Midterm #3 of ECE301-003, 004 (CRN 17101, 17102)

8–9pm, Wednesday, November 13, 2019, WTHR 200.

- 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, and signature in the space provided on this page, **NOW!**
- 2. This is a closed book exam.
- 3. This exam contains multiple choice questions and work-out questions. For multiple choice questions, there is no need to justify your answers. You have one hour to complete it. The students are suggested not spending too much time on a single question, and working on those that you know how to solve.
- 4. Use the back of each page for rough work.
- 5. Neither calculators nor help sheets are allowed.

Name:

Student ID:

As a Boiler Maker pursuing academic excellence, I pledge to be honest and true in all that I do. Accountable together — We are Purdue.

Signature:

Date:

Question 1: [14%, Work-out question, Learning Objectives 4, 5] Consider the two following discrete-time signals:

$$x[n] = \cos(\frac{\pi n}{4}) \tag{1}$$

$$y[n] = \cos(\frac{5\pi n + \pi}{4}) \tag{2}$$

- 1. [2%] Find the DTFS a_k of x[n].
- 2. [6%] Find the DTFS b_k of y[n] and plot b_k for the range of k = 0 to 10.
- 3. [6%] Let $z[n] = x[n] \cdot y[n]$. Let c_k denote the DTFS of z[n]. Find the values of c_2 . Hint: If you do not know the answers of the previous two sub-questions you can assume $a_k = 1$ if $0 \le k \le 2$ and $a_k = 0$ if $3 \le k \le 7$ and write c_2 as a function of b_k . You will receive 4 points if your answer is correct.

Question 2: [15%, Work-out question, Learning Objectives 2, 3, 4, and 5] Consider the following continuous-time signals:

$$x(t) = \frac{\sin(3t)}{2t} \tag{3}$$

$$y(t) = \frac{\sin(2t)}{4t} \tag{4}$$

$$z(t) = (x(t) \cdot y(t)) * x(t).$$
(5)

Find the CTFT $Z(j\omega)$ of z(t).

Question 3: [10%, Work-out question, Learning Objectives 4 and 5] Consider a continuous-time LTI system governed by the following differential equation:

$$\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 2y(t) = 2\frac{dx(t)}{dt} + 3x(t)$$
(6)

1. [10%] Find the expression of y(t) when the input is $x(t) = \sum_{k=5}^{7} e^{j(k^2-k)t}$.

Question 4: [20%, Work-out question, Learning Objectives 2, 3, 4 and 5] Consider the following DT signal $x[n] = e^{j3(n-100)} \cdot 2^{-n+100} U[n-100]$.

- 1. [8%] Find the expression of $X(e^{j\omega})$.
- 2. [6%] Find the value of $\int_{\pi}^{3\pi} X(e^{j\omega}) d\omega$.
- 3. [6%] Find the value of $\int_0^{10\pi} |X(e^{j\omega})|^2 d\omega$.

Hint: The following formula may be useful: If |r| < 1, then

$$\sum_{k=1}^{\infty} ar^{k-1} = \frac{a}{1-r}.$$
(7)

 $Question \ 5: [18\%,$ Work-out question, Learning Objectives 4, 5, and 6] Consider a discrete time signal

$$x[n] = \sin(1.25\pi n) + 2e^{j2.5\pi n} \tag{8}$$

Plot the corresponding DTFT $X(e^{j\omega})$ for the range of $-2\pi < \omega < 2\pi$.

Hint: There is no need to write down the expression of $X(e^{j\omega})$. A plot is sufficient.

Question 6: [23%, Learning Objectives 3, 4, 5, and 6] Consider the following frequency scrambler system. The input signal is $x(t) = \cos(2\pi t)$. We first multiply x(t) by $\cos(10\pi t)$. That is,

$$y(t) = x(t) \cdot \cos(10\pi t).$$

We then pass y(t) through a low pass filter with cutoff frequency 5Hz. Denote the final output by z(t).

