{equation*}
y_{2}[n]=\sum_{k=0}^{\infty} \cos (k-1) x_{2}[2 n-k] \tag{9}
\end{equation*}
$$

Answer the following questions

1. [4\%] Is System 1 memoryless? Is System 2 memoryless?
2. [4\%] Is System 1 causal? Is System 2 causal?
3. [4\%] Is System 1 stable? Is System 2 stable?
4. [4\%] Is System 1 linear? Is System 2 linear?
5. [4\%] Is System 1 time-invariant? Is System 2 time-invariant?

Last Name:
First Name:
Purdue ID:
This sheet is for Question 6.

Discrete-time Fourier series

$$
\begin{align*}
x[n] & =\sum_{k=\langle N\rangle} a_{k} e^{j k(2 \pi / N) n} \tag{1}\\
a_{k} & =\frac{1}{N} \sum_{n=\langle N\rangle} x[n] e^{-j k(2 \pi / N) n} \tag{2}
\end{align*}
$$

Continuous-time Fourier series

$$
\begin{align*}
x(t) & =\sum_{k=-\infty}^{\infty} a_{k} e^{j k(2 \pi / T) t} \tag{3}\\
a_{k} & =\frac{1}{T} \int_{T} x(t) e^{-j k(2 \pi / T) t} d t \tag{4}
\end{align*}
$$

Continuous-time Fourier transform

$$
\begin{align*}
x(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega \tag{5}\\
X(j \omega) & =\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \tag{6}
\end{align*}
$$

Discrete-time Fourier transform

$$
\begin{align*}
x[n] & =\frac{1}{2 \pi} \int_{2 \pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega \tag{7}\\
X\left(e^{j \omega}\right) & =\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \tag{8}
\end{align*}
$$

Laplace transform

$$
\begin{align*}
x(t) & =\frac{1}{2 \pi} e^{\sigma t} \int_{-\infty}^{\infty} X(\sigma+j \omega) e^{j \omega t} d \omega \tag{9}\\
X(s) & =\int_{-\infty}^{\infty} x(t) e^{-s t} d t \tag{10}
\end{align*}
$$

Z transform

$$
\begin{align*}
x[n] & =r^{n} \mathcal{F}^{-1}\left(X\left(r e^{j \omega}\right)\right) \tag{11}\\
X(z) & =\sum_{n=-\infty}^{\infty} x[n] z^{-n} \tag{12}
\end{align*}
$$

Property	Section	Periodic Signal	Fourier Series Coefficients
		$x(t)\}$ Periodic with period T and	a_{k}
		$y(t)\}$ fundamental frequency $\omega_{0}=2 \pi / T$	
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal Time Scaling		$\begin{aligned} & A x(t)+B y(t) \\ & x\left(t-t_{0}\right) \\ & e^{j M \omega_{0} t} x(t)=e^{j M(2 \pi / T) t} x(t) \\ & x^{*}(t) \\ & x(-t) \\ & x(\alpha t), \alpha>0(\text { periodic with period } T / \alpha) \end{aligned}$	$A a_{k}+B b_{k}$
	3.5.1		$a_{k} e^{-j k \omega_{0} t_{0}}=a_{k} e^{-j k(2 \pi / T)_{0}}$
	3.5.2		a_{k-M}
			a_{-k}^{*}
	3.5.6		a_{-k}
	3.5.5.4		a_{k}
Periodic Convolution	3.5 .5	$\int_{T} x(\tau) y(t-\tau) d \tau$	$T a_{k} b_{k}$
		$x(t) y(t)$	$\sum_{l=-\infty}^{+\infty} a_{l} b_{k-l}$
		$\underline{d x(t)}$	$j k \omega_{0} a_{k}=j k \frac{2 \pi}{T} a_{k}$
Differentiation		$\int^{t} x(t) d t \stackrel{(\text { finite valued and }}{\text { nerindic only if } \left.a_{0}=0\right)}$	$\left(\frac{1}{j k \omega_{0}}\right) a_{k}=\left(\frac{1}{j k(2 \pi / T)}\right) a_{2}$
Conjugate Symmetry for Real Signals	3.5 .6	$x(t)$ real	$\left\{\begin{array}{l} a_{k}=a_{-k}^{*} \\ \mathcal{Q e}_{\mathcal{L}}\left\{a_{k}\right\}=\mathcal{R e}_{\mathscr{L}}\left\{a_{-k}\right\} \\ \mathfrak{g}_{n}\left\{a_{k}\right\}=-\mathfrak{S n}_{n}\left\{a_{-k}\right\} \\ \left\|a_{k}\right\|=\left\|a_{-k}\right\| \\ \Varangle a_{k}=-\Varangle a_{-k} \end{array}\right.$
Real and Even Signals Real and Odd Signals Even-Odd Decomposition of Real Signals	$\begin{aligned} & 3.5 .6 \\ & 3.5 .6 \end{aligned}$	$x(t)$ real and even $x(t)$ real and odd $\begin{cases}x_{o}(t)=\mathcal{E}_{v}\{x(t)\} & {[x(t) \text { real }]} \\ x_{o}(t)=\mathcal{O} d\{x(t)\} & {[x(t) \text { real }]}\end{cases}$	a_{k} real and even a_{k} purely imaginary and dd $\mathfrak{R e}\left\{a_{k}\right\}$ $j \mathfrak{g}_{n}\left\{a_{k}\right\}$

Parseval's Relation for Periodic Signals

$$
\frac{1}{T} \int_{T}|x(t)|^{2} d t=\sum_{k=-\infty}^{+\infty}\left|a_{k}\right|^{2}
$$

three examples, we illustrate this. The last example in this section then demonstratestir properties of a signal can be used to characterize the signal in great detail.