- 1. [4%] Find out the expression of the impulse response h(t) for the low pass filter with cutoff frequency 5Hz.
- 2. [8%] Use the CTFT to carefully analyze the system and find the expression of z(t). Please carefully write down how the frequency spectrums $X(j\omega)$, $Y(j\omega)$ and $Z(j\omega)$ evolve.
- 3. [11%] For the descrambler, a student figured out that all he/she needs to do is to multiple z(t) by $\cos(10\pi t)$ again to get $w(t) = z(t) \cdot \cos(10\pi t)$ and then pass w(t) through a low pass filter with cutoff frequency 5Hz. Denote the final output by $\hat{x}(t)$. However, when he/she played the descrambled signal $\hat{x}(t)$, he/she realized that $\hat{x}(t)$ is not identical to the original signal x(t) anymore. Please (i) [7%] carefully analyze the descrambler in the frequency domain; (ii) [2%] Describe how $\hat{x}(t)$ sounds when compared to the original signal x(t); and (iii) [2%] Describe how you will fix the descrambler so that $\hat{x}_{new}(t) = x(t)$.

Hint: If you do not know how to solve this question, you can write down the transmitter and receiver diagrams of AM-DSB when (i) filtering a radio signal to make it of bandwidth 7.5k Hz; (ii) then sending the filtered signal using carrier frequency 890kHz; and (iii) the receiver needs to demodulate the original signal. You need to carefully mark all the frequency parameters used in your scheme with the correct unit. If your answer is correct, you will receive 11 points.

Discrete-time Fourier series

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n} \tag{1}$$

$$a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk(2\pi/N)n}$$
⁽²⁾

Continuous-time Fourier series

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk(2\pi/T)t}$$
(3)

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk(2\pi/T)t} dt \tag{4}$$

Continuous-time Fourier transform

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$
⁽⁵⁾

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$
(6)

Discrete-time Fourier transform

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$
(7)

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
(8)

Laplace transform

$$x(t) = \frac{1}{2\pi} e^{\sigma t} \int_{-\infty}^{\infty} X(\sigma + j\omega) e^{j\omega t} d\omega$$
(9)

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$$
(10)

Z transform

$$x[n] = r^n \mathcal{F}^{-1}(X(re^{j\omega})) \tag{11}$$

$$X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$
(12)

			Fourier Series Coefficients	
Property	Section	Periodic Signal		
		$x(t)$ Periodic with period T and $y(t)$ fundamental frequency $\omega_0 = 2\pi/T$	a_k b_k	
Linearity	3.5.1	Ax(t) + By(t)	$Aa_k + Bb_k$ $a_k e^{-jk\omega_0 t_0} = a_k e^{-jk(2\pi/T)t_0}$	
Time Shifting	3.5.2	$x(t-t_0)$ $e^{jM\omega_0 t}x(t) = e^{jM(2\pi/T)t}x(t)$	a_{k-M}	
Conjugation	3.5.6	$x^*(t)$	a_{-k}	
Time Reversal	3.5.3 3.5.4	x(-t) $x(\alpha t), \alpha > 0$ (periodic with period T/α)	a_k	
Periodic Convolution		$\int_{T} x(\tau) y(t-\tau) d\tau$	Ta_kb_k	
Multiplication	3.5.5	x(t)y(t)	$\sum_{l=-\infty}^{+\infty}a_lb_{k-l}$	
Differentiation		$\frac{dx(t)}{dt}$	$jk\omega_0 a_k = jk\frac{2\pi}{T}a_k$	
Integration		$\int_{-\infty}^{t} x(t) dt$ (finite valued and periodic only if $a_0 = 0$)	$\left(\frac{1}{jk\omega_0}\right)a_k = \left(\frac{1}{jk(2\pi/T)}\right)a_k$ $\left(a_k = a^*\right)$	
Conjugate Symmetry for Real Signals	3.5.6	x(t) real	$\begin{cases} a_k & \exists_{-k} \\ \Re e\{a_k\} = \Re e\{a_{-k}\} \\ \Im m\{a_k\} = -\Im m\{a_{-k}\} \\ a_k = a_{-k} \\ \not \propto a_k = - \not \ll a_{-k} \end{cases}$	
Real and Even Signals Real and Odd Signals Even-Odd Decomposition of Real Signals	3.5.6 3.5.6	$\begin{aligned} x(t) \text{ real and even} \\ x(t) \text{ real and odd} \\ \begin{cases} x_e(t) = \mathcal{E}\upsilon\{x(t)\} & [x(t) \text{ real}] \\ x_o(t) = \mathcal{O}d\{x(t)\} & [x(t) \text{ real}] \end{cases} \end{aligned}$	a_k real and even a_k purely imaginary and odd $\operatorname{Re}\{a_k\}$ $j\operatorname{Im}\{a_k\}$	
		Parseval's Relation for Periodic Signals		
		$\frac{1}{T}\int_{T} x(t) ^{2}dt = \sum_{k=-\infty}^{+\infty} a_{k} ^{2}$		

PROPERTIES OF CONTINUOUS-TIME FOURIER SERIES

three examples, we illustrate this. The last example in this section then demonstrates how properties of a signal can be used to characterize the signal in great detail.

Example 3.6

Consider the signal g(t) with a fundamental period of 4, shown in Figure 3.10 is could determine the Figure 3.10 is could determine the Fourier series representation of g(t) directly from the analysis control (2.30). Instead, when a function of g(t) directly from the analysis control (2.30). tion (3.39). Instead, we will use the relationship of g(t) to the symmetric periodic space wave r(t) in Example 3.5. Before to the wave x(t) in Example 3.5. Referring to that example, we see that, with T = 4 at $T_{1} = 1$ $T_1 = 1,$

g(t) = x(t-1) - 1/2.

Sec. 3.7 Properties of Discrete-Time Fourier Series

Thus, in general, *none* of the finite partial sums in eq. (3.52) yield the exact values of x(t), and convergence issues, such as those considered in Section 3.4, arise as we consider the problem of evaluating the limit as the number of terms approaches infinity.

3.7 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

There are strong similarities between the properties of discrete-time and continuous-time Fourier series. This can be readily seen by comparing the discrete-time Fourier series properties summarized in Table 3.2 with their continuous-time counterparts in Table 3.1.