Example 3.6

Consider the signal $g(t)$ with a fundamental period of 4 , shown in Figure 3.10 . could determine the Fourier series representation of $g(t)$ directly from the analysiser tion (3.39). Instead, we will use the relationship of $g(t)$ to the symmetric periodic $4=$ wave $x(t)$ in Example 3.5. Referring to that example, we see that, with $T=t=$ $T_{1}=1$,

$$
g(t)=x(t-1)-1 / 2
$$

Thus, in general, none of the finite partial sums in eq. (3.52) yield the exact values of $x(t)$, and convergence issues, such as those considered in Section 3.4, arise as we consider the problem of evaluating the limit as the number of terms approaches infinity.

3.7 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

There are strong similarities between the properties of discrete-time and continuous-time Fourier series. This can be readily seen by comparing the discrete-time Fourier series properties summarized in Table 3.2 with their continuous-time counterparts in Table 3.1.

TABLE 3.2 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

Property	Periodic Signal	Fourier Series Coefficients
	$\left.\begin{array}{l} x[n] \\ y[n] \end{array}\right\} \begin{aligned} & \text { Periodic with period } N \text { and } \\ & \text { fundamental frequency } \omega_{0}=2 \pi / N \end{aligned}$	$\left.\begin{array}{l} a_{k} \\ b_{k} \end{array}\right\} \begin{aligned} & \text { Periodic with } \\ & \text { period } N \end{aligned}$
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal	$\begin{aligned} & A x[n]+B y[n] \\ & x\left[n-n_{0}\right] \\ & e^{M(2 \pi / N) n} x[n] \\ & x^{*}[n] \\ & x[-n] \end{aligned}$	$\begin{aligned} & A a_{k}+B b_{k} \\ & a_{k} e^{-j k(2 \pi N) n_{0}} \\ & a_{k-M} \\ & a_{-k}^{*} \\ & a_{-k}^{*} \end{aligned}$
Time Scaling	$x_{(m)}[n]= \begin{cases}x[n / m], & \text { if } n \text { is a multiple of } m \\ 0, & \text { if } n \text { is not a multiple of } m\end{cases}$ (periodic with period $m N$)	$\frac{1}{m} a_{k}\binom{$ viewed as periodic }{ with period $m N}$
Periodic Convolution	$\sum_{r=(N)} x[r] y[n-r]$	$N a_{k} b_{k}$
Multiplication	$x[n] y[n]$	$\sum_{l=(N)} a_{l} b_{k-l}$
First Difference	$x[n]-x[n-1]$	$\left(1-e^{-j k(2 \pi / N)}\right) a_{k}$
Rumning Sum	$\sum_{k=-\infty}^{n} x[k]\binom{$ finite valued and periodic only }{ if $a_{0}=0}$	$\begin{aligned} & \left(\frac{1}{\left(1-e^{-j k(2 \pi / N)}\right)}\right) a_{k} \\ & \left\{\begin{array}{l} a_{k}=a_{-k}^{*} \\ \mathcal{P}_{e}\left\{a_{k}\right\}=\mathcal{R} e\left\{a_{-k}\right\} \end{array}\right. \end{aligned}$
Conjugate Symmetry for Real Signals	$x[n]$ real	$\left\{\begin{array}{l} \mathscr{S}_{n}\left\{a_{k}\right\}=\left\{a_{k}\right\}=-\mathfrak{I n}_{n}\left\{a_{-k}\right\} \\ \left\|a_{k}\right\|=\left\|a_{-k}\right\| \\ \Varangle a_{k}=-\Varangle a_{-k} \end{array}\right.$
Real and Even Signals Real and Odd Signals	$x[n]$ real and even $x[n]$ real and odd	a_{k} real and even a_{k} purely imaginary and odd
en-Odd Decomposition of Real Signals	$\begin{cases}x_{e}[n]=\mathcal{E}\{x[n]\} & {[\mathrm{x}[\mathrm{n}] \text { real }]} \\ x_{o}[n]=\mathcal{O}\{x[n]\} & {[\mathrm{x}[\mathrm{n}] \text { real }]}\end{cases}$	$\begin{aligned} & \mathcal{R e}_{e}\left\{a_{k}\right\} \\ & j \mathscr{S}_{m}\left\{a_{k}\right\} \end{aligned}$
Parseval's Relation for Periodic Signals$\frac{1}{N} \sum_{n=\{N\rangle}\|x[n]\|^{2}=\sum_{k=\{N\rangle}\left\|a_{k}\right\|^{2}$		