TABLE 3.2	PROPERTIES	0F	DISCRETE-TIME	FOURIER	SERIES
-----------	------------	----	---------------	---------	--------

Property	Periodic Signal	Fourier Series Coefficients	
	$x[n]$ Periodic with period N and $y[n]$ fundamental frequency $\omega_0 = 2\pi/N$	$\left. \begin{array}{c} a_k \\ b_k \end{array} \right\}$ Periodic with b_k period N	
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal Time Scaling	$Ax[n] + By[n]$ $x[n - n_0]$ $e^{jM(2\pi/N)n}x[n]$ $x^{*}[n]$ $x[-n]$ $x_{(m)}[n] = \begin{cases} x[n/m], & \text{if } n \text{ is a multiple of } m \\ 0, & \text{if } n \text{ is not a multiple of } m \end{cases}$ $(\text{periodic with period } mN)$	$Aa_{k} + Bb_{k}$ $a_{k}e^{-jk(2\pi/N)n_{0}}$ a_{k-M} a_{-k}^{*} a_{-k} $\frac{1}{m}a_{k} \left(\begin{array}{c} \text{viewed as periodic} \\ \text{with period } mN \end{array} \right)$	
Periodic Convolution Multiplication	$\sum_{\substack{r=\langle N\rangle\\x[n]y[n]}} x[r]y[n-r]$	Na_kb_k $\sum a_lb_{k-l}$	
First Difference	x[n] - x[n-1]	$(1 - e^{-jk(2\pi/N)})a_k$	
Running Sum	$\sum_{k=-\infty}^{n} x[k] \left(\begin{array}{c} \text{finite valued and periodic only} \\ \text{if } a_0 = 0 \end{array} \right)$	$\left(\frac{1}{(1-e^{-jk(2\pi/N)})}\right)a_k$	
Conjugate Symmetry for Real Signals	x[n] real	$\left\{egin{array}{l} a_k &= a_{-k}^* \ { m Re}\{a_k\} &= { m Re}\{a_{-k}\} \ { m Jm}\{a_k\} &= -{ m Jm}\{a_{-k}\} \ a_k &= a_{-k} \ { m \sphericalangle} a_k &= -{ m \sphericalangle} a_{-k} \end{array} ight.$	
Real and Even Signals Real and Odd Signals	x[n] real and even $x[n]$ real and odd	a_k real and even a_k purely imaginary and odd	
Even-Odd Decomposition of Real Signals	$\begin{cases} x_e[n] = \delta v\{x[n]\} & [x[n] real] \\ x_o[n] = \mathbb{O}d\{x[n]\} & [x[n] real] \end{cases}$	$\mathbb{R}e\{a_k\}$ $j\mathcal{G}m\{a_k\}$	
	Parseval's Relation for Periodic Signals		
	$\frac{1}{N}\sum_{n=\langle N\rangle} x[n] ^2 = \sum_{k=\langle N\rangle} a_k ^2$,	
		······································	

Chap. 3

f eqs. iodic h M = 1; = 4.

sequence in (3.106), the ns, we have

(3.107)

onclude from

if values ov o represent 221

4.6 TABLES OF FOURIER PROPERTIES AND OF BASIC FOURIER TRANSFORM PAIRS

In the preceding sections and in the problems at the end of the chapter, we have considered some of the important properties of the Fourier transform. These are summarized in Table 4.1, in which we have also indicated the section of this chapter in which each property has been discussed.

In Table 4.2, we have assembled a list of many of the basic and important Fourier transform pairs. We will encounter many of these repeatedly as we apply the tools of

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM

ection	Property	Aperiodic signa	al	rourier transform
		x(t) y(t)		Χ(jω) Υ(jω)
4.3.1 4.3.2 4.3.6 4.3.3 4.3.5 4.3.5 4.4 4.5	Linearity Time Shifting Frequency Shifting Conjugation Time Reversal Time and Frequency Scaling Convolution Multiplication	$ax(t) + by(t)$ $x(t - t_0)$ $e^{j\omega_0 t} x(t)$ $x^*(t)$ $x(-t)$ $x(at)$ $x(t) * y(t)$ $x(t)y(t)$ $\frac{d}{t} x(t)$		$aX(j\omega) + bY(j\omega)$ $e^{-j\omega t_0}X(j\omega)$ $X(j(\omega - \omega_0))$ $X^*(-j\omega)$ $X(-j\omega)$ $\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$ $X(j\omega)Y(j\omega)$ $\frac{1}{2\pi}\int_{-\infty}^{+\infty}X(j\theta)Y(j(\omega - \theta))d\theta$ $j\omega X(j\omega)$
4.3.4 4.3.4 4.3.6	Integration Differentiation in Frequency	$dt^{(x)}$ $\int_{-\infty}^{t} x(t)dt$ $tx(t)$		$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$ $j\frac{d}{d\omega}X(j\omega)$ $(X(j\omega) = X^*(-j\omega)$
4.3.3	Conjugate Symmetry for Real Signals	x(t) real		$\begin{cases} \Re_{\mathcal{C}}\{X(j\omega)\} = \Re_{\mathcal{C}}\{X(-j\omega)\} \\ \Re_{\mathcal{C}}\{X(j\omega)\} = -\Im_{\mathcal{C}}\{X(-j\omega)\} \\ \Re_{\mathcal{C}}\{X(j\omega)\} = X(-j\omega) \\ \Re_{\mathcal{C}}(j\omega) = -\Im_{\mathcal{C}}(x(-j\omega)) \\ \Re_{\mathcal{C}}(j\omega) \text{ real and even} \end{cases}$
4.3.3	Symmetry for Real and Even Signals	x(t) real and even		$X(j\omega)$ purely imaginary and ω
4.3.3	Symmetry for Real and Odd Signals	$x_e(t) = \delta v\{x(t)\}$	[x(t) real]	$\Re e\{X(j\omega)\}$
4.3.3	Even-Odd Decompo- sition for Real Sig nals	$x_o(t) = \mathbb{O}d\{x(t)\}$	[x(t) real]	j\$m{X(jω)}
4.3.7	Parseval's Rel $\int_{-\infty}^{+\infty} x(t) ^2 dt$	ation for Aperiodic Signation for $A_{periodic}$ Signation $t = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) ^2 dz$	gnals 1ω	

Sec. 4.6 Tables of Fourier Properties and of Basic Fourier Transform Pairs

FORM PAIRS

Chap. 4

调查

169(I

0850

 $X_{\rm EV}$

12050 165 52

ADAS -

; we have considre summarized in which each prop-

ansform

important Fourier pply the tools of

transform

iω)

 $(r - \theta) d\theta$

 $(0)\delta(\omega)$

-*jω*) · $\Re e\{X(-j\omega)\}$ $-\mathcal{I}m\{X(-j\omega)\}$ - jω)| $(X(-j\omega))$ ven

iginary and odd

TABLE 4.2 BASIC FOURIER TRANSFORM PAIRS

Signal	Fourier transform	Fourier series coefficients (if periodic)
$\sum_{k=-\infty}^{+\infty}a_ke^{jk\omega_0t}$	$2\pi\sum_{k=-\infty}^{+\infty}a_k\delta(\omega-k\omega_0)$	<i>a</i> _k
e ^{jwu} !	$2\pi\delta(\omega-\omega_0)$	$a_1 = 1$ $a_k = 0$, otherwise
$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	$a_1 = a_{-1} = \frac{1}{2}$ $a_k = 0$, otherwise
$\sin \omega_0 t$	$\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$	$a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0, \text{otherwise}$
x(t) = 1	$2\pi\delta(\omega)$	$a_0 = 1$, $a_k = 0$, $k \neq 0$ (this is the Fourier series representation for) (any choice of $T > 0$)
Periodic square wave $x(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \le \frac{T}{2} \end{cases}$ and x(t+T) = x(t)	$\sum_{k=-\infty}^{+\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega-k\omega_0)$	$\frac{\omega_0 T_1}{\pi} \operatorname{sinc} \left(\frac{k \omega_0 T_1}{\pi} \right) = \frac{\sin k \omega_0 T_1}{k \pi}$
$\sum_{n=-\infty}^{+\infty} \delta(t-nT)$	$\frac{2\pi}{T}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{T}\right)$	$a_k = \frac{1}{T}$ for all k
$x(t) \begin{cases} 1, & t < T_1 \\ 0, & t > T_1 \end{cases}$	$\frac{2\sin\omega T_1}{\omega}$	
$\frac{\sin Wt}{\pi t}$	$X(j\omega) = egin{cases} 1, & \omega < W \ 0, & \omega > W \ \end{pmatrix}$	
$\delta(t)$	1	
u(t)	$\frac{1}{j\omega} + \pi\delta(\omega)$	
$\delta(t-t_0)$	$e^{-j\omega t_0}$	
$e^{-at}u(t), \Re e\{a\} > 0$	$\frac{1}{a+j\omega}$	
$te^{-at}u(t), \operatorname{Re}\{a\} > 0$	$\frac{1}{(a+j\omega)^2}$	
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t),$ $\Re e\{a\} > 0$	$\frac{1}{(a+j\omega)^n}$	·

329

er Transform Chap.s

nd $X_2(e^{j\omega})$. The periodic convolu-

Sec. 5.7 Duality

TABLE 5.1 PROPERTIES OF THE DISCRETE-TIME FOURIER TRANSFORM

Section	Property	Aperiodic Signal		Fourier Transform
	<u></u>	x[n]		$X(e^{j\omega})$ periodic with $Y(e^{j\omega})$ period 2π
5.3.2	Linearity Time Shifting	$ax[n] + by[n]$ $x[n - n_0]$		$aX(e^{j\omega}) + bY(e^{j\omega})$ $e^{-j\omega n_0}X(e^{j\omega})$
5.3.3	Frequency Shifting	$e^{j\omega_0 n} x[n]$		$X(e^{j(\omega-\omega_0)})$
5.3.4	Conjugation	<i>x</i> *[<i>n</i>]		$X^*(e^{-j\omega})$
5.3.6	Time Reversal	x[-n]	if $n = multiple of k$	$X(e^{-j\omega})$
5.3.7	Time Expansion	$x_{(k)}[n] = \begin{cases} x_{[n]} \\ 0, \end{cases}$	if $n \neq$ multiple of k	$X(e^{jk\omega})$
5.4	Convolution	x[n] * y[n]		$X(e^{j\omega})Y(e^{j\omega})$
5.5	Multiplication	x[n]y[n]		$\frac{1}{2\pi}\int_{2\pi}X(e^{j\theta})Y(e^{j(\omega-\theta)})d\theta$
5.3.5	Differencing in Time	x[n] - x[n-1]		$(1-e^{-j\omega})X(e^{j\omega})$
5.3.5	Accumulation	$\sum_{k=-\infty}^{n} x[k]$		$\frac{1}{1-e^{-j\omega}}X(e^{j\omega})$
5.3.8	Differentiation in Frequency	nx[n]		$+\pi X(e^{j0}) \sum_{k=-\infty}^{\infty} \delta(\omega - 2\pi k)$ $j \frac{dX(e^{j\omega})}{d\omega}$
5.3.4	Conjugate Symmetry for Real Signals	x[n] real		$\begin{cases} X(e^{j\omega}) = X^*(e^{-j\omega}) \\ \Re e\{X(e^{j\omega})\} = \Re e\{X(e^{-j\omega})\} \\ \Im m\{X(e^{j\omega})\} = -\Im m\{X(e^{-j\omega})\} \\ X(e^{j\omega}) = X(e^{-j\omega}) \\ \ll X(e^{j\omega}) = - \ll X(e^{-j\omega}) \end{cases}$
5.3.4	Symmetry for Real, Even Signals	x[n] real an even		$X(e^{j\omega})$ real and even
5.3.4	Symmetry for Real, Odd Signals	x[n] real and odd		$X(e^{j\omega})$ purely imaginary and odd
5.3.4	Even-odd Decomposition	$x_e[n] = \mathcal{E}\nu\{x[n]\}$	[x[n] real]	$\Re e\{X(e^{j\omega})\}$
	of Real Signals	$x_o[n] = \mathbb{O}d\{x[n]\}$	[x[n] real]	j Im{ $X(e^{j\omega})$ }
5.3.9	Parseval's Re	lation for Aperiodic S	Signals	
	$\sum_{n=-\infty}^{+\infty} x[n] $	$x^{2} = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) ^{2}$	dω	

a duality relationship between the discrete-time Fourier transform and the continuous-time Fourier series. This relation is discussed in Section 5.7.2.

5.7.1 Duality in the Discrete-Time Fourier Series

Since the Fourier series coefficients a_k of a periodic signal x[n] are themselves a periodic sequence, we can expand the sequence a_k in a Fourier series. The duality property for discrete-time Fourier series implies that the Fourier series coefficients for the periodic sequence a_k are the values of (1/N)x[-n] (i.e., are proportional to the values of the original

nple 5.15.

ω

crete-time Fourier 1. In Table 5.2, we r transform pairs.

nmetry or duality to corresponding tion (5.8) for the rete-time Fourier addition, there is

Signal	Fourier Transform	Fourier Series Coefficients (if periodic)
$\sum_{k=\langle N\rangle} a_k e^{jk(2n/N)n}$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	<i>a_k</i>
e ^{jw0n}	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - \omega_0 - 2\pi l)$	(a) $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} 1, k = m, m \pm N, m \pm 2N, \dots \\ 0, \text{ otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
cos ω ₀ n	$\pi \sum_{l=-\infty}^{+\infty} \{\delta(\omega - \omega_0 - 2\pi l) + \delta(\omega + \omega_0 - 2\pi l)\}$	(a) $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} \frac{1}{2}, & k = \pm m, \pm m \pm N, \pm m \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
$\sin \omega_0 n$	$\frac{\pi}{j}\sum_{l=-\infty}^{+\infty} \{\delta(\omega-\omega_0-2\pi l)-\delta(\omega+\omega_0-2\pi l)\}$	(a) $\omega_0 = \frac{2\pi r}{N}$ $a_k = \begin{cases} \frac{1}{2j}, & k = r, r \pm N, r \pm 2N, \dots \\ -\frac{1}{2j}, & k = -r, -r \pm N, -r \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
x[n] = 1	$2\pi\sum_{l=-\infty}^{+\infty}\delta(\omega-2\pi l)$	$a_k = \begin{cases} 1, & k = 0, \pm N, \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$
Periodic square wave $x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & N_1 < n \le N/2 \\ and \\ x[n+N] = x[n] \end{cases}$	$2\pi\sum_{k=-\infty}^{+\infty}a_k\delta\left(\omega-\frac{2\pi k}{N}\right)$	$a_k = \frac{\sin[(2\pi k/N)(N_1 + \frac{1}{2})]}{N\sin[2\pi k/2N]}, \ k \neq 0, \pm N, \pm 2N, \dots$ $a_k = \frac{2N_1 + 1}{N}, \ k = 0, \pm N, \pm 2N, \dots$
$\sum_{k=-\infty}^{+\infty} \delta[n-kN]$	$\frac{2\pi}{N}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{N}\right)$	$a_k = \frac{1}{N}$ for all k
$a^n u[n], a < 1$	$\frac{1}{1-ae^{-j\omega}}$	
$x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & n > N_1 \end{cases}$	$\frac{\sin[\omega(N_1+\frac{1}{2})]}{\sin(\omega/2)}$	_
$\frac{\sin w_n}{\pi n} = \frac{w}{\pi} \operatorname{sinc} \left(\frac{w_n}{\pi} \right)$ $0 < W < \pi$	$X(\omega) = \begin{cases} 1, & 0 \le \omega \le W\\ 0, & W < \omega \le \pi\\ X(\omega) \text{ periodic with period } 2\pi \end{cases}$	-
$\delta[n]$	1	
<i>u</i> [<i>n</i>]	$\frac{1}{1-e^{-j\omega}}+\sum_{k=-\infty}^{+\infty}\pi\delta(\omega-2\pi k)$	
$\delta[n-n_0]$	$e^{-j\omega n_0}$	
$(n+1)a^n u[n], a < 1$	$\frac{1}{(1-ae^{-j\omega})^2}$	-
$\frac{(n+r-1)!}{n!(r-1)!}a^nu[n], a <1$	$\frac{1}{(1-ae^{-j\omega})^r}$	- <u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>

TABLE 5.2 BASIC DISCRETE-TIME FOURIER TRANSFORM PAIRS

397